JPS635706B2 - - Google Patents

Info

Publication number
JPS635706B2
JPS635706B2 JP57038307A JP3830782A JPS635706B2 JP S635706 B2 JPS635706 B2 JP S635706B2 JP 57038307 A JP57038307 A JP 57038307A JP 3830782 A JP3830782 A JP 3830782A JP S635706 B2 JPS635706 B2 JP S635706B2
Authority
JP
Japan
Prior art keywords
temperature
sample
voltage
room temperature
test
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57038307A
Other languages
Japanese (ja)
Other versions
JPS58155375A (en
Inventor
Koichi Tanabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON DENKI AISHII MAIKON SHISUTEMU KK
Original Assignee
NIPPON DENKI AISHII MAIKON SHISUTEMU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON DENKI AISHII MAIKON SHISUTEMU KK filed Critical NIPPON DENKI AISHII MAIKON SHISUTEMU KK
Priority to JP57038307A priority Critical patent/JPS58155375A/en
Publication of JPS58155375A publication Critical patent/JPS58155375A/en
Publication of JPS635706B2 publication Critical patent/JPS635706B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/26Testing of individual semiconductor devices

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Individual Semiconductor Devices (AREA)

Description

【発明の詳細な説明】 本発明は電源電圧を印加して行う半導体装置
(以下単に試料という)の高温連続試験において、
印加電圧を切断したのち、試料の電圧印加による
自己発熱の余熱の効果によつて、試料のチツプの
表面状態が微妙に変化して不良品が良品に復帰す
ることを防ぐ連続試験法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides high-temperature continuous testing of semiconductor devices (hereinafter simply referred to as samples) performed by applying a power supply voltage.
This is a continuous test method that prevents defective products from returning to good quality due to subtle changes in the surface condition of the sample chip due to the residual heat generated by self-heating caused by the applied voltage after the applied voltage is cut off. be.

従来より試料の代表的な故障率を決めたり、規
定条件での品質、信頼度を立証するために、試料
に電圧を印加して行う連続動作試験は、例えば
「JIS−C−7022試験法B−1連続動作試験」等に
代表されるごとく種々の方法が行われている。上
記JIS試験法によれば、試験条件として、電圧、
負荷、周囲温度等は試料の熱定格を越えない範囲
で、一般には最大定格を代表するように選ばれ
る。また、試験状態において試料のチツプの温度
は、いかなる形をとつても電力消費を伴うので、
その接合部温度は試料のおかれている周囲温度よ
りも高くなつている。特に電力増幅用の試料にお
いてはその温度差が著しく大きいのが普通であ
る。
Continuous operation tests that are performed by applying a voltage to a sample in order to determine the typical failure rate of the sample and to prove its quality and reliability under specified conditions have traditionally been conducted using, for example, "JIS-C-7022 Test Method B. Various methods have been used, such as ``-1 Continuous Operation Test.'' According to the above JIS test method, the test conditions include voltage,
The load, ambient temperature, etc. are selected within a range that does not exceed the thermal rating of the sample and are generally representative of the maximum rating. In addition, the temperature of the sample chip in the test state involves power consumption in any form, so
The junction temperature is higher than the ambient temperature in which the sample is placed. Especially in samples for power amplification, the temperature difference is usually extremely large.

