JPS635736B2 - - Google Patents

Info

Publication number
JPS635736B2
JPS635736B2 JP24607283A JP24607283A JPS635736B2 JP S635736 B2 JPS635736 B2 JP S635736B2 JP 24607283 A JP24607283 A JP 24607283A JP 24607283 A JP24607283 A JP 24607283A JP S635736 B2 JPS635736 B2 JP S635736B2
Authority
JP
Japan
Prior art keywords
lens
group
light incident
curvature
radius
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP24607283A
Other languages
Japanese (ja)
Other versions
JPS60135915A (en
Inventor
Nobuhiro Araki
Akihiro Suzuki
Koichi Kawada
Yukio Sakagaito
Takeo Sato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP24607283A priority Critical patent/JPS60135915A/en
Publication of JPS60135915A publication Critical patent/JPS60135915A/en
Publication of JPS635736B2 publication Critical patent/JPS635736B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/0005Optical objectives specially designed for the purposes specified below having F-Theta characteristic
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Lenses (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、輝度変調を受けたレーザービームに
より、光学的走査を行い記録および読取を行う装
置に用いられる等速度走査性能を持つfθレンズと
呼ばれる投射レンズに関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a projection lens called an f-theta lens, which has constant velocity scanning performance and is used in a recording and reading device that performs optical scanning using a laser beam that has undergone brightness modulation. It's about lenses.

従来例の構成とその問題点 fθレンズは集光機能を有し、さらに光軸に直交
した記録結像面上の光軸と結像位置までの距離
と、等角速度を有する偏向角とが比例関係になる
ように樽型歪曲収差を持たせ、常に一様な走査速
度を得るように設計された投射レンズで、第1図
に示すような光学系に使用されている。
Conventional configuration and problems The fθ lens has a light focusing function, and the distance between the optical axis and the imaging position on the recording imaging plane perpendicular to the optical axis is proportional to the deflection angle with a constant angular velocity. This is a projection lens designed to have barrel distortion aberration so as to always obtain a uniform scanning speed, and is used in an optical system such as the one shown in Fig. 1.

図において、レーザ光源1から発射されたビー
ムは、変調器2により変調され、ビームエキスパ
ンダー3を通り拡大されたのち回転多面体4で反
射されfθレンズ5を介して記録媒体6上に集光さ
れ等速で走査される。
In the figure, a beam emitted from a laser light source 1 is modulated by a modulator 2, expanded through a beam expander 3, reflected by a rotating polyhedron 4, and focused onto a recording medium 6 via an fθ lens 5. scanned at high speed.

このfθレンズは以下に示すような基本的な特性
を必要とする。
This fθ lens requires the following basic characteristics.

すなわち通常の歪曲収差のよく補正されたレン
ズ系においては、光線の入射角θと像高Yとの関
係は、レンズ系の焦点距離をfとすると Y=ftaoθ で表わされることから、等速角度つまりdθ/dtを
一定としレーザービームを走査すると、像高の変
化速度、つまり結像スポツトの走査速度dY/dt
はθの関数f・sec2θ・dθ/dtとなり、θの変化
に伴ない走査速度dY/dtは変化する。
In other words, in a normal lens system with well-corrected distortion aberration, the relationship between the incident angle θ of the light ray and the image height Y is expressed as Y=f tao θ, where f is the focal length of the lens system, so it is equal to When scanning a laser beam with a constant speed angle, dθ/dt, the rate of change in image height, that is, the scanning speed of the imaging spot dY/dt
is a function f·sec 2 θ·dθ/dt of θ, and the scanning speed dY/dt changes as θ changes.

そのため、結像スポツトの走査速度を一定とす
るには、像高と入射角との間に Y=f・θ なる比例関係を持たせることが必要となる。この
特性を持たせるには、レンズの歪曲収差Dが D=f・θ−ftanθ/ftanθ×100(%) なる特性を持たねばならない。
Therefore, in order to keep the scanning speed of the imaging spot constant, it is necessary to establish a proportional relationship between the image height and the angle of incidence as follows: Y=f·θ. In order to have this characteristic, the distortion D of the lens must have the following characteristic: D=f·θ−ftanθ/ftanθ×100 (%).

