JPS6358007A - Pulverized coal firing boiler - Google Patents

Pulverized coal firing boiler

Info

Publication number
JPS6358007A
JPS6358007A JP61200700A JP20070086A JPS6358007A JP S6358007 A JPS6358007 A JP S6358007A JP 61200700 A JP61200700 A JP 61200700A JP 20070086 A JP20070086 A JP 20070086A JP S6358007 A JPS6358007 A JP S6358007A
Authority
JP
Japan
Prior art keywords
pulverized coal
air
oxygen
combustion
enriched
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61200700A
Other languages
Japanese (ja)
Other versions
JPH036403B2 (en
Inventor
Motoaki Hirao
平尾 元亮
Shunpei Nozoe
野添 浚平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP61200700A priority Critical patent/JPS6358007A/en
Publication of JPS6358007A publication Critical patent/JPS6358007A/en
Publication of JPH036403B2 publication Critical patent/JPH036403B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Abstract

PURPOSE:To transport pulverized coal safely and make the most optimum combustion control and NOx control possible in response to the combustibility due to the kinds of coal and N content by using simultaneously nitrogen-enriched air and oxygen-enriched air which are separated from an oxygen-enriching membrane unit. CONSTITUTION:At both sides of a high polymer membrane in an oxygen- enriching membrane unit 46 reduced pressure condition is maintained by a blower 48 and oxygen-enriched air 50 and nitrogen-enriched air 52 are obtained. The air 52 is heated by an air preheater 24 and increased in pressure by the primary blower 54 and is supplied to a coal pulverizer 14 to be used for pulverizing coal. Mixed stream of pulverized coal and the air 52 is transported by a pulverized coal transporting pipe 16 and connected to a pulverized coal burner 12 and the pulverized coal is spouted into a furnace 10. The air 50 is heated by the preheater 24 and supplied from the secondary air port 18 and tertiary air port 20 as the first stage combustion air ports installed at the burner 12 and the necessary oxygen quantity for pulverized coal combustion is provided.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、微粉炭燃焼ボイラに係り、特に燃焼効率の向
上及び低NOX燃焼などを可能とする微粉炭燃焼ボイラ
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a pulverized coal combustion boiler, and particularly to a pulverized coal combustion boiler that enables improved combustion efficiency and low NOx combustion.

〔従来の技術〕[Conventional technology]

従来、微粉炭燃焼ボイラにおいて、輸送用−次空気と微
粉炭機による微粉炭との混合流は、混合物輸送管により
輸送され、微粉炭バーナから火炉内に噴射され、一方、
−段燃焼用二次、三次空気が混合流の周囲から内部へ混
合され、空気比1以下となるように微粉炭バーナの一段
燃焼用空気口から供給されて微粉炭が還元雰囲気燃焼さ
れ、引続き、未反応分は火炉の中間部付近の二段燃焼用
空気口から供給される二段燃焼用空気によって完全燃焼
される。
Conventionally, in a pulverized coal combustion boiler, a mixed flow of transport air and pulverized coal from a pulverizer is transported by a mixture transport pipe and injected into the furnace from a pulverized coal burner;
- Secondary and tertiary air for stage combustion is mixed from the periphery of the mixed flow into the inside, and is supplied from the air port for stage combustion of the pulverized coal burner so that the air ratio is less than 1, and the pulverized coal is burned in a reducing atmosphere. The unreacted components are completely combusted by the second-stage combustion air supplied from the second-stage combustion air port near the middle of the furnace.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、上記従来の微粉炭燃焼ボイラによれ N5、ば
、微粉炭製造ならびに輸送をはじめ、−段燃焼用二次、
三次空気及び二段燃焼用空気として通常の空気が用いら
れているため次のような問題があった。
However, the above-mentioned conventional pulverized coal combustion boiler is not suitable for N5, pulverized coal production and transportation, secondary combustion for -stage combustion, etc.
Since ordinary air is used as the tertiary air and the second stage combustion air, the following problems arise.

(1)直接式燃焼方式においては微粉炭様における微粉
砕にさいし、石炭の自然発火や炭じん爆発などを発生す
ることがある。
(1) In the direct combustion method, when pulverized coal is pulverized, spontaneous combustion of the coal or coal dust explosion may occur.

(2)貯蔵式燃焼方式においては、微粉炭貯蔵時に、自
然発火、爆発などを発生することがある。
(2) In the storage combustion method, spontaneous combustion, explosion, etc. may occur when pulverized coal is stored.

