JPS6358006A - Cyclone type combustor - Google Patents

Cyclone type combustor

Info

Publication number
JPS6358006A
JPS6358006A JP20168886A JP20168886A JPS6358006A JP S6358006 A JPS6358006 A JP S6358006A JP 20168886 A JP20168886 A JP 20168886A JP 20168886 A JP20168886 A JP 20168886A JP S6358006 A JPS6358006 A JP S6358006A
Authority
JP
Japan
Prior art keywords
combustor
slag
wall
stage
combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20168886A
Other languages
Japanese (ja)
Other versions
JPH0615925B2 (en
Inventor
Tadaki Imatake
今竹 忠己
Yosaburo Iwato
岩藤 要三良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP61201688A priority Critical patent/JPH0615925B2/en
Publication of JPS6358006A publication Critical patent/JPS6358006A/en
Publication of JPH0615925B2 publication Critical patent/JPH0615925B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Combustion Of Fluid Fuel (AREA)

Abstract

PURPOSE:To prevent the entrainment of slag caused by the revolving stream of combustion gas in the axial direction, separate and extract sufficiently the slag in the combustion gas, and prevent the generation of a revolving stream by a method wherein a communicating tube penetrating into the primary stage combustor is allowed to project to a proper depth and installed. CONSTITUTION:At the central part of a ceiling wall 18 in the primary stage combustor 16 a cylindrical communicating tube 19 is installed and its lower end is allowed to project to a proper depth inside the combustor 16. Further, at a wall 20 an air port 8 extending along the internal surface in the tangential direction is installed and this wall is formed into a cyclone type which is convergent towards the lower end. A plurality of burners 6 are installed at the wall 18 so as to surround the circumference of the tube 19. On the other hand, on the periphery of the wall 20 in the secondary combustor 17 a hollow cylindrical manifold 21 is attached. The combustor 17 formed in one body with the manifold 21 and the combustor 16 with the communicating tube are connected directly between the bottom part of the manifold and the upper end part of the tube 19. Thereby, the revolving stream of combustion gas is able to be certainly eliminated and therefore, uniform stream smoothening effect is obtained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、石炭焚MHD 光重プラント用・燃焼器、石
炭ガス化炉、石炭焚ボイラ並びに石炭焚ガスターヒン用
燃焼器等の石炭を燃料とするサイクロン型の燃焼器に関
する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a cyclone fueled by coal, such as a coal-fired MHD light heavy plant combustor, a coal gasification furnace, a coal-fired boiler, a coal-fired gas turbine combustor, etc. Regarding type combustors.

従来の技術 微粉炭、CW!J(石炭・水混合窃)又はCOM(石炭
・重油混合物):4の石炭を・燃料として高温ガスを発
生させて高温熱エネルギーを動力源とする各種プラント
、例えば石炭焚M HD  (Magnet −Hyd
oro−Dynamicse )発電プラント等の燃焼
器の従来例として、次のようなサイクロン型の燃焼器が
ある。
Conventional technology pulverized coal, CW! J (Coal/Water Mixture) or COM (Coal/Heavy Oil Mixture): Various plants that generate high-temperature gas using coal as a fuel and use high-temperature thermal energy as a power source, such as coal-fired M HD (Magnet-Hyd)
As a conventional example of a combustor for a power generation plant or the like, there is the following cyclone type combustor.

第3〜4図に示すように、燃焼器】は、夫々、横形(第
3図)又は縦形(第4図)のMHD 発電プラント用燃
焼藩として構成されている。これらの燃焼器1はどちら
も、平板オリフィス型の絞り隔壁板°2を介して、石炭
燃料の燃・魂ガス中に混在する溶融した残渣(スラグ)
成分をその燃焼室内の炉壁面で分離・抽出している第1
段燃焼室3と、MHD  発電において、燃焼ガスを作
動ガスとしてOc″ 用いるヒ右ヂ、その作動ガスの導電性を高めるために、
NUえば力、リウム化合物(具体的にはKOH水溶り等
、即ち、シード剤を燃・暁ガス中に噴霧蒸発させ高温ガ
スをイオン化した、燃焼ガスプラズマを供給するための
第2段・燃焼室4とに区画されている。
As shown in FIGS. 3-4, the combustors are configured as horizontal (FIG. 3) or vertical (FIG. 4) MHD power plant combustion chambers, respectively. In both of these combustors 1, molten residue (slag) mixed in the combustion and soul gas of coal fuel is removed through a flat orifice-type throttle partition plate °2.
The first part separates and extracts the components on the furnace wall inside the combustion chamber.
In the stage combustion chamber 3 and MHD power generation, combustion gas is used as a working gas, and in order to increase the conductivity of the working gas,
A second stage/combustion chamber for supplying a combustion gas plasma in which NU, lithium compounds (specifically KOH water-soluble, etc.), a seed agent, are sprayed and evaporated into the combustion gas to ionize the high-temperature gas. It is divided into 4.

