JPS6357897B2 - - Google Patents

Info

Publication number
JPS6357897B2
JPS6357897B2 JP56159903A JP15990381A JPS6357897B2 JP S6357897 B2 JPS6357897 B2 JP S6357897B2 JP 56159903 A JP56159903 A JP 56159903A JP 15990381 A JP15990381 A JP 15990381A JP S6357897 B2 JPS6357897 B2 JP S6357897B2
Authority
JP
Japan
Prior art keywords
electrode
vacuum
chromium
arc
metal material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56159903A
Other languages
Japanese (ja)
Other versions
JPS5873929A (en
Inventor
Takamitsu Sano
Yoshuki Kashiwagi
Hifumi Yanagisawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Electric Manufacturing Co Ltd
Priority to JP15990381A priority Critical patent/JPS5873929A/en
Priority to KR8204398A priority patent/KR860001452B1/en
Priority to US06/432,380 priority patent/US4471184A/en
Priority to DE8282305230T priority patent/DE3272338D1/en
Priority to EP82305230A priority patent/EP0076659B1/en
Publication of JPS5873929A publication Critical patent/JPS5873929A/en
Publication of JPS6357897B2 publication Critical patent/JPS6357897B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は真空しや断器に係り、特に開閉サージ
による異常電圧の発生を抑制する縦磁界形の電極
を備えた真空しや断器に関する。 一般に真空しや断器の電極の具備すべき条件と
して下記のものがあげられる。 (1) 静的耐電圧特性が優れていること。 (2) 電流しや断する能力が大きいこと。 (3) 通電能力が大きいこと。 (4) 耐溶着性に優れていること。 (5) 開閉サージに伴う過電圧に対処し得ること。 (6) 電気的、機械的寿命が優れていること。 しかして、近年、開閉サージ現象の研究が進
み、従来知られているさい断サージ、再発弧サー
ジの他に多重再発弧サージおよび多重再発弧サー
ジに伴う三相同時しや断によるサージが知られる
ようになり、これらに対処し得る電極が必要とな
つている。ここで、多重再発弧サージは、真空し
や断器のしや断に伴う極間絶縁回復と回路電圧の
競合により発弧、消弧を交互に繰り返すとともに
しだいに電圧が大きくなる現象で、これは真空し
や断器が再発弧時に回路に流れる高周波電流をそ
の零点で直ちにしや断してしまう高周波消弧が原
因と思われ、真空しや断器がアーク時間が十分で
ない状態でさい断したり、商用周波電流の零点付
近で開極し、その直後の電流零点で、直ちに消弧
した場合に生ずるものである。また、多重再発弧
サージに伴う三相同時しや断によるサージは、三
相回路において多重再発弧サージが生じると、発
弧による高周波電流が相間のインピーダンスを通
じて他相に流れ、他相の商用周波電流を相殺して
強制的に電流零点を作り、この作られた電流零点
で三相が同時にしや断されるとともに、真空しや
断器のさい断電流より大きに電流、時には商用周
波電流の波高値をさい断したと同じ結果となる極
めて過大なサージが発生する現象である。 ところが、現在一般に商用されている接点材料
により形成される縦磁界形の電極を備えた真空し
や断器においては、それ自体により多重再発弧サ
ージおよび多重再発弧サージに伴う三相同時しや
断によるサージに対処することができず。、回路
にサージアブソーバ(サージサプレツサ)を入れ
て回路保護を図つている現状である。したがつ
て、真空開閉装置として、その装置全体が大きく
なるとともに、回路の信頼性が低下し、かつその
コストアツプを招来する等の問題がある。 本発明は上述した問題に鑑みてなされたもの
で、その目的とするところは、笠形円板状の電極
または円板状の接点とこの接点を突出せしめるが
如くしてその周囲に配設したリング円板状のアー
ク電極とからなる電極のそれぞれの背部に軸方向
磁界を発生させるコイル体を配設してなる縦磁界
形の電極を備えた真空しや断器において、笠形円
板状の電極を、純クロムがこれに10%以下の銅又
は銀等の導電性金属を含有するクロム合金の金属
材料により形成し、また、アーク電極を接点の金
属材料より僅かに高い蒸気圧を有しかつアークが
接点から移動しやすい純鉄か、これを主成分とす
る金属材料により形成することによつて、電極と
しての具備すべき条件を損なうことなく、多重再
発弧サージおよび多重再発弧サージに伴う三相同
時しや断によるサージを抑制し得る電極を備えた
真空しや断器の提供にある。以下、図面を参照し
てこの発明の実施例を詳細に説明する。 第1図は本発明に係る真空しや断器の縦断面図
で、この真空しや断器は、円筒状に形成したガラ
スまたはセラミツクからなる複数(本実施例にお
いては2個)の絶縁筒1,1を両端に植設した一
方の封着金具2,2を介し同軸的に接合して1本
の絶縁筒とするとともに、その両開口端を他方の
封着金具2,2を介し金属からなる円板状の端板
3,3により気密に閉塞し、かつ内部を高真空に
排気して真空容器4を形成し、この真空容器4内
に、その軸線上において笠形円板状の1対の固定
側、可動側の電極5,5を接触離反(接離)すべ
く、各端板3の中央部から真空容器4の気密性を
保持しつつ対をなす固定側、可動側の電極棒6,
6を相対的に接近離反自在に導入するとともに、
各電極棒6の内端とそれぞれの電極5の背部との
間に電極棒6に流れる軸方向(第1図において上
下方向)の電流を電極5の背部外周縁に沿つたル
ープ電流に変更して軸方向磁界を発生させるコイ
ル体7,7を介在せしめて構成されている。 なお、コイル体7は1/3ターンタイプのものを
例示した第2図、第3図に示すように、電極棒6
より適宜小外径の円柱状の中心導体8と、中心導
体8の外周に同心的に配設した円弧状の3個の第
1コイル9a,9b,9cと、中心導体8の外周
における3等分した位置から隣接する第1コイル
9a,9b,9cの間を挿通した半経方向(第2
図において左右方向)外方へ延びる第1アーム1
0a,10b,10cと、各第1アーム10a,
10b,10cの端部から電極5の背部外周縁に
沿つて同一円周方向へ円弧状に湾曲する第2コイ
ル11a,11b,11cと、各第2コイル11
a,11b,11cの端部と第1コイル9a,9
b,9cとを接続すべく第1アーム10a,10
b,10cと径方向の同一平面内において平行に
延伸せしめた第2アーム12a,12b,12
c,とからなり、第1コイル9a,9b,9cを
介し電極棒6と電気的、機械的に接続されるとと
もに、中心導体8を介し電極5と電気的に接続さ
れかつ電極棒6の内端軸心部に凹設した凹部6a
に収納されるセラミツクまたは高抵抗金属からな
る円筒状の抵抗スペーサ13を介し電極棒6に機
械的に支持され、かつセラミツクの如き絶縁物ま
たはステンレス鋼の如き高抵抗金属によりほぼリ
ング円形状に形成されるとともに電極棒6に嵌着
したコイル補強体14によりその第2コイル11
a,11b,11c等が補強支持されている。 また、第1図において15はベローズ、16,
17はそれぞれ固定側の電極棒6およびベローズ
15を金属蒸気等の付着から保護するため等の軸
シールド,ベローズシールド、18はほぼ円筒状
の主シールドで、中間部付近を一方の封着金具
