JPS5977405A - Light source device - Google Patents

Light source device

Info

Publication number
JPS5977405A
JPS5977405A JP18843582A JP18843582A JPS5977405A JP S5977405 A JPS5977405 A JP S5977405A JP 18843582 A JP18843582 A JP 18843582A JP 18843582 A JP18843582 A JP 18843582A JP S5977405 A JPS5977405 A JP S5977405A
Authority
JP
Japan
Prior art keywords
light source
lens
semiconductor laser
source device
laser light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18843582A
Other languages
Japanese (ja)
Inventor
Kazuhiko Matsuoka
和彦 松岡
Masamichi Tatsuoka
立岡 正道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP18843582A priority Critical patent/JPS5977405A/en
Publication of JPS5977405A publication Critical patent/JPS5977405A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0004Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed
    • G02B19/0009Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed having refractive surfaces only
    • G02B19/0014Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed having refractive surfaces only at least one surface having optical power
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0004Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed
    • G02B19/0028Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed refractive and reflective surfaces, e.g. non-imaging catadioptric systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0033Condensers, e.g. light collectors or similar non-imaging optics characterised by the use
    • G02B19/0047Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source
    • G02B19/0052Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source the light source comprising a laser diode
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0938Using specific optical elements
    • G02B27/095Refractive optical elements
    • G02B27/0955Lenses

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

PURPOSE:To make luminance flux from a semiconductor laser light source into a parallel beam through simple constitution by arranging a distributed index type lens which has a plane surface on one side and a spherical surface on the other side opposite to the semiconductor laser light source. CONSTITUTION:A collimator lens facing the semiconductor laser light source 10 is made of a distributed index type lens 11. The surface of the lens 11 is planar and the opposite surface to the laser 10 is the spherical surface with a radius r2 of curvature. The use of this lens 11 compensates aspherical aberration excellently regardless of short focal length and large numerical aperture. Consequently, the excellent parallel beam is obtained through the simple constitution as compared with a semiconductor laser light source device equipped with a conventional collimator lens.

Description

【発明の詳細な説明】 本発明は、半導体レーザーを光源として用いる装置に関
するもので、特に平行ビームを供給する光源装置に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a device using a semiconductor laser as a light source, and particularly to a light source device that supplies a parallel beam.

近年、半導体レーザーがプリンター光学系の光源、又は
電子ファイル等の記録或いは読取用の光源として広く用
いられている。半導体レーザーからの光束は発散光束で
ある為に、この光束を一度平行光束にしてから利用する
ことが便利であり、従って半導体レーザーはコリメータ
ー機能のレンズと共に光源部を形成することが多い、こ
のコリメーターレンズとしては、半導体レーザーからの
光束を充分に取り込めること、換言すれば短焦点で広間
口径比のレンズが望まれるが、この性能を満足するには
従来の光学硝子を用いて形成すると、少なくとも3枚の
レンズが必要である。従って、加工、a立において高度
の熟達した技術を必要とした。
In recent years, semiconductor lasers have been widely used as light sources for printer optical systems or for recording or reading electronic files. Since the light flux from a semiconductor laser is a diverging light flux, it is convenient to convert this light flux into a parallel light flux before use.Therefore, the semiconductor laser often forms a light source section together with a lens with a collimator function. As a collimator lens, it is desirable to be able to sufficiently take in the luminous flux from the semiconductor laser, in other words, a lens with a short focus and a wide aperture ratio, but in order to satisfy this performance, it is necessary to form it using conventional optical glass. At least three lenses are required. Therefore, highly skilled techniques were required for processing and construction.

本発明の目的は、上述した従来の欠点に鑑み、簡易な構
成で平行ビームが得られる半導体レーザーを備えた光源
装置を提供することKある。
SUMMARY OF THE INVENTION In view of the above-mentioned conventional drawbacks, an object of the present invention is to provide a light source device equipped with a semiconductor laser that can obtain a parallel beam with a simple configuration.