(3)還元雰囲気燃焼を行うために一次空気量を減少さ
せることとなるが、燃焼火炎の火炎後退を防止するため
、−次空気量を著しく低減することができず、適切な酸
素雰囲気に調整制御することを簡易に行うことができな
い。
(3) In order to perform combustion in a reducing atmosphere, the amount of primary air must be reduced, but in order to prevent the combustion flame from receding, the amount of primary air cannot be significantly reduced, and the atmosphere must be adjusted to an appropriate oxygen atmosphere. cannot be easily controlled.

(4)多種多様の性状を有する石炭を利用するにさいし
て、高い燃焼効率が得られぬことがあり、灰中未燃分の
増大を伴う。
(4) When using coal having a wide variety of properties, high combustion efficiency may not be obtained, and unburned content in the ash increases.

本発明は、このような従来の問題を解決するものであり
、窒素富化空気と酸素富化空気を同時に利用して微粉炭
製造、貯蔵、輸送および燃焼にあたり、系統の雰囲気を
不活性にし安全性に優れるとともに、還元雰囲気燃焼に
おける適切な酸素雰囲気への調整制御による燃焼効率の
向上を同時に達成することができる優れた微粉炭燃焼ボ
イラを提供することを1」的とするものである。
The present invention solves these conventional problems by simultaneously utilizing nitrogen-enriched air and oxygen-enriched air to make the system atmosphere inert and safe during pulverized coal production, storage, transportation, and combustion. The object of the present invention is to provide an excellent pulverized coal combustion boiler that can simultaneously achieve improved combustion efficiency through adjustment control to an appropriate oxygen atmosphere in reducing atmosphere combustion.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は上記目的を達成するために、空気を酸素富化空
気と窒素富化空気とに分離する酸素富化膜ユニットと、
酸素富化膜ユニットから供給される窒素富化空気と微粉
炭機による微粉炭との混合流を輸送する微粉炭輸送管と
、微粉炭輸送管によって輸送される前記微粉炭を燃焼す
べく火炉に取付けた微粉炭バーナと、窒素富化空気を前
記微粉炭バーナの一段燃焼用空気口に供給する一段燃焼
用空気管と、前記酸素富化膜ユニー/ )から供給され
る酸素富化空気を前記微粉炭バーナの別の一段燃焼用空
気口および火炉の二段燃焼用空気口に供給する別の一段
燃焼用空気管および二段燃焼用空気管とを備えたことを
特徴とするものである。
In order to achieve the above object, the present invention includes an oxygen enrichment membrane unit that separates air into oxygen enriched air and nitrogen enriched air;
A pulverized coal transport pipe transports a mixed flow of nitrogen-enriched air supplied from the oxygen enrichment membrane unit and pulverized coal from the pulverizer, and a pulverized coal transported by the pulverized coal transport pipe to a furnace for combustion. The attached pulverized coal burner, the single-stage combustion air pipe that supplies nitrogen-enriched air to the single-stage combustion air port of the pulverized coal burner, and the oxygen-enriched air supplied from the oxygen-enriched membrane unit The present invention is characterized by comprising another first-stage combustion air pipe and second-stage combustion air pipe that supply to another first-stage combustion air port of the pulverized coal burner and a second-stage combustion air port of the furnace.

〔作 用〕[For production]

本発明は上記のような構成により次のような作用を有す
る。すなわち、M素富化膜ユニット  −における高分
子膜に空気を供給して、膜を透過した酸素富化空気と膜
を透過しない窒素富化空気とに分離される。酸素富化空
気は微粉炭バーナの一段燃焼用二次、三次空気および火
炉における二段燃焼用空気としてもちいられるとともに
、窒素富化空気は直接燃焼方式では一次空気として微粉
炭製造ならびに微粉炭輸送とともに微粉炭バーナへの噴
出ならびに一段燃焼用二次、三次空気のためにもちいら
れ、さらに、貯蔵式燃焼方式の場合には微粉炭機、微粉
炭サイロならびに微粉炭輸送とともに微粉炭バーナへの
噴出ならびに一段燃焼用二次、三次空気のためにもちい
られる。
The present invention has the following effects due to the above configuration. That is, air is supplied to the polymer membrane in the M-enriched membrane unit and is separated into oxygen-enriched air that has passed through the membrane and nitrogen-enriched air that has not passed through the membrane. Oxygen-enriched air is used as secondary and tertiary air for first-stage combustion in pulverized coal burners and second-stage combustion air in furnaces, and nitrogen-enriched air is used as primary air in direct combustion systems for pulverized coal production and pulverized coal transportation. It is used for blowing out to the pulverized coal burner and for secondary and tertiary air for first-stage combustion.Furthermore, in the case of a storage combustion method, it is used for blowing out to the pulverized coal burner as well as for pulverized coal machine, pulverized coal silo, and pulverized coal transportation. Used for secondary and tertiary air for first-stage combustion.