2,2に挾持された支持金具19により支持され
ているものである。さらに、第2図において13
aは電極棒6等とのろう付け接合時におけるガス
抜きのための孔である。 前記電極5は、純クロムか、これに10%(重
量)以下の銅または銀等の導電性金属を含有する
クロム合金により形成されている。 なお、純クロムからなるものは、クロム粉末を
真空雰囲気中または不活性ガス雰囲気中で焼結し
て形成されるものであり、またクロム合金からな
るものは、クロム粉末および銅または銀の粉末を
真空雰囲気中または不活性ガス雰囲気中で焼結し
たり、あるいはクロム粉末を多孔質に焼結すると
ともにこれに真空雰囲気中または不活性ガス雰囲
気中でクロムより低融点の銅または銀を溶浸して
形成されるものである。 第4図は本発明の他の実施例の要部縦断面図
で、この実施例のものは、前述した実施例のもの
が笠形円板状に形成した1部材により電極5を形
成したのに対し、円板状の接点5aとこの接点5
aを突出せしめるが如くしてその周囲に配設した
リング円板状のアーク電極5bとにより電極5′
を構成するとともに、コイル体7の中心導体8が
電気的に両者に直接接続されるように設けた点の
みが相違するものである。そして、電極5′は、
接点5aを純クロムかこれに10%以下の銅又は銀
等の導電性金属を含有するクロム合金の金属材料
により形成されるとともに、アーク電極5bを接
点5aの金属材料より僅かに高い蒸気圧を有しか
つアークが接点5aから移動しやすい金属材料、
例えば純鉄もしくはステンレス鋼、銅または銀を
含有する鉄を主成分とする金属材料が用いられて
いる。 なお、純クロム、10%以下の銅または銀を含有
するクロム合金からなる接点5aは、前述した実
施例のものと同様に形成されるものであり、銅ま
たは銀を含有する鉄を主成分とする金属材料から
なる電極5bは、鉄またはステンレス鋼の粉末を
真空雰囲気中で多孔質に焼結するとともに、これ
に銅または銀を溶浸して形成されるものである。 ここで、笠形円板状の電極5および接点5aと
アーク電極5bとからなる電極5′の金属材料の
選定に際しては、まず鉄係材料やクロム等の各種
電極材料についてさい断電流値や200KHz高周波
しや断等の特性試験を行い第1表に示す実験結果
を得た。
The present invention relates to a vacuum shield breaker, and more particularly to a vacuum shield breaker equipped with a vertical magnetic field type electrode that suppresses the generation of abnormal voltage due to switching surges. In general, the following conditions must be met for the electrodes of vacuum shields and disconnectors: (1) Excellent static withstand voltage characteristics. (2) It has a large ability to cut off current. (3) Large current carrying capacity. (4) Excellent welding resistance. (5) Capable of dealing with overvoltage caused by switching surges. (6) Excellent electrical and mechanical life. However, in recent years, research on the switching surge phenomenon has progressed, and in addition to the conventionally known rupture surges and re-ignition surges, multiple re-ignition surges and surges due to three-phase simultaneous rupture associated with multiple re-ignition surges have become known. Therefore, there is a need for an electrode that can cope with these problems. Here, multiple re-ignition surge is a phenomenon in which the voltage gradually increases as the arc alternately repeats firing and extinguishing due to the competition between the insulation recovery between the poles and the circuit voltage due to the vacuum breaker's rupture. This is thought to be caused by high-frequency arc extinguishing, where the vacuum breaker immediately cuts off the high-frequency current flowing through the circuit at its zero point when it re-ignites, and the vacuum breaker breaks the arc without enough arc time. This occurs when the arc is opened near the zero point of the commercial frequency current and immediately extinguished at the current zero point immediately after that. In addition, when multiple re-ignition surges occur in a three-phase circuit, the high-frequency current due to the re-ignition flows to the other phase through the impedance between the phases, causing the commercial frequency of the other phase to The currents are canceled and a current zero point is forcibly created, and at this current zero point, the three phases are simultaneously cut off, and the current is larger than the cutting current of the vacuum shield breaker, sometimes even the commercial frequency current. This is a phenomenon in which extremely large surges occur, which is the same result as cutting off the wave height. However, vacuum breakers equipped with vertical magnetic field electrodes made of contact materials that are currently commercially available are susceptible to multiple re-ignition surges and three-phase simultaneous disconnections due to multiple re-ignition surges. Unable to cope with the surge