以上のような基本的特徴を有するfθレンズに
は、広角型として (1) 変型ガウス型 (2) オルソメター型 が考えられているが、(1)については、中間画角に
ついて残存コマ収差が多いことが欠点であり、(2)
については広角な範囲において、平坦な像面が得
られることすなわちペツツバール和の小さいこと
を特徴とするので、走査全域にわたつて回析限界
付近のスポツト径を得るためには有利であり、広
角型であることよりレンズ系がコンパクトな設計
となる。
f-theta lenses with the above basic characteristics are considered to be wide-angle types (1) modified Gaussian type (2) orthometer type, but (1) has a lot of residual comatic aberration at intermediate angles of view. This is a drawback, (2)
The wide-angle type is characterized by the fact that a flat image surface can be obtained in a wide-angle range, that is, the Petzval sum is small. This allows the lens system to be designed more compactly.

従来、オルソメター型のfθレンズはいくつか知
られている(たとえば特開昭55−53308号公報参
照)。代表的なものを第2図に示すが、これは非
点収差、コマ収差、球面収差は良好であり、ほぼ
回析限界以下の幾何的スポツト形が得られるが、
レンズ枚数が5群5枚と多い。
Heretofore, several orthomometer type fθ lenses have been known (for example, see Japanese Patent Application Laid-open No. 53308/1983). A typical example is shown in Figure 2, which has good astigmatism, coma, and spherical aberration, and can obtain a geometric spot shape that is almost below the diffraction limit.
It has a large number of lenses, 5 elements in 5 groups.

さらには、第2図に破線で示すようにレンズ面
による反射ビームが偏向面で反射し、記録および
読取部付近において同様のスポツトを形成する。
以下このレンズ面による反射ビームをゴーストビ
ームと呼ぶ。
Furthermore, as shown by the broken line in FIG. 2, the beam reflected by the lens surface is reflected by the deflection surface, forming similar spots near the recording and reading sections.
Hereinafter, the beam reflected by this lens surface will be referred to as a ghost beam.

このゴーストビームにより、記録面上の描画状
態が悪化し、また読取部においては検出信号のノ
イズ向上を招く欠点がある。
This ghost beam deteriorates the drawing condition on the recording surface, and also has the disadvantage of increasing the noise of the detection signal in the reading section.

発明の目的 本発明は以上のような欠点を解消したもので、
球面収差、非点収差、コマ収差が小さく、良好な
スポツト結像を得ることができ、かつ読取および
記録面上付近でのゴーストビームの集光を防ぎ、
歪曲収差がy=f・θとなるような特性を持つ投
射レンズを提供することを目的とする。
Purpose of the Invention The present invention solves the above-mentioned drawbacks.
Spherical aberration, astigmatism, and coma aberration are small, and good spot imaging can be obtained, and ghost beams are prevented from converging near the reading and recording surfaces.
It is an object of the present invention to provide a projection lens having characteristics such that distortion aberration satisfies y=f·θ.

発明の構成 本発明は上記目的を達成するもので、正のメニ
スカスレンズ3枚、負のメニスカスレンズ1枚の
4群4枚構成で、第1、第3、第4群は光線入射
方向すなわち瞳側にそれぞれ凹面を向けた正メニ
スカスレンズとし、第2群は光線入射方向に凹面
を向けた負メニカスレンズとし、以下の条件を満
足している投射レンズを提供するものである。
Structure of the Invention The present invention achieves the above object, and is composed of four lenses in four groups, including three positive meniscus lenses and one negative meniscus lens. A positive meniscus lens with a concave surface facing each side is used, and the second group is a negative meniscus lens with a concave surface facing the light beam incident direction, thereby providing a projection lens that satisfies the following conditions.

