JPS6356969A - Manufacture of josephson device - Google Patents

Manufacture of josephson device

Info

Publication number
JPS6356969A
JPS6356969A JP61202810A JP20281086A JPS6356969A JP S6356969 A JPS6356969 A JP S6356969A JP 61202810 A JP61202810 A JP 61202810A JP 20281086 A JP20281086 A JP 20281086A JP S6356969 A JPS6356969 A JP S6356969A
Authority
JP
Japan
Prior art keywords
resistance
superconducting
barrier layer
wires
metal wires
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61202810A
Other languages
Japanese (ja)
Inventor
Kengo Okura
健吾 大倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP61202810A priority Critical patent/JPS6356969A/en
Publication of JPS6356969A publication Critical patent/JPS6356969A/en
Pending legal-status Critical Current

Links

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

PURPOSE:To prevent the peeling due to the heat cycle between the superconducting layer and the high-resistance barrier layer by bundling superconducting metal wires and high- resistance wires so that the high-resistance wires are positioned between the superconducting metal wires, applying the composite wire drawing process until the high-resistance barrier layer formed by the high-resistance wires have a thickness of exhibiting the tunnel effect, and then cutting it in the width direction and taking out it in the shape of a round slice, thereby strongly integrating the superconducting layer and the high-resistance barrier layer. CONSTITUTION:The Josephson device has superconducting metal wires 1 composed of Nb and a high-resistance barrier layer 2 composed of CuNi. Such Josephason device is formed by disposing high-resistance wires around a pair of superconducting metal wires, bundling them so that the high-resistance wires are positioned between the pair of superconducting metal wires, subjecting this to the wire drawing process, then cutting it in the width direction and taking out it in the shape of a round slice, and burying and fixing this in a material for burying 5. Then both surface of the material for burying are abraded to expose both end faces of the Josephson device, and further an etching process is applied. Stop welding is performed to attach current terminals 4 and voltage terminals 6 to this. Since the superconducting layer and the high-resistance barrier layer are strongly integrated together by this, the peeling or degradation is not caused even by the heat cycle between an extremely low temperature and a normal temperature.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、クライオエレクトロニクス分野などに利用
されるジョセフソン素子の製造方法に関するものである
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method of manufacturing a Josephson element used in the field of cryoelectronics and the like.

[従来の技術] ジョセフソン素子の構造には、2つの超電導層の間に高
抵抗バリア層として酸化膜などの絶縁層または常電導層
を設けるトンネル接合型と、2つの超電導層の境界を絞
り込んで微小な電流通路にしたブリッジ接合型または点
接触接合型のものがある。
[Prior art] Josephson device structures include a tunnel junction type in which an insulating layer such as an oxide film or a normal conducting layer is provided as a high-resistance barrier layer between two superconducting layers, and a type in which the boundary between the two superconducting layers is narrowed. There are bridge junction types and point contact junction types, which have minute current paths.

この発明は、前者のトンネル接合型ジョセフソン素子に
関するものである。従来、トンネル接合型のジョセフソ
ン素子は、基板上に超電導層の薄い膜を蒸着またはスパ
ッタリング等の方法により形成し、その上に高抵抗バリ
ア層を形成した後、さらに超電導層を蒸着やスパッタリ
ング等の方法により積み重ねて形成し製造している。
The present invention relates to the former tunnel junction type Josephson device. Conventionally, tunnel junction type Josephson devices have been produced by forming a thin superconducting layer on a substrate by vapor deposition or sputtering, forming a high-resistance barrier layer thereon, and then forming a superconducting layer by vapor deposition, sputtering, etc. It is manufactured by stacking and forming by the method of

[発明が解決しようとする問題点〕 しかしながら、このような従来の製造方法では、均一な
厚みで高抵抗バリア層となる膜を形成することが難しく
、高抵抗バリア層の膜厚の一定なものを多量に製造する
ことができないという問題点があった。また、高抵抗バ
リア層として酸化膜を用いる場合には、その膜厚が非常
に薄いため、超電導層間で導通するおそれを生じた。超
電導層間で導通すると、位相差が零になるため、ジョセ
フソン素子として機能しないという問題を生じる。
[Problems to be Solved by the Invention] However, with such conventional manufacturing methods, it is difficult to form a film that is a high-resistance barrier layer with a uniform thickness. There was a problem that it was not possible to produce large quantities of. Furthermore, when an oxide film is used as the high-resistance barrier layer, the film thickness is very thin, which may cause electrical conduction between the superconducting layers. When conduction occurs between the superconducting layers, the phase difference becomes zero, causing the problem that the superconducting layer does not function as a Josephson device.