caused by. Currently, a surge absorber (surge suppressor) is installed in the circuit to protect the circuit. Therefore, as a vacuum switchgear, there are problems such as the overall size of the device increases, the reliability of the circuit decreases, and the cost increases. The present invention has been made in view of the above-mentioned problems, and its object is to provide a cap-shaped disk-shaped electrode or a disk-shaped contact and a ring disposed around the electrode to make the contact protrude. In a vacuum shield disconnector equipped with a vertical magnetic field type electrode consisting of a disk-shaped arc electrode and a coil body disposed on the back of each electrode to generate an axial magnetic field, a cap-shaped disk-shaped electrode is used. is made of a chromium alloy metal material containing pure chromium and 10% or less of a conductive metal such as copper or silver, and the arc electrode has a vapor pressure slightly higher than that of the metal material of the contact. By forming the arc from pure iron or a metal material mainly composed of pure iron, which allows the arc to easily move from the contact, it can withstand multiple re-ignition surges and multiple re-ignition surges without compromising the necessary conditions for an electrode. An object of the present invention is to provide a vacuum shield disconnector equipped with an electrode capable of suppressing surges caused by three-phase simultaneous disconnection. Embodiments of the present invention will be described in detail below with reference to the drawings. FIG. 1 is a longitudinal cross-sectional view of a vacuum sheath disconnector according to the present invention, which consists of a plurality (two in this embodiment) of insulating cylinders made of glass or ceramic formed into a cylindrical shape. 1, 1 are coaxially joined via one sealing fitting 2, 2 implanted at both ends to form a single insulating cylinder, and both open ends are connected to metal via the other sealing fitting 2, 2. A vacuum container 4 is formed by airtightly closing the end plates 3, 3 in the shape of a disc, and evacuating the inside to a high vacuum. In order to bring the paired fixed side and movable side electrodes 5, 5 into contact with and away from each other, the fixed side and movable side electrodes form a pair while maintaining airtightness of the vacuum vessel 4 from the center of each end plate 3. Bar 6,
In addition to introducing 6 relatively freely approaching and leaving,
The current flowing in the axial direction (vertical direction in FIG. 1) in the electrode rod 6 between the inner end of each electrode rod 6 and the back of each electrode 5 is changed to a loop current along the outer periphery of the back of the electrode 5. It is constructed by interposing coil bodies 7, 7 which generate an axial magnetic field. The coil body 7 is of the 1/3 turn type as shown in FIGS. 2 and 3, and the electrode rod 6
A cylindrical center conductor 8 with an appropriately small outer diameter, three arc-shaped first coils 9a, 9b, 9c arranged concentrically around the outer periphery of the center conductor 8, and three etc. on the outer periphery of the center conductor 8. The semi-longitudinal direction (second
The first arm 1 extends outward (left-right direction in the figure)
0a, 10b, 10c, and each first arm 10a,
Second coils 11a, 11b, 11c curve in an arc shape from the ends of the electrodes 10b, 10c in the same circumferential direction along the outer peripheral edge of the back of the electrode 5, and each second coil 11
a, 11b, 11c and the first coils 9a, 9
b, 9c to connect the first arms 10a, 10