一方上記連続試験により発生する不良の原因の
うち代表的なものの一つに、チツプ表面に存在す
る不純物イオンと印加電圧の電界との作用によ
り、チツプ表面近傍におけるP又はN型層の反転
層の発生がある。表面状態が敏感に作用するこの
種の不良は、電圧印加なしで常温以上の高温に保
管すると一種の焼鈍効果により不良品が良品に復
帰することが一般に広く知られている。不良品が
良品に復帰すること自体は好ましい現象にみえる
が、上記試験後の合否判定で誤判定を下す可能性
があり又、再び電圧を加えて連続試験した場合再
び不良品になることもあり、非常にやつかいであ
る。従つて常温(半導体装置の試験でいう常温と
は通常25℃±3℃内をいう)以上の温度、例えば
恒温槽内で行う電圧印加連続試験の終了時には上
記の焼鈍効果を除くため、電圧を印加したまゝ恒
温槽よりとり出すか、恒温槽内の温度をさげて常
温とし、試料の内部温度が常温に近くなつた時点
で電圧を切断するのが好ましい。しかし、消費電
力の大きい試料の場合には電圧印加による自己発
熱のため、試料の接合部温度は周囲温度より大幅
に上つているのが普通である。したがつて常温中
に試料をおいたとしても試料のもつ余熱のため、
電圧印加を絶つてからある時間試料が高温に保た
れたと同じことになり、前記焼鈍効果を生じてし
まう。これを防ぐには電圧を切るまえに強制的に
冷却する方法があるが、試料の接合部温度が常温
になつたことを知るには手間がかゝり、また冷却
量の設定も困難である。更にチツプの温度を常温
までさげるためにはパツケージ温度はそれ以上に
さげる必要があり、試料に対し別のストレスを強
いることになる欠点がある。
On the other hand, one of the typical causes of defects that occur in the above continuous tests is that the inversion layer of the P or N type layer near the chip surface is There is an outbreak. It is generally well known that when this type of defect, in which the surface condition is sensitive, is stored at a high temperature above room temperature without application of voltage, the defective product returns to a good product due to a kind of annealing effect. Although the return of a defective product to a non-defective product itself seems to be a positive phenomenon, there is a possibility that an incorrect judgment will be made in the pass/fail judgment after the above test, and if the voltage is applied again and the test is repeated, the product may become defective again. , is very skilled. Therefore, at the end of a continuous voltage application test conducted at a temperature above room temperature (normal temperature in semiconductor device testing usually means within 25°C ± 3°C), for example in a constant temperature oven, the voltage should be turned off to eliminate the above-mentioned annealing effect. It is preferable to remove the voltage from the thermostatic chamber while applying voltage, or to lower the temperature in the thermostatic chamber to room temperature, and to cut off the voltage when the internal temperature of the sample approaches room temperature. However, in the case of a sample that consumes a large amount of power, the junction temperature of the sample is usually significantly higher than the ambient temperature due to self-heating caused by voltage application. Therefore, even if the sample is placed at room temperature, due to the residual heat of the sample,
This is the same as if the sample was kept at a high temperature for a certain period of time after the voltage application was stopped, and the annealing effect described above occurs. To prevent this, there is a method of forcibly cooling the sample before turning off the voltage, but it takes time and effort to know when the junction temperature of the sample has reached room temperature, and it is also difficult to set the amount of cooling. . Furthermore, in order to lower the temperature of the chip to room temperature, the package temperature must be lowered even further, which has the disadvantage of imposing additional stress on the sample.

本発明は、前記問題点を解消するもので、連続
動作試験において、電力消費の大きい試料の場合
であつても、一定時間かけて電圧を連続的又は段
階的に下げ、試料のチツプの温度が常温に近くな
るまで電圧を印加しておいてから電源を切断する
ことにより焼鈍効果を低下させるものであり、表
面状態が敏感に関係する類の不良品が良品に復帰
するのを防止するようにしたことを特徴とするも
のである。
The present invention solves the above-mentioned problems.In a continuous operation test, even in the case of a sample that consumes a large amount of power, the voltage is lowered continuously or stepwise over a certain period of time, and the temperature of the sample chip is lowered. The annealing effect is reduced by applying voltage until it reaches room temperature and then turning off the power, and this is to prevent defective products that are sensitive to surface conditions from returning to good quality. It is characterized by the fact that

以下、本発明を、恒温槽を用いた連続動作試験
を例にとり、試験状態から試験の終了までの間の
試料温度、周囲温度と電圧の印加、切断について
タイムチヤートを用いてより詳細に説明する。
Hereinafter, the present invention will be explained in more detail using a time chart regarding the sample temperature, ambient temperature, voltage application, and disconnection from the test state to the end of the test, using a continuous operation test using a constant temperature bath as an example. .