1.00<|r2/r3|<1.08 −0.48f<r6<−0.35f −1.60f<r7<−1.44f ここでr2は第1群第1レンズの光線入射側の逆
の面の曲率半径、r3は第2群第2レンズの光線入
射側の曲率半径、r6は第3群第3レンズの光線入
射側の逆の面の曲率半径、r7は第4群第4レンズ
の光線入射側の曲率半径、fは全系の合成焦点距
離である。
1.00<|r 2 /r 3 |<1.08 −0.48f<r 6 <−0.35f −1.60f<r 7 <−1.44f where r 2 is the opposite surface of the first lens of the first group from the light incident side. , r 3 is the radius of curvature of the second lens in the second group on the light incident side, r 6 is the radius of curvature of the surface opposite to the light incident side of the third lens in the third group, r 7 is the fourth lens in the fourth group. The radius of curvature of the lens on the light incident side, f, is the combined focal length of the entire system.

実施例の説明 以下の本発明の実施例を図面を用いて説明す
る。
DESCRIPTION OF EMBODIMENTS The following embodiments of the present invention will be described with reference to the drawings.

第3図は本発明の一実施例における投射レンズ
の断面図を示す。
FIG. 3 shows a sectional view of a projection lens in an embodiment of the present invention.

本実施例は曲率半径r1、r2、レンズ面間の軸上
距離d1を有する第1群第1レンズ7と、曲率半径
r3、r4、レンズ面間の軸上距離d3を有する第2群
第2レンズ8と、曲率半径r5、r6、レンズ面間の
軸上距離d5を有する第3群第3レンズ9と、曲率
半径r7、r8、レンズ面間の軸上距離d7を有する第
4群第3レンズ10とを、第1群第1レンズ7と
第2群第2レンズ8間の軸上距離をd2、第2群第
2レンズ8と第3群第3レンズ9間の軸上距離を
d4、第3群第3レンズ9と第4群第4レンズ10
間の軸上距離をd6に配し、第1、第3、第4群
7,9,10は光線入射方向すなわち瞳側にそれ
ぞれ凹面を向けた正メニスカスレンズとし、第2
群8は光線入射方向に凹面を向けた負メニスカス
レンズで構成し、さらに 1.00<|r2/r3|<1.08 −0.48f<r6<−0.35f −1.60f<r7<−1.44f になるように構成している。
This embodiment includes a first lens 7 of the first group having radii of curvature r 1 and r 2 and an axial distance d 1 between the lens surfaces, and a radius of curvature of
A second lens 8 in a second group having r 3 , r 4 and an axial distance d 3 between lens surfaces, and a third lens 8 in a third group having radii of curvature r 5 , r 6 and an axial distance d 5 between lens surfaces. The lens 9 and the fourth group third lens 10 having radii of curvature r 7 and r 8 and an axial distance d 7 between the lens surfaces are arranged between the first lens 7 of the first group and the second lens 8 of the second group. The axial distance is d 2 , and the axial distance between the second lens 8 of the second group and the third lens 9 of the third group is
d 4 , third lens of third group 9 and fourth lens of fourth group 10
The axial distance between
Group 8 is composed of a negative meniscus lens with a concave surface facing the direction of incidence of the light beam, and furthermore, 1.00<|r 2 /r 3 |<1.08 −0.48f<r 6 <−0.35f −1.60f<r 7 <−1.44f It is configured so that

ここでn1〜n4は各レンズの波長488nmにおける
屈折率、fは全系の焦点距離、Fはエフナンバ
ー、2ωは全走査画角、d0はr1面とr1面前方の入射
瞳位置との間の距離であるが、第1、第3、第4
群レンズはペツツバール和を小さくするため屈折
率が1.7以上の硝材を用いている。
Here, n 1 to n 4 are the refractive index of each lens at a wavelength of 488 nm, f is the focal length of the entire system, F is the F number, 2ω is the entire scanning angle of view, and d 0 is the incidence in front of the r 1 plane and the r 1 plane. The distance between the pupil position is the first, third, fourth
The lens group uses a glass material with a refractive index of 1.7 or higher to reduce the Petzval sum.