火炉においては、微粉炭の段階燃焼が行われ、微粉炭の
急速な着火、昇温過程に引続き、−段燃焼域では還元雰
囲気となり、火炉に二段燃焼域では酸化雰囲気となるよ
うに制御している。酸素富化空気のもとての前記の燃焼
過程においてはとくに微粉炭の着火の促進と安定ととも
に急速な反応が行われて高温度となり高温度における充
分な還元燃焼を可能となし、加えて、二段燃焼において
は未燃ガスおよび未燃粒子の燃焼反応が進行する。かく
して、微粉度の燃焼反応が著しく促進されてその完結が
行われるため、灰中の未燃分の残留が少〈高い燃焼効率
が得られて、NOX排出を抑制することができる。さら
に、石炭炭種に応じて酸素富化空気供給量を制御するこ
とにより、燃焼域におけるふん囲気中の酸素量を調節制
御できるために、石炭炭種の燃焼性、N分に応じた最適
な燃焼制御とNOX制御を行うことが可能になる。
In the furnace, pulverized coal undergoes staged combustion, and following the rapid ignition and temperature rising process of the pulverized coal, the furnace is controlled so that it becomes a reducing atmosphere in the -stage combustion zone and an oxidizing atmosphere in the second stage combustion zone. ing. In the above-mentioned combustion process under oxygen-enriched air, the ignition of the pulverized coal is promoted and stabilized, and a rapid reaction takes place, resulting in a high temperature, which enables sufficient reductive combustion at high temperatures.In addition, In two-stage combustion, a combustion reaction of unburned gas and unburned particles progresses. In this way, the fine combustion reaction is significantly promoted and completed, so that less unburned matter remains in the ash, high combustion efficiency is obtained, and NOx emissions can be suppressed. Furthermore, by controlling the amount of oxygen-enriched air supplied according to the coal type, the amount of oxygen in the ambient air in the combustion zone can be adjusted and controlled, making it possible to adjust the amount of oxygen in the surrounding air in the combustion zone. It becomes possible to perform combustion control and NOx control.

窒素富化空気は微粉炭機、微粉炭サイロ、微粉炭輸送管
微粉炭バーナにもちいられ、これらの機器内の雰囲気を
不活性化させるため、微粉炭の操作にさいしての自然発
火などの発生を防止することが可能となり、高い安全性
のもとで微粉)女を利用することができ、また、微粉炭
機、微粉炭輸送管においては、窒素富化空気を充分に導
入することにより、機器内流速を充分に確保することが
できて、微粉炭の堆植などを防止でき、さらに、微粉炭
バーナにおいては、微粉)焚流1Aを低下させても火炎
後退などの発生も減少するため、ターンダウン比を大幅
に増大させることができるようになる。
Nitrogen-enriched air is used in pulverizers, pulverized coal silos, and pulverized coal transport pipes and pulverized coal burners, and in order to inert the atmosphere inside these devices, it prevents the occurrence of spontaneous combustion during pulverized coal operation. By introducing sufficient nitrogen-enriched air into pulverized coal machines and pulverized coal transport pipes, it is possible to prevent It is possible to secure a sufficient flow velocity within the equipment, preventing pulverized coal from settling, and in addition, in pulverized coal burners, even if the pulverized coal combustion flow is reduced to 1A, the occurrence of flame regression etc. is reduced. , it becomes possible to significantly increase the turndown ratio.