尚、試料温度とは、各時間における試料のチツ
プの温度であり、過渡的なものである。また、周
囲温度とは、試料が置かれている雰囲気中の温度
であり、恒温槽に入つている時は恒温槽の温度、
常温に取り出された場合には常温を示す。第1図
〜第3図において、横軸tは時間の経過を示し、
試験状態から試験の終了までを示す。t=2以降
は試験の終了を示す。
Note that the sample temperature is the temperature of the sample chip at each time, and is transient. In addition, the ambient temperature is the temperature in the atmosphere in which the sample is placed, and when the sample is placed in a constant temperature bath, the temperature of the constant temperature bath,
When taken out to room temperature, it indicates room temperature. In Figures 1 to 3, the horizontal axis t indicates the passage of time;
Shows the state from the test state to the end of the test. The period after t=2 indicates the end of the test.

第1図は、従来の方法による電力消費の小さい
試料の場合を示すものである。
FIG. 1 shows the case of a sample with low power consumption by the conventional method.

t=0までは試料は常温より高い温度の恒温槽
に入れられ、電圧が印加されて試験状態にある。
試料温度は電力消費による自己発熱分が加わり、
周囲温度よりやや高い温度となつている。
Until t=0, the sample is placed in a constant temperature bath at a temperature higher than room temperature, and a voltage is applied to the sample in a test state.
The sample temperature is increased by self-heating due to power consumption,
The temperature is slightly higher than the ambient temperature.

t=0で恒温槽より試料が取り出され、t=0
以降周囲温度は常温となつている。この結果、試
料温度は徐々に低下するが、電圧が印加されてい
るため、常温よりやや高い温度になつている。
At t=0, the sample is taken out from the thermostatic chamber, and at t=0
From then on, the ambient temperature remained at room temperature. As a result, the sample temperature gradually decreases, but since the voltage is applied, the sample temperature remains slightly higher than room temperature.

t±1で電圧が切断され電力消費がなくなり、 t=1以降で試料温度は常温まで低下する。 At t±1, the voltage is cut off and power consumption disappears. After t=1, the sample temperature decreases to room temperature.

ここで、電圧を切断した後、自己発熱による余
熱が零となるまでの期間とその量は斜線部Aで示
されており、焼鈍効果は小さいことが分かる。
Here, the period and amount until the residual heat due to self-heating becomes zero after the voltage is cut off is shown by the shaded area A, and it can be seen that the annealing effect is small.

第2図は、従来の方法による電力消費の大きい
試料の場合を示すものである。
FIG. 2 shows a case where a conventional method is used for a sample that consumes a large amount of power.

t=0までの恒温槽内での試験状態において、
自己発熱が大きいため、試料温度と周囲温度との
差が第1図のものと比較して大きくなつており、
その分だけ恒温槽温度は第1図の場合より低い温
度に設定されている。
In the test state in a constant temperature chamber until t = 0,
Due to the large amount of self-heating, the difference between the sample temperature and the ambient temperature is larger than that in Figure 1.
Accordingly, the temperature of the constant temperature bath is set lower than that in the case of FIG.

t=0で恒温槽より試料を取り出し常温放置し
てもt=1で電圧を切断するまでの間は、電力消
費が大きいため、試料温度は常温よりかなり高く
なつている。
Even if the sample is taken out of the thermostatic chamber at t=0 and left at room temperature, the sample temperature remains considerably higher than room temperature until the voltage is cut off at t=1 due to large power consumption.