second arms 12a, 12b, 12 extending in parallel in the same radial plane as b, 10c;
c, and is electrically and mechanically connected to the electrode rod 6 via the first coils 9a, 9b, and 9c, and electrically connected to the electrode 5 via the center conductor 8, and A recess 6a formed in the center of the end shaft
It is mechanically supported by the electrode rod 6 through a cylindrical resistance spacer 13 made of ceramic or high-resistance metal housed in the electrode rod 6, and is formed into a substantially ring-circular shape from an insulator such as ceramic or a high-resistance metal such as stainless steel. At the same time, the second coil 11 is
a, 11b, 11c, etc. are reinforced and supported. In addition, in FIG. 1, 15 is a bellows, 16,
17 is a shaft shield and a bellows shield for protecting the fixed side electrode rod 6 and bellows 15 from adhesion of metal vapor, etc. 18 is a nearly cylindrical main shield, and the middle part is connected to one of the sealing metal fittings 2. , 2 are supported by support fittings 19 held between them. Furthermore, in Figure 2, 13
A is a hole for venting gas during soldering with the electrode rod 6 and the like. The electrode 5 is made of pure chromium or a chromium alloy containing 10% (by weight) or less of a conductive metal such as copper or silver. Those made of pure chromium are formed by sintering chromium powder in a vacuum atmosphere or inert gas atmosphere, and those made of chromium alloy are formed by sintering chromium powder and copper or silver powder. Sintering in a vacuum atmosphere or inert gas atmosphere, or sintering chromium powder into porous form and infiltrating it with copper or silver, which has a lower melting point than chromium, in a vacuum atmosphere or inert gas atmosphere. It is something that is formed. FIG. 4 is a longitudinal cross-sectional view of a main part of another embodiment of the present invention, and in this embodiment, the electrode 5 is formed by one member formed in the shape of a hat-shaped disk, whereas in the embodiment described above, On the other hand, the disk-shaped contact 5a and this contact 5
The electrode 5'
The only difference is that the center conductor 8 of the coil body 7 is provided so as to be directly electrically connected to both. And the electrode 5' is
The contact 5a is made of a metal material such as pure chromium or a chromium alloy containing 10% or less of a conductive metal such as copper or silver, and the arc electrode 5b is made of a metal material with a vapor pressure slightly higher than that of the metal material of the contact 5a. a metal material that has a metal material and allows the arc to easily move from the contact point 5a;
For example, pure iron or stainless steel, a metal material whose main component is iron containing copper or silver is used. Note that the contact 5a made of pure chromium or a chromium alloy containing 10% or less of copper or silver is formed in the same manner as in the embodiment described above, and is made of iron containing copper or silver as a main component. The electrode 5b made of a metal material is formed by porously sintering iron or stainless steel powder in a vacuum atmosphere and infiltrating it with copper or silver. Here, when selecting the metal material of the cap-shaped disk-shaped electrode 5 and the electrode 5' consisting of the contact 5a and the arc electrode 5b, we first consider the cutting current value and 200KHz high frequency of various electrode materials such as iron-related materials and chromium. Characteristic tests such as shear cutting were conducted and the experimental results shown in Table 1 were obtained.