また、このような超電導層間での導通を生じなくても、
外部から過大な電流が入力すると、高抵抗バリア層が焼
損という間mを生じた。
Moreover, even if such conduction does not occur between superconducting layers,
When an excessive current was input from the outside, the high-resistance barrier layer was burned out.

さらに、ジョセフソン素子は一般に液体ヘリウム中に浸
漬して用いられるため、極低温と常温との間のヒートサ
イクルの環境下に置かれる。この際、従来のジョセフソ
ン素子には、基板と薄膜との間に熱膨張率の差があるた
め、薄膜が基板より剥離したり、薄膜が劣化したりする
という問題点があった。
Furthermore, since the Josephson element is generally used by being immersed in liquid helium, it is placed under a heat cycle environment between extremely low temperatures and room temperature. In this case, the conventional Josephson element has a problem in that the thin film may peel off from the substrate or the thin film may deteriorate because there is a difference in coefficient of thermal expansion between the substrate and the thin film.

それゆえに、この発明の目的は、高抵抗バリア層の厚み
が均一で、極低温と常温との間のヒートサイクルによっ
ても薄膜が容易に剥離することないジョセフソン素子の
製造方法を提供することにある。
Therefore, an object of the present invention is to provide a method for manufacturing a Josephson device in which the thickness of the high-resistance barrier layer is uniform and the thin film does not easily peel off even during heat cycles between cryogenic temperatures and room temperature. be.

[問題点を解決するための手段] この発明のジョセフソン素子の製造方法は、1対の超電
導金属線の間に高抵抗線が位置するように束ね、該高抵
抗線により形成される高抵抗バリア層がトンネル効果を
示す厚みとなるまで(立合伸線加工し、次いで幅方向に
切断して輪切り状に取出しジョセフソン素子とすること
を特徴としている。
[Means for Solving the Problems] The Josephson device manufacturing method of the present invention includes bundling a pair of superconducting metal wires such that a high resistance wire is located between them, and It is characterized in that the barrier layer is subjected to vertical wire drawing until it reaches a thickness that exhibits a tunnel effect, and then cut in the width direction and taken out in round slices to form Josephson elements.

[作用] この発明の製造方法では、高抵抗線により形成される高
抵抗バリア層の厚みを伸線加工により薄くし、ジョセフ
ソン素子としてのトンネル効果を示す厚みにしている。
[Function] In the manufacturing method of the present invention, the thickness of the high-resistance barrier layer formed by the high-resistance wire is reduced by wire drawing to a thickness that exhibits a tunnel effect as a Josephson element.

この発明の製造方法によるジョセフソン素子は、複合伸
線加工した線状材を幅方向に切断して輪切り状に取出し
て用いるものであるため、高抵抗バリア層の厚みか均一
なものとなる。
Since the Josephson element produced by the manufacturing method of the present invention is used by cutting a composite wire-drawn wire material in the width direction and taking it out into slices, the high-resistance barrier layer has a uniform thickness.

また、従来のように基板上に形成するものでないため、
基板からの剥離という問題を生じない。
In addition, since it is not formed on a substrate as in the past,
There is no problem of peeling off from the substrate.

さらに、この発明の製造方法では、超電導金属線と高抵
抗線とを伸線加工するので、超電導層と高抵抗バリア層
とが強固に一体化し、ヒートサイクルによる両者間の剥
離も生じない。
Furthermore, in the manufacturing method of the present invention, since the superconducting metal wire and the high-resistance wire are wire-drawn, the superconducting layer and the high-resistance barrier layer are firmly integrated, and separation between them due to heat cycles does not occur.