本発明に係る光源装置においては、コリメーターレンズ
を屈折率分布型レンズで構成し、該レンズのいずれか一
方の面を球面形状、もう一方の面を平面形状とすること
により、短焦点、広開口径比で且つ球面収差を良好に補
正することが可能となった。以下、図面を用いて本発明
を詳述する。
In the light source device according to the present invention, the collimator lens is composed of a gradient index lens, and one surface of the lens is spherical and the other surface is planar. It has become possible to satisfactorily correct spherical aberration at the same aperture diameter ratio. Hereinafter, the present invention will be explained in detail using the drawings.

第1図は本発明に係る光源装置の一実施例を示す図であ
る。第1図において、10は半導体レーザー%11はそ
の屈折率が光軸から軸外にかけて除々に変化する屈折率
分布型レンズであり、レーザー側圧対する面の曲率r1
は無限大、即ちレーザーに対向する面は平面、一方レー
ザーと反対側の面は、曲率半径r2の曲面で構成されて
いる。尚、第1図に示す曲面の半径r2は負の値で示す
。Zはレンズ11の光軸上での肉厚、WDは半導体レー
ザー10とレンズ11との軸上間隔である。
FIG. 1 is a diagram showing an embodiment of a light source device according to the present invention. In FIG. 1, 10 is a semiconductor laser %11 is a gradient index lens whose refractive index gradually changes from the optical axis to off-axis, and the curvature of the surface facing the laser side pressure is r1.
is infinite, that is, the surface facing the laser is a flat surface, while the surface opposite to the laser is a curved surface with a radius of curvature r2. Note that the radius r2 of the curved surface shown in FIG. 1 is shown as a negative value. Z is the thickness of the lens 11 on the optical axis, and WD is the axial distance between the semiconductor laser 10 and the lens 11.

屈折率分布型レンズ11の、中心軸から周辺に向って距
離rの位置での屈折率分布n (r)を、rL2(r)
=n2(0)〔1−(gr)2+h4(gr)4千h6
(gr)6〕 ・・・・(1)で表わす。但しgは近軸
での分布の強さを表わすパラメーターであり、又A4 
、 A6は係数である。令弟1図に示す光源装置におい
て、ル(0)= 1.552 。
The refractive index distribution n (r) at a distance r from the central axis toward the periphery of the gradient index lens 11 is expressed as rL2 (r)
=n2(0)[1-(gr)2+h4(gr)4,000h6
(gr)6] ...Represented by (1). However, g is a parameter representing the strength of the paraxial distribution, and A4
, A6 is a coefficient. In the light source device shown in Figure 1, L(0) = 1.552.

g=0.156 、 A4=0.9 、 As=10.
Oの素材を用い、前記Z= 2.428 、 W D=
 1.8のとき、前記r2は−4.0≦r2≦−1,0 の時、実用上良好な結像性能を得た。このときのr2 
 の値に対する球面収差の様子を第2図に示す。
g=0.156, A4=0.9, As=10.
Using the material O, the above Z = 2.428, W D =
When r2 was -4.0≦r2≦-1.8, a practically good imaging performance was obtained. r2 at this time
FIG. 2 shows the state of spherical aberration with respect to the value of .

第2図における縦軸りは光軸からの高さを示すものであ
る。
The vertical axis in FIG. 2 indicates the height from the optical axis.