【表】 (各値は3本のテストピースの平均値、接触抵抗は
リード棒を含む)
したがつて、純鉄やステンレス鋼の如き鉄系材
料は、比較的さい断電流値が小さく、かつ商用周
波電流のしや断が可能であるものの、高周波電流
のしや断能力が低いとともに、耐溶着性が悪く、
かつ接触抵抗が大きいため電極材料、特に電極5
または電極5′の接点5aの材料として不適当と
思われるが、純クロムは、高周波電流のしや断能
力が比較的低いことを除けば電極5または電極
5′の接点5aとしての特性をほぼ満足している。 ついで、電極5′における接点5aとアーク電
極5bとの金属材料の組み合わせによる接点5a
からのアークの移動容易性について試験を行い第
2表に示す実験結果を得た。
[Table] (Each value is the average value of three test pieces, contact resistance includes lead rod)
Therefore, although iron-based materials such as pure iron and stainless steel have a relatively small cutting current value and are capable of cutting commercial frequency current, they have a low ability to cut high frequency current. Poor welding resistance,
In addition, since the contact resistance is large, the electrode material, especially the electrode 5
Although pure chromium seems to be inappropriate as a material for the contact 5a of the electrode 5', pure chromium has almost the same characteristics as the contact 5a of the electrode 5 or 5', except for its relatively low ability to cut high frequency current. Is pleased. Next, a contact 5a is formed by combining the metal materials of the contact 5a and the arc electrode 5b in the electrode 5'.
A test was conducted to determine the ease with which the arc could be moved from the base, and the experimental results shown in Table 2 were obtained.