本実施例の場合、第1の条件である|r2/r3
が1.08を超えると球面収差が補正過剰となり、メ
リジヨウナルコマ収差が大きく、歪曲収差も過剰
となる。また|r2/r3|が1.00以下では球面収差
が拡大し、サジタル方向のコマ収差が大きく、歪
曲収差も不足となる。
In the case of this example, the first condition is |r 2 /r 3 |
If it exceeds 1.08, spherical aberration will be overcorrected, meridional narcoma will be large, and distortion will also be excessive. When |r 2 /r 3 | is less than 1.00, spherical aberration increases, coma in the sagittal direction becomes large, and distortion becomes insufficient.

次に第2の条件であるr6が−0.35fを超えるとメ
リジヨウナル像面が正方向にたおれ、歪曲収差が
必要以上に大きくなり、r6が−0.48f以下となると
メリジヨウナル像面が負方向にたおれ、歪曲収差
が補正以下となる。
Next, if r 6 , which is the second condition, exceeds -0.35f, the meridional image plane will collapse in the positive direction, and distortion will become larger than necessary, and if r 6 becomes -0.48f or less, the meridional image plane will tilt in the negative direction. The lens collapses, and the distortion becomes less than the corrected value.

また第3の条件であるr7が−1.44fを超えると非
点収差曲線が負方向にたおれていき、r7が−1.60f
以下となると非点収差が補正過剰となり、またr7
での反射光が偏向ミラーから反射し、ゴーストと
なつたビームが、実際のビームの集光位置に近づ
き、実際のビーム位置での反射光のスポツト径が
φ2mm以下となつてしまい読取作用に影響を与え
てしまう。
Furthermore, when the third condition, r7 , exceeds -1.44f, the astigmatism curve falls in the negative direction, and r7 exceeds -1.60f.
If it is below, astigmatism will be overcorrected and r 7
The reflected light is reflected from the deflection mirror, and the ghost beam approaches the actual beam focusing position, causing the spot diameter of the reflected light at the actual beam position to be less than φ2 mm, which affects the reading operation. I end up giving.

以下に実施例を挙げる。 Examples are given below.

ここでr1ないしr8は夫々各レンズ面の曲率半
径、d1ないしd7は各レンズ面間の軸上距離、n1
いしn4は各レンズの波長488nmにおける屈折率、
fは全系の焦点距離、FはFナンバー、2ωは全
走査画角、d0はr1面前方の入射瞳位置である。
Here, r 1 to r 8 are the radius of curvature of each lens surface, d 1 to d 7 are the axial distances between each lens surface, and n 1 to n 4 are the refractive index of each lens at a wavelength of 488 nm.
f is the focal length of the entire system, F is the F number, 2ω is the entire scanning angle of view, and d 0 is the entrance pupil position in front of the r1 plane.

なお、本実施例では、レンズ枚数を4枚として
いることから、ペツツバール和を小さくするため
正レンズである第1、第3、第4群レンズには屈
折率が1.7以上の硝材を用いることによりこれを
実現している。
In this example, since the number of lenses is four, in order to reduce the Petzval sum, the first, third, and fourth group lenses, which are positive lenses, are made of glass material with a refractive index of 1.7 or more. This has been achieved.