〔実施例〕〔Example〕

以下、本発明の実−流側を図面について詳細に説明する
。第1図は本発明の一実施例の構成をしめすものであり
、直接式燃焼方式の場合をしめす、第1図において、1
0はボイラの火炉、12は微粉度バーナ、14は微粉度
機、24は空気予熱器、46は酸素富化膜ユニットであ
る0石炭5Bは給炭器56によって微粉炭機14に供給
されて微粉砕される。一方、空気40は押込送風機42
により酸素富化膜ユニット46に供給され、酸素官化膜
ユニット46における高分子膜の両側には充分な圧力差
が作用して透過するように送風機48によって減圧状態
が維持せられ、とくに、線素透過係数の高いポリジメチ
ルシロキサンなどからなる高分子膜をもちいて、酸素と
窒素とに分離され、酸素富化空気50と窒素富化空気5
2とが得られる。
Hereinafter, the practical side of the present invention will be explained in detail with reference to the drawings. FIG. 1 shows the configuration of one embodiment of the present invention, and in FIG. 1, which shows the case of a direct combustion method, 1
0 is a boiler furnace, 12 is a pulverizer burner, 14 is a pulverizer, 24 is an air preheater, and 46 is an oxygen enrichment membrane unit. 0 Coal 5B is supplied to the pulverizer 14 by a coal feeder 56. Finely ground. On the other hand, the air 40 is supplied by a forced air blower 42.
is supplied to the oxygen-enriching membrane unit 46, and a reduced pressure state is maintained by the blower 48 so that a sufficient pressure difference acts on both sides of the polymer membrane in the oxygen-functionalized membrane unit 46 to allow the oxygen to permeate. Using a polymer membrane made of polydimethylsiloxane with a high elementary permeability coefficient, oxygen and nitrogen are separated into oxygen-enriched air 50 and nitrogen-enriched air 5
2 is obtained.

窒素富化空気52は空気予熱器24により加熱されて、
−吹送風4’154によって昇圧されて、前記の微粉炭
機14に供給せられ、石炭の微粉砕にもちいられ、微粉
炭と窒素富化空気52との混合流は微粉炭輸送管16に
よって輸送せられ、@粉炭バーナ12に接続せられて微
粉炭は火炉10に噴出される。酸素富化空気50は空気
予熱器24により加熱されて、空気管22を経て微粉炭
バーナ12に設けられた一段燃焼用空気口である二次空
気口18および三次空気口20から供給せられ、微粉炭
燃焼に必要な酸素量が付与される。
Nitrogen-enriched air 52 is heated by air preheater 24 and
- The pressure is increased by the blowing air 4' 154 and supplied to the pulverizer 14 and used for pulverizing the coal, and the mixed flow of pulverized coal and nitrogen-enriched air 52 is transported by the pulverized coal transport pipe 16. The pulverized coal is spouted into the furnace 10 by being connected to the pulverized coal burner 12. Oxygen-enriched air 50 is heated by an air preheater 24 and supplied through an air pipe 22 from a secondary air port 18 and a tertiary air port 20, which are air ports for single-stage combustion provided in the pulverized coal burner 12, Provides the amount of oxygen necessary for pulverized coal combustion.

また、−次送風機54から分岐された窒素富化空気52
aは微粉炭バーナ12に別に設けられた一段燃焼用空気
口である二次空気口56および三次空気口58から供給
せられ、前記の酸素富化空気50とともに微粉炭燃焼に
必要な酸素量が付与されるとともに、両名の流量の調整
により、−段燃焼域における燃焼雰囲気が還元雰囲気を
形成するようにされている。
Further, the nitrogen-enriched air 52 branched from the secondary blower 54
A is supplied from a secondary air port 56 and a tertiary air port 58, which are separately provided air ports for single-stage combustion in the pulverized coal burner 12, and together with the oxygen-enriched air 50, the amount of oxygen necessary for pulverized coal combustion is supplied to the pulverized coal burner 12. The combustion atmosphere in the -stage combustion zone is made to form a reducing atmosphere by adjusting the flow rates of both.

次に二段燃焼用空気口30が火炉10に設けられ、空気
加熱器24の酸素富化空気出口側からの空気管26が連
結されており、送風機28をもって二段燃焼域を形成す
るために必要な酸素富化空気が供給される。火炉lOお
よび図示を省略した蒸気発生部からの排ガス32は空気
予熱″Jg24を経て集じん装置34によりフライアッ
シュなどを分離したのち、誘引通風機36より煙突38
から系外に排出される。
Next, an air port 30 for two-stage combustion is provided in the furnace 10, and an air pipe 26 from the oxygen-enriched air outlet side of the air heater 24 is connected to the air port 30 for forming a two-stage combustion zone with a blower 28. The necessary oxygen enriched air is supplied. Exhaust gas 32 from the furnace 1O and a steam generating section (not shown) passes through air preheating ``Jg24'', and after separating fly ash etc. by a dust collector 34, it is sent to a chimney 38 by an induced draft fan 36.
is discharged from the system.