そして、第1段燃・焼室3内には微粉炭等の燃料供給系
統5と接続して燃焼室4円にその燃料を噴射するための
バーナ6と、1次燃焼用酸化剤(高温空気ン供給系統7
と接続してその酸化剤G−]が投入されることにより燃
焼ガスに旋回を与えるための空気口8とが適当な位置に
配置され、(に燃焼器3の底部にはスラグ排出系統9と
Fit Aiして燃焼ガスから分離される溶融スラグを
捕集するためのスラグ溜10が設けられている。
In the first stage combustion chamber 3, there is a burner 6 connected to a fuel supply system 5 such as pulverized coal to inject the fuel into the combustion chamber 4, and a primary combustion oxidizer (high temperature air supply system 7
An air port 8 for giving swirl to the combustion gas by connecting the oxidizing agent G-] is arranged at an appropriate position, and a slag discharge system 9 is installed at the bottom of the combustor 3. A slag reservoir 10 is provided for collecting molten slag separated from combustion gas.

−万、第2段燃焼室4には前記酸化剤供給系統7から分
岐された配管と接続して、燃焼室4内に2次燃焼用酸化
剤o−2’2噴射するための27′に空気口1]と、シ
ード剤のシード供給系統12と接続して燃焼室4内に噴
霧するためのシードノズル】3とが適当な位置に配置さ
れ、更に燃焼室4のI11端部(又は上方端)には、前
述の如く燃°暁室4門で蒸発するシード剤により生成さ
れた高温ガスプラズマを−様な平行流に整流して供給し
、かつ、図には示されていない’# 16プラントのチ
ャネル(このチャネルに構成上、矩形断面形伏)と@績
している開口端を有する高温ダクト14が設けられてい
る。
- 10,000, the second stage combustion chamber 4 is connected to a pipe branched from the oxidant supply system 7, and a pipe 27' for injecting the secondary combustion oxidant o-2'2 into the combustion chamber 4 is connected. An air port 1 ] and a seed nozzle ] 3 for connecting to the seed supply system 12 for seed agent and spraying it into the combustion chamber 4 are arranged at appropriate positions, and the I11 end of the combustion chamber 4 (or the upper As mentioned above, the high-temperature gas plasma generated by the seeding agent evaporated in the four combustion chambers is rectified into a parallel flow like - and supplied to the end). A high-temperature duct 14 is provided with an open end communicating with a 16-plant channel (which is of rectangular cross-section in construction).

このように、第1段燃焼室3内のスラグ全分離抽出する
ために燃焼室内に酸化剤の強力な旋回渦流を形1反させ
ることによって、燃焼ガス中の微粒子状のスラグに遠心
力を作用させ、燃焼室3の内周壁に向って飛翔させて壁
面にて分離し、溶融スラグを壁面に沿って流下させてス
ラグ留1oで捕集する。
In this way, in order to completely separate and extract the slag in the first stage combustion chamber 3, a strong swirling vortex flow of the oxidizer is reversed in the combustion chamber, thereby applying centrifugal force to the particulate slag in the combustion gas. The molten slag is flown toward the inner circumferential wall of the combustion chamber 3 and separated on the wall surface, and the molten slag flows down along the wall surface and is collected in the slag reservoir 1o.

また、通常は石炭中(炭陣シてよって異なるが)には、
燃焼反応生成物として15〜30%のスラグ成分が含ま
れており、このスラグの主成分ば、S 1021 A’
 20 s + ” yo r c a o からなり
、このうち5102  が約50%を占めている。
Also, usually in coal (although it varies depending on the coal camp),
15 to 30% of slag components are included as combustion reaction products, and the main component of this slag is S 1021 A'
It consists of 20 s + "yo r c a o, of which 5102 occupies about 50%.