実施例 1 本実施例は第3図に示した構造の投射レンズに
おける|r2/r3|=1.028、r6=−0.4060f、r7=−
1.5520fの場合で以下のようなパラメータを有し、
その収差曲線図は第4図のようになる。
Example 1 In this example, |r 2 /r 3 |=1.028, r 6 =-0.4060f, r 7 =- in the projection lens having the structure shown in FIG.
In the case of 1.5520f, it has the following parameters,
The aberration curve diagram is shown in FIG.

r1=−0.2536 d1=0.03588 n1=1.75925 r2=−0.1373 d2=0.0038 r3=−0.1336 d3=0.02944 n2=1.70425 r4=−1.4520 d4=0.0192 r5=−1.9000 d5=0.0320 n3=1.73419 r6=−0.4060 d6=0.003 r7=−1.5520 d7=0.0384 n4=1.80560 r8=−0.4764 f=1.0 F/3 0.7 2ω=60゜ d0=0.1 λ=488nm 実施例 2 本実施例は第3図に示した構造の投射レンズに
おける|r2/r3|=1.028、r6=−0.4060f、r7=−
1.5520fの場合で次のようなパラメータを持ち、
その収差曲線図を第5図に示す。
r 1 = −0.2536 d 1 = 0.03588 n 1 = 1.75925 r 2 = −0.1373 d 2 = 0.0038 r 3 = −0.1336 d 3 = 0.02944 n 2 = 1.70425 r 4 = −1.4520 d 4 = 0.0192 r 5 = −1.9000 d 5 = 0.0320 n 3 = 1.73419 r 6 = −0.4060 d 6 = 0.003 r 7 = −1.5520 d 7 = 0.0384 n 4 = 1.80560 r 8 = −0.4764 f = 1.0 F/3 0.7 2ω = 60° d 0 = 0.1 λ =488nm Example 2 In this example, |r 2 /r 3 |=1.028, r 6 =-0.4060f, r 7 =- in the projection lens having the structure shown in FIG.
In the case of 1.5520f, it has the following parameters,
The aberration curve diagram is shown in FIG.

r1=−0.2463 d1=0.03484 n1=1.75925 r2=−0.1330 d2=0.00354 r3=−−0.1304 d3=0.02743 n2=1.70425 r4=−1.4347 d4=0.01789 r5=−1.7888 d5=0.02981 n3=1.73419 r6=−0.3950 d6=0.00279 r7=−1.4906 d7=0.03578 n4=1.80560 r8=−0.4658 f=1.0 F/3 0.7 2ω=60゜ d0=0.09316 λ=488nm 実施例 3 本実施例は第3図に示した構造の投射レンズに
おける|r2/r3|=1.043、r6=−0.4658f、r7=−
1.5280fの場合で以下にそのパラメータを示し、
その収差曲線図を第6図に示す。
r 1 = −0.2463 d 1 = 0.03484 n 1 = 1.75925 r 2 = −0.1330 d 2 = 0.00354 r 3 = −−0.1304 d 3 = 0.02743 n 2 = 1.70425 r 4 = −1.4347 d 4 = 0.0178 9 r 5 = −1.7888 d 5 = 0.02981 n 3 = 1.73419 r 6 = −0.3950 d 6 = 0.00279 r 7 = −1.4906 d 7 = 0.03578 n 4 = 1.80560 r 8 = −0.4658 f = 1.0 F/3 0.7 2ω = 60゜d 0 = 0.09316 λ=488nm Example 3 In this example, |r 2 /r 3 |=1.043, r 6 =-0.4658f, r 7 =- in the projection lens having the structure shown in FIG.
In the case of 1.5280f, the parameters are shown below,
The aberration curve diagram is shown in FIG.