従つてt=1以降自己発熱による余熱が零とな
るまでの期間とその量は斜線部Bとなり、電力消
費の小さい試料の場合を示す第1図における斜線
部Bと比較して焼鈍効果が大きくなり、問題とな
る。
Therefore, the period and amount of residual heat due to self-heating from t = 1 to zero is in the shaded area B, where the annealing effect is greater than the shaded area B in Figure 1, which shows the case of a sample with low power consumption. This becomes a problem.

第3図は本発明の方法による電力消費の大きい
試料の場合を示すものである。t=1までの期間
については従来方法の第2図と全く同じであり、
常温放置中も大きな電力消費のため、試料温度は
常温よりかなり高くなつている。
FIG. 3 shows the case of a sample with large power consumption by the method of the present invention. The period up to t=1 is exactly the same as in Figure 2 for the conventional method,
Even when the sample is left at room temperature, the sample temperature remains considerably higher than room temperature due to large power consumption.

しかしながら、t=1からt=1′までの一定時
間をかけて段階的に電圧を低下させるため、完全
に電圧が切断されるt=1′の時点では、試料温度
は常温近くまで低下しており、電圧切断後の自己
発熱による余熱が零となるまでの期間とその量は
斜線部A′で示される。図からわかるように、第
3図の斜線部A′は、電力消費の小さい試料の場
合を示す第1図における斜線部Aと同等もしくは
それ以下になるので、本発明によれば、焼鈍効果
を低下もしくはなくすることができ、電力消費の
大きい試料の場合の連続動作試験において、試験
の終了の際に表面状態が敏感に関係する類の不良
品が良品に復帰することを防ぐことができる効果
を有するものである。
However, since the voltage is gradually reduced over a certain period of time from t=1 to t=1', at t=1' when the voltage is completely cut off, the sample temperature has dropped to near room temperature. The period and amount of residual heat due to self-heating after the voltage is cut off is shown by the shaded area A'. As can be seen from the figure, the shaded area A' in FIG. 3 is equal to or smaller than the shaded area A in FIG. In continuous operation tests for samples with large power consumption, it is possible to prevent defective products that are sensitive to surface conditions from reverting to non-defective products at the end of the test. It has the following.

尚、電圧を下げる方法として、3段階による例
を示したが、その段階の回数はいくつでもよく、
また、連続的に低下させても良い。
In addition, as a method of lowering the voltage, we have shown an example using three steps, but the number of steps may be any number.
Alternatively, it may be decreased continuously.

又電圧の低下変化量や低下に要する一定時間は
試料の回路形式消費電力により任意適切に設定す
る。本発明は、非常に温度ドリフトに対して敏感
な集積回路ゼナーや、出力回路をもつ集積回路等
の電圧印加高温連続試験を行なう場合に有効であ
る。
Further, the amount of voltage drop change and the certain time required for the voltage drop are arbitrarily and appropriately set depending on the circuit type and power consumption of the sample. The present invention is effective when performing voltage application high temperature continuous tests on integrated circuits such as Zener, which are extremely sensitive to temperature drift, and integrated circuits with output circuits.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の方法による電力消費の小さい試
料の場合のタイムチヤート、第2図は従来の方法
による電力消費の大きい試料の場合のタイムチヤ
ート、第3図は本発明の方法による電力消費の大
きい試料の場合のタイムチヤートである。
Figure 1 is a time chart for a sample with low power consumption by the conventional method, Figure 2 is a time chart for a sample with high power consumption by the conventional method, and Figure 3 is a time chart for a sample with high power consumption by the method of the present invention. This is a time chart for a large sample.