【表】 したがつて、接点5aおよびアーク電極5bの
それぞれの金属材料の組み合わせにより、明らか
にアークが移動しやすいものとしにくいものがあ
ることが判る。 上述した如く各種金属材料の基本的な特性を解
明した後に、リアクトル負荷における開閉サージ
テストを行なつた結果、従来の銅、数%以下のビ
スマスまたは鉛等を含有する銅合金からなるもの
は、多重再発弧サージに伴う三相同時しや断によ
りサージが発生するが、純鉄,ステンレス鋼,銅
−タングステン合金,純クロムおよび10%以下の
銅を含有するクロム合金は、再発弧はするが、そ
れが多重再発弧およびこれに伴う三相同時しや断
に移行せず、過大なサージ電圧を発生しないこと
が判明した。 したがつて、先に掲げた特性を満足し、かつ多
重再発弧サージおよびこれに伴う三相同時しや断
によるサージの発生を抑制し得る電極5および電
極5′の接点5aの金属材料としては、純クロム、
10%以下の銅を含有するクロム合金であることが
判つた。 また、多重再発弧サージに伴う三相同時しや断
は、開極直後、換言すれば非常に小さに極間ギヤ
ツプ時における現象なので、電極5および電極
5′の接点5aだけに純クロム、または純クロム
にこれより低融点の導電性金属材料、たとえば
銅、銀等を含有せしめたクロム合金を使用し、電
極5′のアーク電極5bに第2表で示したように、
純クロム、クロム合金の如きクロム系材料としや
断アークに対して相性がよく(アークが移動しや
すい)、かつクロム系材料より僅かに蒸気圧が高
い金属材料の純鉄、ステンレス鋼等の鉄を主成分
とする金属材料を使用すればよいのである。 なお、第2表において銅も相性が良いが、銅は
うず電流の発生上好ましくない。 以上の如く本発明は、真空容器内にその軸線上
において円板状の1対の電極を接離すべく対をな
す電極を相対的に接近離反自在に導入するととも
に、各電極棒の内端と電極との間に軸方向磁界を
発生させるコイル体を介在せしめてなる真空しや
断器において、前記電極を純クロムあるいは10%
以下の銅または銀等の導電性金属を含有するクロ
ム合金の如く中蒸気圧の金属材料により形成した
ものであるから、真空しや断器の電極として具備
すべき条件を損なうことなく、多重再発弧サージ
およびこれに伴う三相同時しや断によるサージの
発生を抑制することができる。したがつて、従来
のもののように回路にサージアブソーバを入れる
必要がなく、界閉装置全体のスペースを縮小でき
るとともに、回路の信頼性を高めることができ、
かつ開閉装置をコストダウンできる等の効果を奏
する。 また、電極を接点とアーク電極とにより構成し
た縦磁界形のものにおいて、接点を純クロムある
いは10%以下の銅または銀等の導電性金属を含有
するクロム合金の如く中蒸気圧の金属材料により
形成するとともに、アーク電極を、純鉄、ステン
レス鋼の如き鉄系材料あるいは銅または銀を含有
する鉄系材料の如く接点を形成するクロム系材料
より僅かに高い蒸気圧を有しかつアークが接点よ
り移動しやすい鉄を主成分とする金属材料により
形成したものであるから、小電流の場合には接点
により、また大電流の場合には接点とアーク電極
とにより、電極として具備すべき条件を損なうこ
となく、多重再発弧サージおよびこれに伴う三相
同時しや断によるサージを抑制することができ
る。したがつて、小電流用から大電流用に亘つて
前述したものと同様の効果を奏する。
[Table] Therefore, it can be seen that depending on the combination of the metal materials of the contact 5a and the arc electrode 5b, there are cases in which it is easy for the arc to move and cases in which it is difficult to move the arc. After elucidating the basic characteristics of various metal materials as described above, we conducted a switching surge test under reactor load and found that conventional copper and copper alloys containing a few percent or less of bismuth or lead, etc. A surge occurs due to simultaneous three-phase shearing caused by multiple re-ignition surges, but pure iron, stainless steel, copper-tungsten alloys, pure chromium, and chromium alloys containing less than 10% copper do not re-ignite, but It was found that this did not lead to multiple re-ignitions and simultaneous three-phase failures, and did not generate excessive voltage surges. Therefore, the metal material for the contacts 5a of the electrodes 5 and 5' that satisfies the above-mentioned characteristics and can suppress the occurrence of multiple re-ignition surges and accompanying surges due to simultaneous rupture of three phases is as follows: , pure chromium,
It was found to be a chromium alloy containing less than 10% copper. In addition, since simultaneous three-phase shearing due to multiple re-ignition surges occurs immediately after contact opening, in other words, at the time of a very small gap between the contacts, pure chromium or A chromium alloy containing pure chromium and a conductive metal material with a lower melting point, such as copper or silver, is used for the arc electrode 5b of the electrode 5', as shown in Table 2.
Chromium-based materials such as pure chromium and chromium alloys are compatible with arc breakage (the arc moves easily), and metallic materials such as pure iron and stainless steel have slightly higher vapor pressure than chromium-based materials. It is sufficient to use a metal material whose main component is Incidentally, in Table 2, copper is also compatible, but copper is not preferable due to the generation of eddy current. As described above, the present invention introduces a pair of disk-shaped electrodes into a vacuum container on the axis thereof so that they can approach and separate from each other, and the inner end of each electrode rod. In a vacuum shield and disconnector in which a coil body is interposed between the electrode and a coil body that generates an axial magnetic field, the electrode is made of pure chromium or 10%
Since it is made of a medium vapor pressure metal material such as a chromium alloy containing conductive metals such as copper or silver, it can withstand multiple recurrences without impairing the conditions required for a vacuum shield or disconnector electrode. It is possible to suppress arc surges and surges caused by three-phase simultaneous disconnections. Therefore, there is no need to include a surge absorber in the circuit as in conventional systems, and the space of the entire field closing device can be reduced, and the reliability of the circuit can be increased.
Moreover, it is possible to reduce the cost of the opening/closing device. In addition, in a vertical magnetic field type electrode consisting of a contact point and an arc electrode, the contact point is made of a medium vapor pressure metal material such as pure chromium or a chromium alloy containing 10% or less of a conductive metal such as copper or silver. At the same time, the arc electrode is made of a ferrous material such as pure iron, stainless steel, or a chromium-based material containing copper or silver, which has a vapor pressure slightly higher than that of the chromium-based material that forms the contact, and the arc Since it is made of a metal material whose main component is iron, which is easier to move, it is possible to meet the conditions that an electrode should meet by using a contact in the case of a small current, and a contact and an arc electrode in the case of a large current. It is possible to suppress multiple re-ignition surges and accompanying surges due to three-phase simultaneous rupture without causing any damage. Therefore, effects similar to those described above can be obtained from small current to large current.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る真空しや断器の縦断面
図、第2図および第3図はそれぞれ本発明の要部
の縦断面図および平面図、第4図は本発明の要部
の他の実施例の縦断面図である。 4……真空容器、5,5′……電極、5a……
接点、5b……アーク電極、6……電極棒、7…
…コイル体。
FIG. 1 is a longitudinal cross-sectional view of a vacuum shield disconnector according to the present invention, FIGS. 2 and 3 are a longitudinal cross-sectional view and a plan view of the main parts of the present invention, respectively, and FIG. 4 is a longitudinal cross-sectional view of the main parts of the present invention. FIG. 7 is a vertical cross-sectional view of another embodiment. 4... Vacuum container, 5, 5'... Electrode, 5a...
Contact, 5b... Arc electrode, 6... Electrode rod, 7...
...Coil body.