r1=−0.2614 d1=0.03443 n1=1.75925 r2=−0.1361 d2=0.00368 r3=−0.13045 d3=0.02874 n2=1.70425 r4=−1.3617 d4=0.01731 r5=−1.4728 d5=0.02725 n3=1.73419 r6=−0.4658 d6=0.002762 r7=−1.5280 d7=0.03535 n4=1.80560 r8=−0.3977 f=1.0 F/3 0.7 2ω=60゜ d0=0.9205 λ=488 これら実施例1〜3は第4図〜第6図に(a)球面
収差、(b)非点収差、(c)fθ特性を示すように球面収
差が小さく、非点収差曲線においてサジタル曲線
とメリジヨウナル曲線の中間値が全画角において
ほぼ一定となり、同一のデフオーカス量で全走査
幅にわたり安定したスポツトが得られ、読取およ
び記録面上付近でのゴーストビームの集光を防
ぎ、fθレンズとして好適である。
r 1 = −0.2614 d 1 = 0.03443 n 1 = 1.75925 r 2 = −0.1361 d 2 = 0.00368 r 3 = −0.13045 d 3 = 0.02874 n 2 = 1.70425 r 4 = −1.3617 d 4 = 0.0173 1 r 5 = −1.4728 d 5 = 0.02725 n 3 = 1.73419 r 6 = -0.4658 d 6 = 0.002762 r 7 = -1.5280 d 7 = 0.03535 n 4 = 1.80560 r 8 = -0.3977 f = 1.0 F/3 0.7 2ω = 60゜d 0 =0.9205λ =488 These Examples 1 to 3 have small spherical aberration, as shown in FIGS. 4 to 6, (a) spherical aberration, (b) astigmatism, and (c) fθ characteristics, and the astigmatism curve shows sagittal The intermediate value between the curve and the meridional curve is almost constant over all angles of view, and a stable spot can be obtained over the entire scanning width with the same amount of defocus, preventing ghost beams from converging near the reading and recording surface, and making it easier for the fθ lens to It is suitable as

発明の効果 以上要するに本発明は正のメニスカスレンズ3
枚、負のメニスカスレンズ1枚よりなる4群4枚
構成を有し、第1、第3及び第4群は光線入射方
向に夫々凹面を向けた正メニスカスレンズであり
第2群は光線入射方向に凹面を向けた負メニスカ
スレンズであり、r2を第1群第1レンズの光線入
射側の逆の面の曲率半径、r3を第2群第2レンズ
の光線入射側の曲率半径、r6を第3群第3レンズ
の光線入射側の逆の面の曲率半径、r7を第4群第
4レンズの光線入射側の曲率半径、fを全系の合
成焦点距離としたとき、 1.00<|r2/r3|<1.08 −0.48f<r6<−0.35f −160f<r7<−1.44f を満足することを特徴とする投射レンズを提供す
るもので球面収差、非点収差、コマ収差が小さ
く、読取及び記録面付近でのゴーストビームの集
光が防止できる利点を有する。
Effects of the Invention In summary, the present invention provides a positive meniscus lens 3
The first, third, and fourth groups are positive meniscus lenses each having a concave surface facing the light incident direction, and the second group is a positive meniscus lens with a concave surface facing the light incident direction. It is a negative meniscus lens with a concave surface facing , where r2 is the radius of curvature of the surface opposite to the light incident side of the first lens of the first group, r3 is the radius of curvature of the second lens of the second group on the light incident side, and r 6 is the radius of curvature of the surface opposite to the light incident side of the third lens in the third group, r7 is the radius of curvature of the fourth lens in the fourth group on the light incident side, and f is the combined focal length of the entire system, then 1.00 <|r 2 /r 3 |<1.08 −0.48f<r 6 <−0.35f −160f<r 7 <−1.44f. , has the advantage of having small coma aberration and preventing ghost beams from converging near the reading and recording surfaces.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はfθレンズを応用した光学系の概略図、
第2図は従来の投射レンズの断面図、第3図は本
発明の実施例における投射レンズの基本構成を示
す断面図、第4図乃至第6図は本発明の各実施例
における投射レンズの特性を示す収差曲線図であ
る。 7……第1群第1レンズ、8……第2群第2レ
ンズ、9……第3群第3レンズ、10……第4群
第4レンズ。
Figure 1 is a schematic diagram of an optical system using an fθ lens.
FIG. 2 is a sectional view of a conventional projection lens, FIG. 3 is a sectional view showing the basic configuration of a projection lens in an embodiment of the present invention, and FIGS. 4 to 6 are a sectional view of a projection lens in each embodiment of the present invention. FIG. 3 is an aberration curve diagram showing characteristics. 7...First lens of the first group, 8...Second lens of the second group, 9...Third lens of the third group, 10...Fourth lens of the fourth group.