微粉度バーナ12においては、酸素富化空気50および
窒素富化空気52aが利用されることにより、微粉炭の
若人の促進と安定がもたらされ、−段燃焼域においては
急速な反応が行われて高温度となり、高温度における還
元燃焼が進行してNOX生戊が抑制されるとともに二段
燃焼域においては未燃ガスおよび未燃粒子の燃焼反応が
進行する。かくして、微粉炭の燃焼反応が著しく促進さ
れて、その完結が行われるため、灰中の未燃分の残留を
少くすることができる。したがって高燃料比からなる燃
焼性の低い石炭の微粉炭燃焼にさいしても高い燃焼効率
が得られ、前記のNOX抑制に加えて段階燃焼にあたり
窒素比が少ない酸素富化空気をもちいて燃焼が行えるの
でNOx抑制の効果が得られる。
In the fineness burner 12, oxygen-enriched air 50 and nitrogen-enriched air 52a are used to promote and stabilize the youth of pulverized coal, and rapid reactions occur in the -stage combustion zone. As a result, the temperature becomes high, reductive combustion at high temperature progresses, NOx production is suppressed, and the combustion reaction of unburned gas and unburned particles progresses in the two-stage combustion region. In this way, the combustion reaction of the pulverized coal is significantly promoted and completed, so that the amount of unburned matter remaining in the ash can be reduced. Therefore, high combustion efficiency can be obtained even in pulverized coal combustion of coal with a high fuel ratio and low combustibility, and in addition to the above-mentioned NOx suppression, combustion can be performed using oxygen-enriched air with a low nitrogen ratio in staged combustion. Therefore, the effect of suppressing NOx can be obtained.

微粉炭機14においては加熱された窒素富化空気の導入
のもとで石炭58の微粉砕が行われるので、不活性化さ
れた雰囲気で充分な流速のもとて微粉砕されることにな
り、微粉炭の堆積や自然発火などの発生が防止され1、
高い安全性が得られる。
In the coal pulverizer 14, the coal 58 is pulverized under the introduction of heated nitrogen-enriched air, so that the coal 58 is pulverized at a sufficient flow rate in an inert atmosphere. , the occurrence of pulverized coal accumulation and spontaneous combustion is prevented1.
High safety can be obtained.

微粉度バーナ12において、微粉炭は酸素比が少ない窒
素富化空気をもちいて火炉10に噴出されるため還元雰
囲気燃焼を容易にすることができ、さらに、火炎後退な
どの発生も減少するため、微粉炭バーナ12のターンダ
ウン比を大幅に増大させることができる。
In the fineness burner 12, the pulverized coal is injected into the furnace 10 using nitrogen-enriched air with a low oxygen ratio, which facilitates combustion in a reducing atmosphere, and further reduces the occurrence of flame regression, etc. The turndown ratio of the pulverized coal burner 12 can be significantly increased.

第2図は本発明の他実流側の構成をしめすものであり、
貯蔵式燃焼方式の場合をしめす。
FIG. 2 shows the configuration of the other actual flow side of the present invention,
The case of storage combustion method is shown.

第2図において第1図と共通であるものについては重複
して説明することを省略する。
The redundant explanation of the parts in FIG. 2 that are common to FIG. 1 will be omitted.

60は微粉炭であって、図示を省略した微粉炭機によっ
て製造される。微粉炭60は微粉炭サイロ62に貯蔵せ
られ、微粉炭サイロ62の下部に設けた供給器から一定
流量のもとで排出されて、さらに、混合器68において
、窒素富化空気52と混合して混合流となり、微粉炭輸
送管16a内を通り微粉炭バーナ12から混合流が火炉
10に噴出される。また分岐された窒素富化空気52a
は二次空気口56および三次空気口から供給される。
60 is pulverized coal, which is manufactured by a pulverized coal machine (not shown). Pulverized coal 60 is stored in a pulverized coal silo 62, discharged at a constant flow rate from a feeder provided at the bottom of the pulverized coal silo 62, and further mixed with nitrogen-enriched air 52 in a mixer 68. The mixture flows through the pulverized coal transport pipe 16a and is ejected from the pulverized coal burner 12 to the furnace 10. Additionally, the branched nitrogen-enriched air 52a
is supplied from the secondary air port 56 and the tertiary air port.