第6図は本発明に係る光源装置の他の実施例を示す図で
ある。第6図で、第2図と同じ側番を施こしたものは同
じ部材を示すのでここでは説明を省く。第6図に示す装
置では、屈折率分布型レンズ11は、半導体レーザー1
0に対向する面が曲率半径r1の曲面であり、もう一方
の面は曲率半径r2  が無限大、即ち平面である。尚
、半径r1は正の値で示す。第2図に示す装置において
、前記(1)式のパラメーターをW(o)= 1.55
2 、 g=0.159 、 h4=0.9 、 h6
 = 10.0  と取り、Z= 6.94 、 W 
])= 1.8 のとき、前記r1を 4≦r1≦8 の時、実用上良好な結像性能を得た。この時の。
FIG. 6 is a diagram showing another embodiment of the light source device according to the present invention. In FIG. 6, parts with the same side numbers as those in FIG. 2 indicate the same members, so their explanation will be omitted here. In the apparatus shown in FIG.
The surface facing 0 is a curved surface with a radius of curvature r1, and the other surface has an infinite radius of curvature r2, that is, a plane. Note that the radius r1 is shown as a positive value. In the apparatus shown in FIG. 2, the parameters of equation (1) are set as W(o)=1.55.
2, g=0.159, h4=0.9, h6
= 10.0, Z = 6.94, W
])=1.8, and when r1 was 4≦r1≦8, a practically good imaging performance was obtained. At this time.

rl  の値に対する球面収差の様子を第4図に示す。FIG. 4 shows the state of spherical aberration with respect to the value of rl.

上記実施例を通常のコリメーターレンズの仕様に換算す
れば、第1図に相当するものがFナンバー1,3、焦点
距離2.6、第6図に相当するのがFナンバー1.4、
焦点距離2.8となり、本願の目的とする広開口径比で
、短焦点のコリメーターレンズが得られたものである。
If the above embodiment is converted into the specifications of a normal collimator lens, the one corresponding to Fig. 1 has an F number of 1 or 3, the focal length is 2.6, and the one corresponding to Fig. 6 has an F number of 1.4.
The focal length was 2.8, and a short-focus collimator lens with a wide aperture diameter ratio, which is the objective of the present application, was obtained.

第5図は、本発明に係る光源装置を光ビーム走査光学系
に適用した一実施例を示す図である。第5図において、
20は上記本発明に係る光源装置を示しており、その構
成は第1図に示す様K、半導体レーザー10と屈折率分
布型のレンズ11より成っている。21はシリンドリカ
ルレンズ、22はポリゴンミラー、23は球面レンズ2
3aとシリンドリカルレンズ23bより成るアナモフィ
ックな結像レンズ系、24は感光ドラムであり、該ドラ
ム240周辺には図示していないが、該感光ドラムに潜
像を形成しその像を顕画化する為の公知の手段が配され
ている。光学系の光軸OAはX−y平面内に存し、該2
.−y平面に対して垂直な回転軸22aを有するポリゴ
ンミラー22の回転により元ビームが偏向されて形成さ
れる偏向走査面もx −y平面内に存する。従って光源
装置からの平行ビームは、x −y平面と平行な方向に
母線を有するシリンドリカルレンズ21によりZ方向の
成分の光束が集光され、ポリゴンミラー22の反射面2
2bの近傍に線像■を形成する。一方、し 線を有するシリンドリカルレンズ26匈より成る結像レ
ンズ系26に関して、y−z平面内では前記線像Iと感
光ドラム240面とは光学的に共役な位置に配されてお
り、又x −y平面内では結像レンズ系26の焦点面に
感光ドラム240面が配されている。従って、線像■は
感光ドラム24上にスポットとして形成されるが、その
際ポリゴンミラー22の反射面が傾いても、感光ドラム
面上におけるビームスポットはZ軸方向に変位しない。
FIG. 5 is a diagram showing an embodiment in which the light source device according to the present invention is applied to a light beam scanning optical system. In Figure 5,
Reference numeral 20 designates the light source device according to the present invention, which is constructed of a semiconductor laser 10 and a gradient index lens 11 as shown in FIG. 21 is a cylindrical lens, 22 is a polygon mirror, and 23 is a spherical lens 2
3a and a cylindrical lens 23b, 24 is a photosensitive drum, and although the area around the drum 240 is not shown, a latent image is formed on the photosensitive drum and the image is developed. Known means are arranged. The optical axis OA of the optical system exists within the X-y plane, and the 2
.. The deflection scanning plane formed by deflecting the original beam by the rotation of the polygon mirror 22 having the rotation axis 22a perpendicular to the -y plane also exists within the x-y plane. Therefore, the parallel beam from the light source device is focused by the cylindrical lens 21 having a generatrix in a direction parallel to the x-y plane, and the luminous flux of the Z-direction component is focused by the reflecting surface 2 of the polygon mirror 22.
A line image ■ is formed in the vicinity of 2b. On the other hand, regarding the imaging lens system 26 consisting of 26 cylindrical lenses having diagonal lines, the line image I and the surface of the photosensitive drum 240 are arranged at an optically conjugate position in the yz plane, and the x In the -y plane, the surface of the photosensitive drum 240 is arranged at the focal plane of the imaging lens system 26. Therefore, the line image (2) is formed as a spot on the photosensitive drum 24, but even if the reflective surface of the polygon mirror 22 is tilted, the beam spot on the photosensitive drum surface is not displaced in the Z-axis direction.