以上のようなM[(D発電においては約2,500〜3
.000°にの高□温ガスフ”ラズマを生成して発電チ
ャネルへ供給する会費があるが、しかしながら、スラグ
主成分であるシリカ(S102 )  i’!: 25
000にで1aiInの蒸気圧を示し、このことな燃焼
ガス温度2,500’K 以上の雰囲気においては81
02  は見化し、燃・暁ガス中に蒸発同伴されること
を意味する。因に他の主成分(Ai−00ak、・・・
)¥i比較的   ST 蒸気圧が高く、約3,000°に以上でlatmとされ
ている。
The above M[(D power generation is approximately 2,500 to 3
.. There is a fee to generate a high temperature gas plasma at 000° and supply it to the power generation channel, however, silica (S102) i'!: 25 which is the main component of slag.
000 and a vapor pressure of 1aiIn in an atmosphere with a combustion gas temperature of 2,500'K or more.
02 means that it is visualized and evaporated and entrained in the combustion/dawn gas. Incidentally, other main components (Ai-00ak,...
) ¥i Relatively high ST vapor pressure is considered to be latm at approximately 3,000° or above.

従って、燃焼室内でスラグを除去するためには燃焼火炎
温度を約2000°に以下に抑制し、スラグ成分を溶融
ミストないしは固体微粒子の状態で燃焼ガス中から分離
抽出する必要がある。このためにMHD発電用燃焼器で
は、第3及び4図に示すように、第1段燃焼室3では燃
料用酸化剤の投入量、即ち一次燃焼酸素供給量G−1を
酸素当量比(= WT、供給it/燃料が完全燃焼に要
する理論酸素量ン、約0・6〜0.7以下に抑え、燃料
過濃な条件で燃焼させることにより燃焼火炎温度を約2
000°K 以下に抑制してスラグ成分の蒸発同伴を防
止し、第1段燃焼室3内でスラグを除去する。その後、
第2段燃焼室4で新たに酸化剤即ち、二次燃焼用酸素G
−2を供給して、第1段燃焼室3での燃・焼ガスを2次
燃焼させて25000x 以上の高温燃焼ガスを生成す
るものである。
Therefore, in order to remove slag in the combustion chamber, it is necessary to suppress the combustion flame temperature to about 2000° or less and separate and extract the slag components from the combustion gas in the form of molten mist or solid particles. For this reason, in the MHD power generation combustor, as shown in Figures 3 and 4, in the first stage combustion chamber 3, the input amount of fuel oxidizer, that is, the primary combustion oxygen supply amount G-1 is adjusted to the oxygen equivalent ratio (= WT, the theoretical oxygen amount required for complete combustion of fuel is kept below about 0.6 to 0.7, and the combustion flame temperature is reduced to about 2 by burning under fuel-rich conditions.
000°K or less to prevent evaporation and entrainment of slag components, and remove the slag in the first stage combustion chamber 3. after that,
In the second stage combustion chamber 4, a new oxidizer, i.e., oxygen G for secondary combustion, is added.
-2 is supplied, and the combustion gas in the first stage combustion chamber 3 is subjected to secondary combustion to generate high-temperature combustion gas of 25000x or more.

なお、第5図には他の従来例として、通常の石炭焚ボイ
ラに適用されるサイクロン型スラグタップ燃焼炉を示し
ており、この場合には、当然シードノズル13(1設け
られておらず第2段燃焼室4円から絞り隔壁板2上に流
下し、たスラグを、更にスラグ溜10に落とし込むため
の第1と第2段燃焼室3,4に連接する夕°ウンカマ1
5が設けられている。
In addition, FIG. 5 shows a cyclone type slag tap combustion furnace applied to a normal coal-fired boiler as another conventional example. An unloader 1 connected to the first and second stage combustion chambers 3 and 4 is used to further drop the slag that flows down from the second stage combustion chamber 4 onto the throttle partition plate 2 into the slag sump 10.
5 is provided.

発明が解決しようとする問題点 以上述べた従来のサイクロン型燃焼器は、しかし、仄の
ような問題点があった。
Problems to be Solved by the Invention The conventional cyclone type combustor described above, however, has the following problems.

(1) プラントへの適用性評価では、近時、スラグ除
去率90%以上が要ボされており、第3〜5図に示す平
板オリフィス形の絞り隔壁板2のような形状でtま、第
1段燃焼室3の強力な旋回流が第2段燃焼室内4でも連
続して形成されるために、壁面に浴って流下するスラグ
が第1段燃焼里後流の旋回流によって再飛散し、第2段
燃焼室4へ一部のスラグがキャリオーバを生じ、スラグ
除去性能又は効率(現状でに70〜80%)の向上を計
ることが困難である。
(1) In recent years, in applicability evaluation to plants, a slag removal rate of 90% or more has been required. Because the strong swirling flow in the first-stage combustion chamber 3 is continuously formed in the second-stage combustion chamber 4, the slag that hits the wall and flows down is re-splattered by the swirling flow after the first-stage combustion chamber. However, some slag carries over to the second stage combustion chamber 4, making it difficult to improve the slag removal performance or efficiency (currently 70 to 80%).