さらに、窒素富化空気52の一部は送風機70によって
昇圧されて、加圧窒素富化空気52bとなり貯槽72を
経て微粉炭サイロ62に接続されており、微粉炭サイロ
62には所定の圧力を保持しつつ加圧窒素富化空気52
bを封入し不活性ふん囲気となしており、大気圧に比し
て加圧状態にされているため外気が微粉炭サイロ62に
侵入して不活性ふん囲気を阻害することが防止されてい
る。かくして充分な不活性ふん囲気が形成されて微粉炭
サイロ62内における微粉炭の自然発火などの発生を防
止することができる。
Furthermore, a part of the nitrogen-enriched air 52 is pressurized by the blower 70 to become pressurized nitrogen-enriched air 52b, which is connected to the pulverized coal silo 62 via the storage tank 72, and the pulverized coal silo 62 is supplied with a predetermined pressure. Pressurized nitrogen enriched air 52 while maintaining
b is sealed to create an inert atmosphere, and the pressure is higher than atmospheric pressure, which prevents outside air from entering the pulverized coal silo 62 and disturbing the inert atmosphere. . In this way, a sufficient inert atmosphere is formed, and spontaneous combustion of the pulverized coal within the pulverized coal silo 62 can be prevented.

上記いずれの実施例においても、窒素富化空気と酸素富
化空気とを同時に利用して、窒素富化空気は微粉炭機、
微粉炭サイロ、微粉炭輸送管微粉炭バーナなどの系統内
の雰囲気を不活性にして完全にさせて微粉炭燃焼が行わ
れ、−段燃焼域を還元雰囲気に形成するとともに、酸素
富化空気は微粉炭バーナ、二段燃焼用空気口から導入さ
れて多種多様の石炭を燃焼させて、高い燃焼効率に制御
できてNOx排出を抑制することができる。したがって
、微粉炭の安全な製造、貯蔵、供給と輸送のもとての微
粉炭燃焼にさいして、未燃損失を低減できるためボイラ
熱効率の向上が可能となる。
In any of the above embodiments, nitrogen-enriched air and oxygen-enriched air are used simultaneously, and the nitrogen-enriched air is supplied to the pulverizer,
Pulverized coal combustion is performed by making the atmosphere in the system such as the pulverized coal silo, pulverized coal transport pipe, and pulverized coal burner inert and completely inert, forming a reducing atmosphere in the -stage combustion area, and oxygen-enriched air. The pulverized coal burner is introduced through the air port for two-stage combustion to burn a wide variety of coals, which can be controlled to high combustion efficiency and suppress NOx emissions. Therefore, in the combustion of pulverized coal for safe production, storage, supply and transportation of pulverized coal, unburned losses can be reduced and boiler thermal efficiency can be improved.

さらに、微粉炭バーナのターンダウンを大幅に増大させ
ることができるため、微粉炭燃焼ボイラの利用にあたり
大きな負荷変動に対応させることが可能となる。
Furthermore, since the turndown of the pulverized coal burner can be significantly increased, it becomes possible to cope with large load fluctuations when using the pulverized coal combustion boiler.

なお、本発明の実施態様は上述実施例のみに限定されな
いことは勿論であり、分離装置、低NOxバーナおよび
類似燃焼装膜などにおける多くの態様が採用可能である
It should be noted that the embodiments of the present invention are of course not limited to the above-described embodiments, and many embodiments of separators, low NOx burners, similar combustion membranes, etc. can be adopted.

〔発明の効果〕〔Effect of the invention〕

本発明は上記実施例より明らかなように、酸素富化膜ユ
ニットにより分離された窒素富化空気と酸素富化空気と
を同時に利用して、微粉炭燃焼にあたり、窒素富化空気
による微粉炭機における微粉炭の製造、微粉炭サイロに
おける微粉炭の貯蔵、微粉炭輸送管における微粉炭の輸
送などを安全に行うことができる。
As is clear from the above embodiments, the present invention simultaneously utilizes nitrogen-enriched air and oxygen-enriched air separated by an oxygen-enriched membrane unit to burn pulverized coal in a pulverized coal machine using nitrogen-enriched air. The production of pulverized coal in pulverized coal, the storage of pulverized coal in pulverized coal silos, and the transportation of pulverized coal in pulverized coal transport pipes can be carried out safely.