Claims (1)

【特許請求の範囲】 1 正のメニスカスレンズ3枚、負のメニスカス
レンズ1枚よりなる4群4枚構成を有し、第1、
第3および第4群は光線入射方向に夫々凹面を向
けた正メニスカスレンズであり、第2群は光線入
射方向に凹面を向けた負メニスカスレンズであ
り、下記の条件を満足することを特徴とする投射
レンズ。 1.00<|r2/r3|<1.08 −0.48f<r6<−0.35f −1.60f<r7<−1.44f 但し、r2は第1群第1レンズの光線入射側の逆
の面の曲率半径、r3は第2群第2レンズの光線入
射側の曲率半径、r6は第3群第3レンズの光線入
射側の逆の面の曲率半径、r7は第4群第4レンズ
の光線入射側の曲率半径、fは全系の合成焦点距
離である。
[Claims] 1. Has a four-element configuration in four groups consisting of three positive meniscus lenses and one negative meniscus lens;
The third and fourth groups are positive meniscus lenses each having a concave surface facing the light incident direction, and the second group is a negative meniscus lens having a concave surface facing the light incident direction, and is characterized by satisfying the following conditions. projection lens. 1.00<|r 2 /r 3 |<1.08 −0.48f<r 6 <−0.35f −1.60f<r 7 <−1.44f However, r 2 is the surface opposite to the light incident side of the first lens of the first group. , r 3 is the radius of curvature of the second lens in the second group on the light incident side, r 6 is the radius of curvature of the surface opposite to the light incident side of the third lens in the third group, and r 7 is the radius of curvature of the fourth lens in the fourth group. The radius of curvature of the lens on the light incident side, f, is the combined focal length of the entire system.
JP24607283A 1983-12-23 1983-12-23 Projection lens Granted JPS60135915A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24607283A JPS60135915A (en) 1983-12-23 1983-12-23 Projection lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24607283A JPS60135915A (en) 1983-12-23 1983-12-23 Projection lens

Publications (2)

Publication Number Publication Date
JPS60135915A JPS60135915A (en) 1985-07-19
JPS635736B2 true JPS635736B2 (en) 1988-02-04

Family

ID=17143047

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24607283A Granted JPS60135915A (en) 1983-12-23 1983-12-23 Projection lens

Country Status (1)

Country Link
JP (1) JPS60135915A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015102623A (en) * 2013-11-22 2015-06-04 富士フイルム株式会社 Scanning optical system, optical scanning device, and radiation image reading apparatus

Also Published As

Publication number Publication date
JPS60135915A (en) 1985-07-19

Similar Documents

Publication Publication Date Title
JPS6053294B2 (en) 4-group fθ lens system
JPS6336482B2 (en)
JPS6226444B2 (en)
US4770517A (en) Two-lens fθ lens
US4707085A (en) Fθ lens for use in light beam scanner
US4850663A (en) Light scanning system
JPS6125129B2 (en)
US6236512B1 (en) Collimator lens and light-scanning apparatus using the same
JP3269159B2 (en) Laser scanning device and scanning lens
US5710654A (en) Scanning lens and an optical scanner using the same
JPH0727123B2 (en) Surface tilt correction scanning optical system
EP0373677A2 (en) Lens system for optical beam scanner
US4755030A (en) Lens for facsimile or laser printer
JPS6233565B2 (en)
JP2550153B2 (en) Optical scanning device
US5600475A (en) Laser scanner
JP2945097B2 (en) Telecentric fθ lens
JPH0746169B2 (en) Fθ lens for optical beam scanning device
JPH0563777B2 (en)
JPS635736B2 (en)
JPS6145803B2 (en)
JPS61175607A (en) Scanning optical system
JPS6130244B2 (en)
JPH05127077A (en) Cylindrical lens system
JPS5977405A (en) Light source device