即ち、ポリゴンミラーの反射面の面倒れによる影響を補
正することが出来るのである。
In other words, it is possible to correct the influence of the tilt of the reflective surface of the polygon mirror.

以上述べた様に、従来のコリメーターレンズを備えた半
導体レーザーの光源装置に比して、本発明に係る光源装
置では、コリメーターレンズトシて屈折率分布型レンズ
を用いその現状を適宜選択している為、構成が非常に簡
潔であるにも拘らず実用上充分な性能が得られるもので
ある。
As described above, compared to the conventional semiconductor laser light source device equipped with a collimator lens, the light source device according to the present invention uses a gradient index lens instead of the collimator lens and selects the current state appropriately. Therefore, although the configuration is very simple, sufficient performance can be obtained for practical use.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る光源装置の一実施例を示す図、第
2図は本発明に係る光源装置の実施例における球面収差
を示す図、第5図は本発明に係る光源装置の他の実施例
を示す図、第4図は本発明に係る光源装置の実施例にお
ける球面収差を示す図、第5図は本発明に係る光源装置
を用いた走査装置の一実施例を示す図。 10・・1半導体レーザー、11・・・屈折率分布型レ
ンズ、rl、r21」曲率半径。 第20 3.4
FIG. 1 is a diagram showing one embodiment of the light source device according to the present invention, FIG. 2 is a diagram showing spherical aberration in the embodiment of the light source device according to the present invention, and FIG. 5 is a diagram showing other embodiments of the light source device according to the present invention. FIG. 4 is a diagram showing spherical aberration in an embodiment of the light source device according to the present invention, and FIG. 5 is a diagram showing an example of a scanning device using the light source device according to the present invention. 10...1 semiconductor laser, 11...gradient index lens, rl, r21'' radius of curvature. Chapter 20 3.4

Claims (1)

【特許請求の範囲】[Claims] (1)半導体レーザーと、該半導体レーザーに対向して
設けられた、一方の面が平面で、該平面に対向するもう
一方の面が球面の形状を有する屈折率分布型のレンズよ
り成り、前記半導体レーザーからの光束を前記レンズで
平行光にする事を特徴とする光源装置。
(1) Consisting of a semiconductor laser and a gradient index lens provided opposite to the semiconductor laser and having one surface having a flat surface and the other surface facing the flat surface having a spherical shape; A light source device characterized in that a light beam from a semiconductor laser is made into parallel light by the lens.
JP18843582A 1982-10-26 1982-10-26 Light source device Pending JPS5977405A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18843582A JPS5977405A (en) 1982-10-26 1982-10-26 Light source device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18843582A JPS5977405A (en) 1982-10-26 1982-10-26 Light source device

Publications (1)

Publication Number Publication Date
JPS5977405A true JPS5977405A (en) 1984-05-02

Family

ID=16223620

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18843582A Pending JPS5977405A (en) 1982-10-26 1982-10-26 Light source device