f21  MHD !!:電においては、燃焼器1の出
口、即ち高温ダクト】4に1[結される発電チャネルヘ
ー様な平行流に整流された高温ガスプラズマを高速(9
00〜] 000 ”Vs )で供給する必要がある。
f21 MHD! ! : In electric power generation, high-temperature gas plasma rectified into a parallel flow like a power generation channel connected to the outlet of the combustor 1, that is, a high-temperature duct, to a high-speed duct,
00~]000''Vs).

しかして、従来においては、スラグ除去作用を一つの目
的として構成した渠1段燃焼呈3の強力な旋回流のエネ
ルギー保存連続の法則によって後流側にも連続されるた
め旋回渦を消すことが非常に浦しいという欠点がある。
However, in the past, due to the law of energy conservation continuity of the strong swirling flow of the conduit first-stage combustion system 3, which was constructed with the purpose of removing slag, it was possible to eliminate the swirling vortex because it was continued on the downstream side. It has the disadvantage of being very vulgar.

そして、第2段燃焼室4の二次燃焼用酸化剤G−2(高
温空気または酸系)を燃焼室外周に設けた2次窒気口】
1から放射状に吹き込む方式がなされているが、周知の
ごとく、燃焼室内の主流は、を次及び8次燃焼用酸化)
4(1藏G −1及びa−2の2つの気流の運動量の比
即ち(0−1°v−1°p−1/G−2−V−2ρ−2
)によって支配されるものである。
A secondary nitrogen inlet is provided at the outer periphery of the combustion chamber for the secondary combustion oxidizer G-2 (high temperature air or acid type) in the second stage combustion chamber 4.
The main flow in the combustion chamber is oxidation (for the next and eighth combustion).
4 (1 藏 Ratio of momentum of two air currents G -1 and a-2, that is (0-1°v-1°p-1/G-2-V-2ρ-2
).

(こ\に■=吹出し速度、ρ=吹出しガスの密度、添字
は吹出しノズル位置) こ\で′実用MHD発電における燃焼装置では燃焼用酸
化4j(1200〜1300°Cの高YNA窒気)を第
1段燃焼室3で約65〜70%、第2段燃焼室4では残
v30〜35%全供給する(余剰空気を投入することは
ガス温度の低下となるためMHDでは鍍素当−緊比ζ1
で燃焼させる)ものである。従って、017G−2= 
1−8〜2.5となり第1段燃焼器16成される主流渦
のモーメンタム支配となることから旋回流が残ることが
判る。
(Where ■=Blowout speed, ρ=Blowout gas density, and the subscript is the blowout nozzle position.) Here, 'In the combustion equipment in practical MHD power generation, oxidation 4J (high YNA nitrogen gas at 1200 to 1300°C) is used for combustion. Approximately 65 to 70% of the air is supplied to the first stage combustion chamber 3, and the remaining 30 to 35% is supplied to the second stage combustion chamber 4. ratio ζ1
). Therefore, 017G-2=
1-8 to 2.5, and the momentum is dominated by the mainstream vortex formed in the first stage combustor 16, so it can be seen that a swirling flow remains.

以上のように、従来技術では、燃焼器に接続される主要
構成要素に対して、スラグ全十分に分離・捕集ができな
いためスラグの付層による各機器の性能低下や器壁の損
傷金きたす欠点があり、かつ、スラグを除去するために
与えられる旋回流の発生を防止することができなかった
As described above, with the conventional technology, all of the slag cannot be sufficiently separated and collected from the main components connected to the combustor, resulting in deterioration in the performance of each device due to the accumulation of slag, and damage to the combustor wall. There were drawbacks and it was not possible to prevent the generation of a swirling flow provided for removing the slag.

問題点全解決するための手段 本発明は、従来のこのような問題点を解決するために、
サイクロン型燃焼器を天井壁の中央部を貫通して連通管
が取り付けられ、この連通管の周囲の前記天井壁にバー
ナが取、り付けられ、側壁に接線方向に伸びる空気口を
備え、この側壁が下方端に向って先細りとなったサイク
ロン型の第1段燃maと、前記連通管の上方3+?!部
に直結された第2段燃焼器とで構成したものである。
Means for solving all the problems In order to solve the conventional problems, the present invention
A cyclone type combustor is equipped with a communication pipe that passes through the center of the ceiling wall, a burner is attached to the ceiling wall around the communication pipe, and an air port is provided that extends tangentially to the side wall. A cyclone-type first stage combustion engine with a side wall tapering toward the lower end, and an upper part of the communication pipe 3+? ! It consists of a second stage combustor that is directly connected to the combustor.