また、酸素富化空気による微粉炭の還元雰囲気燃焼を容
易にすることができて1石炭度種の燃焼性、N分に応じ
た最適な燃焼制御とNOx 1tJI御を行うことがで
きるとともにボイラ熱効率やターンダウン比を向上する
ことができるという多大な効果を奏する。
In addition, it is possible to facilitate the combustion of pulverized coal in a reducing atmosphere using oxygen-enriched air, and it is possible to perform optimal combustion control according to the combustibility of one coal grade type, N content, NOx 1tJI control, and boiler thermal efficiency. This has the great effect of improving the turndown ratio.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例にかかる微粉炭燃焼ボイラの
概略ブロック図、第2図は本発明の信実流側にかかる微
粉炭燃焼ボイラの概略ブロック図である。 10・・・火炉       12・・・微粉炭バーナ
14・・・微粉炭機     16・・・微粉炭輸送管
18・・・二次空気口    20・・・三次空気口3
0・・・二段燃焼用空気口 46・・・酩素富化膜ユニット 50・・・酸素富化空気
FIG. 1 is a schematic block diagram of a pulverized coal combustion boiler according to an embodiment of the present invention, and FIG. 2 is a schematic block diagram of a pulverized coal combustion boiler according to the true flow side of the present invention. 10... Furnace 12... Pulverized coal burner 14... Pulverized coal machine 16... Pulverized coal transport pipe 18... Secondary air port 20... Tertiary air port 3
0... Two-stage combustion air port 46... Soxen enriched membrane unit 50... Oxygen enriched air

Claims (1)

【特許請求の範囲】[Claims] 空気を酸素富化空気と窒素富化空気とに分離する酸素富
化膜ユニットと、酸素富化膜ユニットから供給される窒
素富化空気と微粉炭機による微粉炭との混合流を輸送す
る微粉炭輸送管と、微粉炭輸送管によって輸送される前
記微粉炭を燃焼すべく火炉に取付けた微粉炭バーナと、
窒素富化空気を前記微粉炭バーナの一段燃焼用空気口に
供給する一段燃焼用空気管と、前記酸素富化膜ユニット
から供給される酸素富化空気を前記微粉炭バーナの別の
一段燃焼用空気口および火炉の二段燃焼用空気口に供給
する別の一段燃焼用空気管および二段燃焼用空気管とを
備えたことを特徴とする微粉炭燃焼ボイラ。
An oxygen-enriching membrane unit that separates air into oxygen-enriched air and nitrogen-enriched air, and a pulverizer that transports a mixed flow of nitrogen-enriched air supplied from the oxygen-enriched membrane unit and pulverized coal from a pulverizer. a coal transport pipe; a pulverized coal burner attached to a furnace to burn the pulverized coal transported by the pulverized coal transport pipe;
a single-stage combustion air pipe that supplies nitrogen-enriched air to an air port for single-stage combustion of the pulverized coal burner; and a single-stage combustion air pipe that supplies oxygen-enriched air from the oxygen-enriched membrane unit to another single-stage combustion air pipe of the pulverized coal burner. A pulverized coal combustion boiler comprising an air port and another single-stage combustion air pipe and a second-stage combustion air pipe that supply to the second-stage combustion air port of a furnace.
JP61200700A 1986-08-27 1986-08-27 Pulverized coal firing boiler Granted JPS6358007A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61200700A JPS6358007A (en) 1986-08-27 1986-08-27 Pulverized coal firing boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61200700A JPS6358007A (en) 1986-08-27 1986-08-27 Pulverized coal firing boiler

Publications (2)

Publication Number Publication Date
JPS6358007A true JPS6358007A (en) 1988-03-12
JPH036403B2 JPH036403B2 (en) 1991-01-30

Family

ID=16428777

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61200700A Granted JPS6358007A (en) 1986-08-27 1986-08-27 Pulverized coal firing boiler

Country Status (1)