Country Status (1)

Country Link
JP (1) JPS5977405A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62115410A (en) * 1985-11-15 1987-05-27 Nippon Sheet Glass Co Ltd Lens for optical recording and reproducing device
US4892395A (en) * 1987-01-30 1990-01-09 Canon Kabushiki Kaisha Collimating optical system using a spherical lens
US20150183232A1 (en) * 2013-12-26 2015-07-02 Lexmark International, Inc. Optical Scanning System and Imaging Apparatus for Using Same
US9874745B2 (en) 2013-12-26 2018-01-23 Lexmark International, Inc. Collimation assembly for an imaging device
CN110617843A (en) * 2019-09-19 2019-12-27 上海兰宝传感科技股份有限公司 Photoelectric sensor with adjustable light spot size and fixed focus position and adjusting method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS556354A (en) * 1978-06-30 1980-01-17 Agency Of Ind Science & Technol Refractive index distribution type lens
JPS56144411A (en) * 1980-04-14 1981-11-10 Mitsubishi Electric Corp Collimating optical system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS556354A (en) * 1978-06-30 1980-01-17 Agency Of Ind Science & Technol Refractive index distribution type lens
JPS56144411A (en) * 1980-04-14 1981-11-10 Mitsubishi Electric Corp Collimating optical system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62115410A (en) * 1985-11-15 1987-05-27 Nippon Sheet Glass Co Ltd Lens for optical recording and reproducing device
US4892395A (en) * 1987-01-30 1990-01-09 Canon Kabushiki Kaisha Collimating optical system using a spherical lens
US20150183232A1 (en) * 2013-12-26 2015-07-02 Lexmark International, Inc. Optical Scanning System and Imaging Apparatus for Using Same
US9817231B2 (en) * 2013-12-26 2017-11-14 Lexmark International, Inc. Optical scanning system and imaging apparatus for using same
US9874745B2 (en) 2013-12-26 2018-01-23 Lexmark International, Inc. Collimation assembly for an imaging device
CN110617843A (en) * 2019-09-19 2019-12-27 上海兰宝传感科技股份有限公司 Photoelectric sensor with adjustable light spot size and fixed focus position and adjusting method
CN110617843B (en) * 2019-09-19 2021-09-07 上海兰宝传感科技股份有限公司 Photoelectric sensor with adjustable light spot size and fixed focus position and adjusting method

Similar Documents

Publication Publication Date Title
US6061183A (en) Collimator lens and light-scanning apparatus using the same
JPH04305615A (en) Anisotropic refracting power single lens
US5179465A (en) Optical system for light beam scanning
JP2991524B2 (en) Wide-angle lens
US6104541A (en) Collimator lens and optical scanning apparatus using the same
JP2001281604A (en) Collimator lens and optical scanner using the same
JP2641514B2 (en) Single group objective lens
US6236512B1 (en) Collimator lens and light-scanning apparatus using the same
US5570232A (en) Anamorphic single lens for use in an optical scanner
JPH0310924B2 (en)
US5710654A (en) Scanning lens and an optical scanner using the same
US4527858A (en) Uniform speed scanning lens having a high resolving power
JPS6381413A (en) Spherical lens
JPS5977405A (en) Light source device
JP2000352668A (en) Wide-angle catoptric system
US4585314A (en) Projection lens
EP0441350B1 (en) Optical system for light beam scanning
EP0990935A2 (en) Lens for copying and image copying apparatus using the same
JP4628516B2 (en) Collimator lens and optical scanning device using the same
JP2786053B2 (en) Post objective scanning optical system
JPH04107517A (en) Light source unit and lens used for same
USRE33227E (en) Gradient index type single lens
JPH09281422A (en) Scanning optical device
JP2000066008A (en) Image forming element array
JP3045610B2 (en) Single-sided double-sided aspheric lens