作用 このような手段によれば、第1段燃焼器内に貫通してい
る連通−gが適当な深さまで突出して取付けられている
ので、m線方向への燃焼ガスの旋回流によるスラグの飛
沫同伴が防止でき、かつ、燃焼ガス通路としての連通管
及びマニホルド内壁面へのスラグの接触効果により、燃
焼ガス中のスラグが十分に分離・抽出され、しかも、こ
の連通管と直交するマニホルドにより旋回主流をスムー
ズに分散させることができ、主流渦が確実に解消される
Effect: According to such a means, the communication -g penetrating into the first stage combustor is installed so as to protrude to an appropriate depth, so that the slag splash due to the swirling flow of combustion gas in the m-line direction is prevented. Entrainment can be prevented, and the slag in the combustion gas can be sufficiently separated and extracted due to the contact effect of the slag with the communication pipe as a combustion gas passage and the inner wall surface of the manifold. The mainstream can be dispersed smoothly and the mainstream vortex can be reliably eliminated.

実施例 以下、第1及び2図を参照して、本発明の一実癩例につ
いて詳述する。なお、これらの図において、第3〜5図
に示したものと同一の部分には同一の符号を付して、そ
の詳細な説明は省略する。
EXAMPLE Hereinafter, a practical example of the present invention will be described in detail with reference to FIGS. 1 and 2. In these figures, the same parts as those shown in Figs. 3 to 5 are denoted by the same reference numerals, and detailed explanation thereof will be omitted.

第1図に示すように、従来のオリフィス型の絞り隔壁板
2を介して一体化されていた第1段及び第2段燃焼室3
.4の代わりに、縦型に配置されている第1段燃焼器1
6と横型に配置されている第2段燃焼器17とに、夫々
、別個独立した燃焼器構造とされている。
As shown in FIG. 1, the first and second stage combustion chambers 3 are integrated through a conventional orifice-type throttle partition plate 2.
.. 4 instead of the first stage combustor 1 arranged vertically
The second stage combustor 6 and the horizontally arranged second stage combustor 17 have separate and independent combustor structures.

まず、第1段燃焼器16にはその天井壁18の中央部を
軸、城方向に垂直に円筒形の連通d19が取り付けられ
ており、この連通管の下方端は燃焼器16内部の適当な
深さまで突出すように設けられる。そして、この燃焼器
の1il142oの適当な位置にその側壁内面に浴って
接臓方向に伸びている空気口8が備えられ、更に、この
側壁が下方端に向って先細りとなったサイクロン型とさ
れている。
First, a cylindrical communication d19 is attached to the first stage combustor 16, with the central part of the ceiling wall 18 as its axis, and perpendicular to the castle direction. It is provided so as to protrude to the depth. An air port 8 is provided at a suitable position on the 1il 142o of this combustor, and extends in the direction of the combustor on the inner surface of the side wall. has been done.

また、連通管19のまわりを囲むように天井壁18の適
当な位置に複数のバーナ6が間隔を置いて、かつこれら
のバーナの噴射口が燃焼器の@線に向けて*り付けられ
ている。それから、燃焼器16の底部にはスラグ溜】0
が設けられている。
Further, a plurality of burners 6 are placed at appropriate intervals on the ceiling wall 18 so as to surround the communication pipe 19, and the injection ports of these burners are attached toward the @ line of the combustor. There is. Then, at the bottom of the combustor 16, there is a slag reservoir]0
is provided.

一方、42段燃焼器17の一端部の中央部にはシードノ
ズル】3とそのまわりの適当な位置に複数の2次窒気口
11とが取り付けられている。そして、開口している他
端部には83 ’aNダクト】4が設けられている。更
に、この燃焼器の側壁20外醐面の適癌な位置に中窒の
円筒形のマニホルド21が取り付けられ、このマニホル
ドと燃焼器17の側壁とで限定されて環状空間が設けら
れる。しかも、その側壁外周面の適当な位置には複数個
のガス噴流ノズル22が間隔を置いて、−刈取上列をな
して設けられている。
On the other hand, in the center of one end of the 42-stage combustor 17, a seed nozzle [3] and a plurality of secondary nitrogen ports 11 are installed at appropriate positions around the seed nozzle. A duct 83'aN duct] 4 is provided at the other open end. Furthermore, a cylindrical manifold 21 with a hollow core is attached to a suitable position on the outer surface of the side wall 20 of the combustor, and an annular space is defined by this manifold and the side wall of the combustor 17. Furthermore, a plurality of gas jet nozzles 22 are provided at appropriate positions on the outer circumferential surface of the side wall at intervals and arranged in a top row.