Claims (1)

【特許請求の範囲】 1 真空容器内にその軸線上において円板状の1
対の電極を接離すべく対をなす電極棒を相対的に
接近離反自在に導入するとともに、各電極棒の内
端と電極との間に軸方向磁界を発生させるコイル
体を介在せしめてなる真空しや断器において、前
記電極を純クロム、もしくはこれに10%以下の導
電性金属を含有するクロム合金の金属材料により
形成したことを特徴とする真空しや断器。 2 真空容器内にその軸線上において円板状の接
点とこの接点を突出せしめるが如くしてその周囲
に配設したリング円板状のアーク電極とからなる
1対の電極を接離すべく対をなす電極棒を相対的
に接近離反自在に導入するとともに、各電極棒の
内端と電極との間に軸方向磁界を発生させるコイ
ル体を介在せしめてなる真空しや断器において、
前記電極の接点を、純クロム、もしくはこれに10
%以下の導電性金属を含有するクロム合金の金属
材料により形成するとともに、アーク電極を、純
鉄もしくはこれを主成分とする金属材料により形
成したことを特徴とする真空しや断器。
[Claims] 1. A disk-shaped 1 on the axis of the vacuum container.
A vacuum created by introducing a pair of electrode rods so as to be able to approach and separate them relatively, and interposing a coil body that generates an axial magnetic field between the inner end of each electrode rod and the electrode. A vacuum breaker, characterized in that the electrode is made of pure chromium or a chromium alloy metal material containing 10% or less of a conductive metal. 2. A pair of electrodes consisting of a disc-shaped contact point and a ring-disc-shaped arc electrode arranged around the contact point in such a way that the contact point protrudes on the axis of the vacuum vessel is brought into contact with and separated from the pair. In a vacuum shield disconnector, in which two electrode rods are introduced so as to be able to approach and separate from each other, and a coil body is interposed between the inner end of each electrode rod and the electrode to generate an axial magnetic field.
The contacts of the electrodes are made of pure chromium or 10% of this.
A vacuum shield disconnector characterized in that it is made of a metal material of a chromium alloy containing conductive metal of % or less, and its arc electrode is made of pure iron or a metal material containing pure iron as a main component.
JP15990381A 1981-10-03 1981-10-07 Vacuum breaker Granted JPS5873929A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP15990381A JPS5873929A (en) 1981-10-07 1981-10-07 Vacuum breaker
KR8204398A KR860001452B1 (en) 1981-10-03 1982-09-29 Air-breaker
US06/432,380 US4471184A (en) 1981-10-03 1982-09-30 Vacuum interrupter
DE8282305230T DE3272338D1 (en) 1981-10-03 1982-10-01 A vacuum interrupter
EP82305230A EP0076659B1 (en) 1981-10-03 1982-10-01 A vacuum interrupter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15990381A JPS5873929A (en) 1981-10-07 1981-10-07 Vacuum breaker