Claims (1)

【特許請求の範囲】[Claims] 1 半導体装置を少くとも常温よりも高い規定さ
れた周囲温度の下で、規定の電源電圧を印加して
そのまゝ、あるいは電気的動作を連続的に行う電
圧印加高温連続試験において、高温状態を解除
後、前記半導体装置に印加した電圧を連続もしく
は段階的にさげることにより電圧を印加したまま
で、前記半導体装置の接合部温度を常温近くまで
さげた後に、試験を終了させることを特徴とする
半導体装置の電圧印加高温連続試験法。
1. Semiconductor devices are subjected to high-temperature conditions in a voltage-applied high-temperature continuous test in which a specified power supply voltage is applied and electrical operation is performed continuously under a specified ambient temperature higher than room temperature. After the release, the voltage applied to the semiconductor device is continuously or stepwise reduced to lower the junction temperature of the semiconductor device to near room temperature while the voltage remains applied, and then the test is terminated. Voltage application high temperature continuous test method for semiconductor devices.
JP57038307A 1982-03-11 1982-03-11 Voltage applied high temperature continuous testing of semiconductor device Granted JPS58155375A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57038307A JPS58155375A (en) 1982-03-11 1982-03-11 Voltage applied high temperature continuous testing of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57038307A JPS58155375A (en) 1982-03-11 1982-03-11 Voltage applied high temperature continuous testing of semiconductor device

Publications (2)

Publication Number Publication Date
JPS58155375A JPS58155375A (en) 1983-09-16
JPS635706B2 true JPS635706B2 (en) 1988-02-04

Family

ID=12521637

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57038307A Granted JPS58155375A (en) 1982-03-11 1982-03-11 Voltage applied high temperature continuous testing of semiconductor device

Country Status (1)

Country Link
JP (1) JPS58155375A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0439584Y2 (en) * 1984-12-10 1992-09-16
WO1987001813A1 (en) * 1985-09-23 1987-03-26 Sharetree Limited An oven for the burn-in of integrated circuits
JP4720248B2 (en) * 2005-03-30 2011-07-13 Jfeスチール株式会社 Thyristor element characteristic improvement method

Also Published As

Publication number Publication date
JPS58155375A (en) 1983-09-16

Similar Documents

Publication Publication Date Title
Pobegen et al. Understanding temperature acceleration for NBTI
KR100296184B1 (en) Method of and apparatus for evaluating reliability of metal interconnect
KR970003725B1 (en) Screening of gate oxides on semiconductors
Hong et al. Breakdown energy of metal (BEM)-A new technique for monitoring metallization reliability at wafer level
JPS635706B2 (en)
US9583403B2 (en) Implementing resistance defect performance mitigation using test signature directed self heating and increased voltage
Raja et al. Impedance spectroscopy studies of moisture uptake in low-k dielectrics and its relation to reliability
Aghaee et al. Process-variation aware multi-temperature test scheduling
JP2006170923A (en) Apparatus and method for evaluating semiconductor apparatus and simulator for semiconductor evaluating device
US20090289653A1 (en) Inspection apparatus and method for semiconductor IC
KR100653976B1 (en) Formation method of silicon wafer for gate oxide integrity test
Swift Using thermal cycle and temperature/voltage testing to reduce the incidence of resistive/open reliability defects
JP2004184417A (en) System and method for tolerance evaluation of chip and improvement in yield
JPH0328779A (en) Reliability testing method for semiconductor device
RU1604053C (en) Method for recovery of reprogramming memory devices
JPS61268034A (en) Semiconductor device
Ruprecht et al. Is product screen enough to guarantee low failure rate for the customer?
JPS61128541A (en) Reliability testing method of semiconductor device
Nagrani et al. Influence of Thermal Cycling on Degradation Behavior of Thermal Greases
Ceccarelli et al. Condensation Test: Methodology and Robustness Against it for Power Modules Employed in Railway Application
JPS5583248A (en) Method of estimating quality of gate insulating film
JPH1038965A (en) Method for evaluating reliability of semiconductor device
KR19990065680A (en) Semiconductor device manufacturing device that can be screwed in
JPS5917847B2 (en) Screening method for metal thin film lines in semiconductor devices
JPH02106945A (en) Manufacture of semiconductor integrated circuit