そして、マニホルド21と一体化され之第2段燃焼器I
7と連通管を有する第1段燃焼器16とは、このマニホ
ルドの底部の位置で、連通管19の上方端部に直結され
ろ。即ち、第1段及び2段燃焼416.17に直交する
ように配置されることになる。
The second stage combustor I is integrated with the manifold 21.
7 and a first stage combustor 16 having a communication pipe are directly connected to the upper end of the communication pipe 19 at the bottom of this manifold. That is, it is arranged perpendicularly to the first stage and second stage combustion 416.17.

なお、直結されているこれらの燃焼器には、第2段燃焼
器17179で分離・捕渠された溶融スラグf:第X段
燃焼器I6側のスラグ溜10に落とし込むためのダウン
カマ15が配設される。
Note that these directly connected combustors are provided with a downcomer 15 for dropping the molten slag f separated and collected in the second stage combustor 17179 into the slag sump 10 on the X stage combustor I6 side. be done.

次にその作用について説明する。Next, its effect will be explained.

第1段燃焼器16に2いて、N次全気口1】は、二次燃
焼用酸化剤G−2全噴射することにより、この燃焼器内
に強力な旋回流を形成せしめ、また、この燃焼器に配設
したバーナ6からにキャリアガス(N2・混合空気ンに
よって微粉炭が搬送されジェット噴流によって燃焼器1
6内へ噴射され、高温空気酸化剤と混合拡散し燃焼させ
る。そこで、ノズル4を燃焼器16の軸心に向って配設
することにより、微粉炭中の比較的大きい粒子を、旋回
気流の外周方向モーメンタムに打ち勝って王流窒間へ貫
通させ燃料の空間滞留時rj1を長くして燃焼性能を高
めるようにしている。
In the first stage combustor 16, all N-th air ports 1] form a strong swirling flow in this combustor by fully injecting the secondary combustion oxidant G-2, and Pulverized coal is transported from the burner 6 installed in the combustor by a carrier gas (N2/mixed air), and is transported to the combustor 1 by a jet stream.
6, mixed with high-temperature air oxidizer, diffused, and combusted. Therefore, by arranging the nozzle 4 toward the axis of the combustor 16, the relatively large particles in the pulverized coal are allowed to overcome the momentum in the outer circumferential direction of the swirling airflow and penetrate into the space between the royal flow nitrogen, resulting in the spatial retention of fuel. The time rj1 is lengthened to improve combustion performance.

更に、燃焼器16内で発生したスラグは、旋回流の遠心
力によって本体円周壁に飛翔付層し、溶融状態で壁面に
浴って風力方向に流下し、本体下部に設けたスラグ溜め
10に集められスラグ排出系統9力為ら外部へ取り出さ
れる。
Furthermore, the slag generated in the combustor 16 is blown to the circumferential wall of the main body due to the centrifugal force of the swirling flow, is molten and flows down the wall in the direction of the wind, and is deposited in the slag reservoir 10 provided at the bottom of the main body. The slag is collected and taken out to the outside through the slag discharge system.

このように第1段燃焼器16でスラグ金分離除去された
約2000″Cのクリーンガスが連通管19を介して上
部に直結した第2段燃焼器17のマニホ〜ルド21に導
かれる。
The clean gas having a temperature of about 2000"C, from which gold slag has been separated and removed in the first stage combustor 16, is guided through the communication pipe 19 to the manifold 21 of the second stage combustor 17, which is directly connected to the upper part.