Country Link
JP (1) JPS6358007A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02275214A (en) * 1989-04-18 1990-11-09 Mitsubishi Heavy Ind Ltd Oxygen enriched combustion device of solid fuel
JPH06213410A (en) * 1992-12-08 1994-08-02 Praxair Technol Inc Combustion of mixed oxidant
JP2005134102A (en) * 2003-09-16 2005-05-26 Praxair Technol Inc Low nox combustion using simultaneously formed oxygen and nitrogen streams
KR101006424B1 (en) 2009-04-02 2011-01-06 주식회사 한국에너지관리 Combustion Promoting Apparatus for Heavy Oil Burner
WO2012053222A1 (en) * 2010-10-22 2012-04-26 バブコック日立株式会社 Boiler and operating method of same
CN104033892A (en) * 2014-06-28 2014-09-10 广西聚为能源科技有限公司 Oxygen-enriched combustion method of volatilization klin
KR20210048857A (en) * 2019-10-24 2021-05-04 두산중공업 주식회사 Fuel conveying device and Boiler facility including the same
US11815263B2 (en) 2019-10-15 2023-11-14 Doosan Heavy Industries & Construction C Fuel transfer apparatus and boiler facility including same

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02275214A (en) * 1989-04-18 1990-11-09 Mitsubishi Heavy Ind Ltd Oxygen enriched combustion device of solid fuel
JPH06213410A (en) * 1992-12-08 1994-08-02 Praxair Technol Inc Combustion of mixed oxidant
JP2005134102A (en) * 2003-09-16 2005-05-26 Praxair Technol Inc Low nox combustion using simultaneously formed oxygen and nitrogen streams
KR101006424B1 (en) 2009-04-02 2011-01-06 주식회사 한국에너지관리 Combustion Promoting Apparatus for Heavy Oil Burner
WO2012053222A1 (en) * 2010-10-22 2012-04-26 バブコック日立株式会社 Boiler and operating method of same
JP2012088016A (en) * 2010-10-22 2012-05-10 Babcock Hitachi Kk Oxygen combustion type boiler and method of operating the same
AU2011319286B2 (en) * 2010-10-22 2015-08-20 Mitsubishi Power, Ltd. Boiler and operating method of same
US9476588B2 (en) 2010-10-22 2016-10-25 Mitsubishi Hitachi Power Systems, Ltd. Boiler and operating method of same
CN104033892A (en) * 2014-06-28 2014-09-10 广西聚为能源科技有限公司 Oxygen-enriched combustion method of volatilization klin
US11815263B2 (en) 2019-10-15 2023-11-14 Doosan Heavy Industries & Construction C Fuel transfer apparatus and boiler facility including same
KR20210048857A (en) * 2019-10-24 2021-05-04 두산중공업 주식회사 Fuel conveying device and Boiler facility including the same

Also Published As

Publication number Publication date
JPH036403B2 (en) 1991-01-30

Similar Documents

Publication Publication Date Title
US6843185B1 (en) Burner with oxygen and fuel mixing apparatus
WO2009110036A1 (en) Method of controlling oxygen supply in oxygen combustion burner and apparatus therefor
JP5068183B2 (en) Combustion method and system
EP2623861A1 (en) Combustion system and method for operating same
US6244200B1 (en) Low NOx pulverized solid fuel combustion process and apparatus
US20100275825A1 (en) Modifying transport air to control nox
WO2009110033A1 (en) Method of controlling exhaust gas in oxygen combustion boiler and apparatus therefor
CA2509631C (en) Process and apparatus for oxygen enrichment in fuel conveying gases
JP2540636B2 (en) boiler
JPS6358007A (en) Pulverized coal firing boiler
US20130255551A1 (en) Biomass Combustion
JP3285595B2 (en) Fine solid fuel combustion equipment
JPS5864409A (en) Pulverized coal firing boiler
JPS62169907A (en) Pulverized coal combustion boiler
JPH0449449Y2 (en)
JPS6183805A (en) Method of burning pulverized solid fuel and the like
JP2012021652A (en) Combustion furnace for coal firing boiler and method of operating the same
JPS5960106A (en) Low nox burning device
JPH0523325B2 (en)
JPS62169908A (en) Pulverized coal combustion boiler
JPS58108306A (en) Method for low nox combustion of pulverized coal
JPS63290306A (en) Combustion control method for pulverized coal combustion apparatus
JPS6183804A (en) Method of burning pulverized solid fuel and the like
JPH02219903A (en) Nitrogen oxide reduction method of coal burning boiler
JPH06265105A (en) Fine powder solid fuel combustion device