Publications (2)

Publication Number Publication Date
JPS5873929A JPS5873929A (en) 1983-05-04
JPS6357897B2 true JPS6357897B2 (en) 1988-11-14

Family

ID=15703685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15990381A Granted JPS5873929A (en) 1981-10-03 1981-10-07 Vacuum breaker

Country Status (1)

Country Link
JP (1) JPS5873929A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4736078A (en) * 1983-10-07 1988-04-05 Kabushiki Kaisha Toshiba Method for processing vacuum switch and vacuum switch processed by the method
US4698467A (en) * 1985-10-24 1987-10-06 Kabushiki Kaisha Toshiba Electrodes of vacuum switch

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS515211A (en) * 1974-06-03 1976-01-16 Westinghouse Electric Corp

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS515211A (en) * 1974-06-03 1976-01-16 Westinghouse Electric Corp

Also Published As

Publication number Publication date
JPS5873929A (en) 1983-05-04

Similar Documents

Publication Publication Date Title
US3246979A (en) Vacuum circuit interrupter contacts
US4471184A (en) Vacuum interrupter
US3182156A (en) Vacuum-type circuit interrupter
US3792214A (en) Vacuum interrupter for high voltage application
US4847456A (en) Vacuum circuit interrupter with axial magnetic arc transfer mechanism
US4551596A (en) Surge-absorberless vacuum circuit interrupter
JPS6357897B2 (en)
US4553003A (en) Cup type vacuum interrupter contact
US3440376A (en) Low-temperature or superconducting vacuum circuit interrupter
KR910001370B1 (en) Vacuum circuit interrupter
US3854068A (en) Shield structure for vacuum arc discharge devices
US3497652A (en) Vacuum-type circuit interrupter with contact material containing a minor percentage of aluminum
CA1084565A (en) High-current vacuum switch with reduced contact erosion
US3778573A (en) Vacuum circuit interrupter having improved contact structure
US20220172915A1 (en) Medium voltage vacuum interrupter contact with improved arc breaking performance and associated vacuum interrupter
EP4276864A1 (en) Vacuum interrupter
JPH0479090B2 (en)
JPH0122698B2 (en)
JPS6341176B2 (en)
JPH0427650B2 (en)
JPH0719512B2 (en) Vacuum interrupter
JPS62140322A (en) Vacuum interruptor
JPS6359215B2 (en)
JPS6260781B2 (en)
JPH07111856B2 (en) Vacuum interrupter