ここで連通管19を通る燃焼ガスの流れはまだ多少旋回
流を形成しているが、連通管19と直交するマニホ躯ル
ド21の内壁面に衝突分散し、旋ラグミスト(数ミクロ
ンメーター以下の粒子)はマニホ髪ルド】8の壁団に燃
・暁ガスが衝突して燃焼ガス流の方向転換に伴なって壁
面に付着流動し、マニホルド21下部に集められダウン
カマ15を通って第1段燃焼器1の下部に流下させて捕
集する。そして、燃焼ガスはマニホルド21内に設けら
れ次ガス噴流ノズル22から放射状に第2段燃焼器17
内に吹き込まれる。
At this point, the flow of combustion gas passing through the communication pipe 19 still forms a somewhat swirling flow, but it collides with the inner wall surface of the manifold building 21 that is perpendicular to the communication pipe 19 and disperses, forming swirl lag mist (particles of several micrometers or less). ) is the manifold hair [8] The combustion gas collides with the wall group of 8, and as the direction of the combustion gas flow changes, it adheres to the wall surface and flows, is collected at the lower part of the manifold 21, passes through the downcomer 15, and is combusted in the first stage. It is allowed to flow down to the lower part of vessel 1 and collected. The combustion gas is then radiated from the next gas jet nozzle 22 provided in the manifold 21 to the second stage combustor 17.
blown inside.

なお、第2図は、以上のような1亘交形式をなすサイク
ロン型燃焼器の一変形PIJを示しており、この場合に
は第2段燃焼器17の配置を溝形から縦形へ変更してお
り、マニホルド21底部とスラグ溜】0とに連接するス
ラグを十分に回収するためのスラグ回収ダクト23が、
役けられている。
Note that FIG. 2 shows a modified PIJ of a cyclone type combustor having a one-crossing type as described above, and in this case, the arrangement of the second stage combustor 17 is changed from a groove type to a vertical type. A slag recovery duct 23 for sufficiently recovering slag is connected to the bottom of the manifold 21 and the slag sump 0.
Being useful.

発明の効果 以上詳述し念ように、本発明によれば、@融スラグの分
離除去率を従来の70〜80%前後から90〜95%前
後に大巾に向上することができ、よって、石炭を燃料と
する各種プラントの性能・信頼性・実用機への適用性評
価が十分に得ることができる。また、燃焼ガスの旋回流
を確実に消去することができ、従って−様な整流効果が
得られ、発電性能を大きく向上させろこともできる。
Effects of the Invention As described above in detail, according to the present invention, the separation and removal rate of @molten slag can be greatly improved from the conventional 70 to 80% to 90 to 95%, and therefore, It is possible to obtain sufficient evaluations of the performance, reliability, and applicability to practical equipment of various plants that use coal as fuel. Moreover, the swirling flow of combustion gas can be reliably eliminated, and a similar rectification effect can therefore be obtained, and power generation performance can be greatly improved.

しかも、!A1段燃焼器の天井壁に設けた複数のバーナ
を噴流ジェット式とすることで、第1段燃焼器での微粉
炭等の石炭燃料とは化削との混合拡散効果が高められ、
燃・魂器木f$e小形化することができる。
Moreover,! By making the multiple burners installed on the ceiling wall of the A1 stage combustor jet type, the mixing and diffusion effect of coal fuel such as pulverized coal and kerosene in the first stage combustor is enhanced.
Can be made smaller.

なお、微粉炭直焚への適用も可能ならしめ、その燃焼器
の高温高負荷燃・暁を達成することかでさる。
It should be noted that application to direct combustion of pulverized coal is also possible, as long as the combustor achieves high-temperature, high-load combustion.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明によるサイクロン型態゛尭器の一例を示
す概略断面図、第2図はその変形例を示す概略断面図、
第3〜5図は3つの異なる従来のすイクロン型燃焼器を
示す概略断面図である。 6・・バーナ、8・・空気口、16・・第1段燃焼器、
17・・第2段燃焼器、18・・天井壁、19・・連通
管、20・・側壁、21・・マニホルド、22・・ガス
噴流ノズル。 第1図 17;第2段だ焼器 18 : f:、4 )モiさ! 19:達i管 20:側壁 zl; マニ汀\ルト。 zz:*”ス噴シ糺ノス°゛ル 第2図 高温11χ アラ7:マ スラグ 第3図
FIG. 1 is a schematic sectional view showing an example of a cyclone type device according to the present invention, and FIG. 2 is a schematic sectional view showing a modification thereof.
Figures 3-5 are schematic cross-sectional views showing three different conventional Suicron type combustors. 6...Burner, 8...Air port, 16...1st stage combustor,
17. Second stage combustor, 18. Ceiling wall, 19. Communication pipe, 20. Side wall, 21. Manifold, 22. Gas jet nozzle. Fig. 1 17; Second stage roaster 18: f:, 4) Moi sa! 19: Reach i pipe 20: Side wall zl; zz: *”Shot slag Figure 2 High temperature 11χ Ara 7: Maslag Figure 3

Claims (1)

【特許請求の範囲】[Claims] 天井壁の中央部を貫通して連通管が取り付けられ、この
連通管の周囲の前記天井壁にバーナが取り付けられ、側
壁に接線方向に伸びる空気口を備え、この側壁が下方端
に向つて先細りとなつたサイクロン型の第1段燃焼器と
、前記連通管の上方端部に直結された第2段燃焼器とか
らなるサイクロン型燃焼器。
A communication pipe is installed through the central part of the ceiling wall, a burner is installed in said ceiling wall around the communication pipe, and the side wall is provided with an air opening extending tangentially to the side wall, said side wall tapering towards the lower end. A cyclone type combustor consisting of a cyclone type first stage combustor and a second stage combustor directly connected to the upper end of the communication pipe.
JP61201688A 1986-08-29 1986-08-29 Combustion device for coal-fired MHD power generation Expired - Lifetime JPH0615925B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61201688A JPH0615925B2 (en) 1986-08-29 1986-08-29 Combustion device for coal-fired MHD power generation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61201688A JPH0615925B2 (en) 1986-08-29 1986-08-29 Combustion device for coal-fired MHD power generation

Publications (2)

Publication Number Publication Date
JPS6358006A true JPS6358006A (en) 1988-03-12
JPH0615925B2 JPH0615925B2 (en) 1994-03-02

Family

ID=16445255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61201688A Expired - Lifetime JPH0615925B2 (en) 1986-08-29 1986-08-29 Combustion device for coal-fired MHD power generation

Country Status (1)

Country Link
JP (1) JPH0615925B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0336408A (en) * 1989-06-30 1991-02-18 Agency Of Ind Science & Technol Coal burning two-stage burner
CN106642082A (en) * 2016-12-08 2017-05-10 哈尔滨工业大学 Small-sized cyclone-melting pulverized coal furnace

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6069410A (en) * 1983-08-25 1985-04-20 Mitsubishi Heavy Ind Ltd Coal burning combined plant

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6069410A (en) * 1983-08-25 1985-04-20 Mitsubishi Heavy Ind Ltd Coal burning combined plant

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0336408A (en) * 1989-06-30 1991-02-18 Agency Of Ind Science & Technol Coal burning two-stage burner
CN106642082A (en) * 2016-12-08 2017-05-10 哈尔滨工业大学 Small-sized cyclone-melting pulverized coal furnace
CN106642082B (en) * 2016-12-08 2019-04-09 哈尔滨工业大学 A kind of small cyclones melting coal-powder boiler

Also Published As

Publication number Publication date
JPH0615925B2 (en) 1994-03-02

Similar Documents

Publication Publication Date Title
US8685120B2 (en) Method and apparatus to produce synthetic gas
KR101538196B1 (en) Methods and systems for mixing reactor feed
CN108224478B (en) High-temperature-rise combustion chamber head for inhibiting carbon deposition of venturi
EP0898117A3 (en) Dual fuel atomization with backflow prevention
US9410097B2 (en) Methods and systems of producing a particulate free, cooled syngas product
US3483699A (en) Fuel injector for a gas turbine engine
CN103175221A (en) Gas-assisted dual-fuel nozzle used for chemical regenerative cycle
JP6491898B2 (en) Spray nozzle, combustion apparatus using spray nozzle, and gas turbine plant
CN103468324B (en) The blender wash mill of dusty gas and blender washing system
CN105154140A (en) Multi-stage entrained-flow coal gasification method and equipment capable of realizing coupling high temperature shift
JPH0615923B2 (en) Coal burning equipment
JPS6358006A (en) Cyclone type combustor
US20090272034A1 (en) Methods and systems for reducing piping vibration
CN102124268A (en) Fuel injector and method of assembling the same
CN204438188U (en) Gas-turbine combustion chamber nozzle
JP2664996B2 (en) Coal-fired two-stage combustor
CN107514636B (en) Burner for suspension roasting furnace and application thereof
JPH0615924B2 (en) Combustor for coal-fired MHD power generation
RU2343349C1 (en) Pulverised-coal burner with aerodynamic converter of air-and-coal mixture flow
CN104501207A (en) Nozzle of gas turbine combustor
CN110093190A (en) A kind of combined gasifying burner and its application method
GB811745A (en) Improvements relating to combustion chambers for gas-turbine or jet-propulsion devices and the method of operating the same
CN109237514B (en) Double-pipeline gas fuel burner for gas turbine
JPH0547930Y2 (en)
EP0073830A1 (en) Fuel combustor.