[実施例] 第1図は、この発明の製造方法に従って伸線加工された
後の状態を示す断面図である。第1図において、1は超
電導金属線、2は高抵抗バリア層を示す。第1図に示す
例において、高抵抗線は1対の超電導金属線1の間のみ
ならず、超電導金属線1の周囲にも配置されており、超
電導金属線の周囲を高抵抗線が被覆する状態にされてい
る。しかしながら、この発明では、少なくとも超電導金
属線の間に高抵抗線が配置されておればよく超電導金属
線の周囲は他の材料で被覆してもよい。
[Example] FIG. 1 is a sectional view showing a state after wire drawing according to the manufacturing method of the present invention. In FIG. 1, 1 indicates a superconducting metal wire, and 2 indicates a high-resistance barrier layer. In the example shown in FIG. 1, the high resistance wire is arranged not only between the pair of superconducting metal wires 1 but also around the superconducting metal wire 1, and the high resistance wire covers the periphery of the superconducting metal wire. has been in a state. However, in the present invention, it is sufficient that the high resistance wire is disposed at least between the superconducting metal wires, and the periphery of the superconducting metal wires may be coated with another material.

第1図において、仁は高抵抗バリア層の厚みを示してお
り、伸線加工によりジョセフソン素子としてl・ンネル
効果を示す厚みにまで薄くされている。この厚み迂は、
超電導金属線および高抵抗バリア層の材質により異なる
ものであるが、通常は1000 A程度であり、厚くと
も10μm以下のものである。
In FIG. 1, numerals indicate the thickness of the high-resistance barrier layer, which has been made thinner by wire drawing to a thickness that exhibits the l·nner effect as a Josephson element. This thickness is
Although it differs depending on the material of the superconducting metal wire and the high-resistance barrier layer, it is usually about 1000 A and the thickness is 10 μm or less.

第2図は、この発明の一実施例によるジョセフソン素子
を示す斜視図である。第2図において、1はNbからな
る超電導金属線、2はCuNiからなる高抵抗バリア層
を示している。超電導金属線1の端面には、それぞれオ
ーミック接続となるように超音波圧着により金のスポッ
ト溶接3がなされており、該スポット溶接3にはそれぞ
れ電流端子4および電圧端子6が取付けられている。ジ
ョセフソン素子全体は、たとえば樹脂からなる埋込材5
に埋込まれている。
FIG. 2 is a perspective view showing a Josephson element according to an embodiment of the present invention. In FIG. 2, numeral 1 indicates a superconducting metal wire made of Nb, and numeral 2 indicates a high-resistance barrier layer made of CuNi. On the end faces of the superconducting metal wires 1, gold spot welds 3 are made by ultrasonic crimping to form ohmic connections, and a current terminal 4 and a voltage terminal 6 are attached to the spot welds 3, respectively. The entire Josephson element is made of an embedding material 5 made of resin, for example.
embedded in.

第2図に示すジョセフソン素子は以下のようにして製造
される。1対の超電導金属線のまわりに高抵抗線を配置
し、これにより1対の超電導金属線の間に高抵抗線が位
置rるようにして束ね、これを伸線加工し、次いで幅方
向に切断して輪切り状に取出し、これを埋込材に埋込み
固定する。次に埋込材の両面を研磨して、ジョセフソン
素子の両端面を出し、さらにエツチング処理する。これ
に、上述のようにしてスポット溶接し電流端子および電
圧端子を取付ける。
The Josephson device shown in FIG. 2 is manufactured as follows. A high-resistance wire is arranged around a pair of superconducting metal wires, and the high-resistance wire is bundled so that the high-resistance wire is positioned between the pair of superconducting metal wires. Cut it and take it out into slices, and embed and fix it in the embedding material. Next, both sides of the embedding material are polished to expose both end faces of the Josephson element, and then etched. A current terminal and a voltage terminal are attached to this by spot welding as described above.

第2図のジョセフソン素子の例において、超電導金属線
間の距離αは、0.1μmで、超電導金屑線の径dは0
. 5μmである。なお、ジョセフソン素子の長さhは
1mmである。
In the example of the Josephson device shown in Figure 2, the distance α between the superconducting metal wires is 0.1 μm, and the diameter d of the superconducting gold wire is 0.
.. It is 5 μm. Note that the length h of the Josephson element is 1 mm.

第2図のジョセフソン素子を固定治具に取付け、液体ヘ
リウム容器中に浸漬して冷却した。このジョセフソン素
子に電流を流し、4端子法によりジョセフソン素子の電
流−電圧特性を測定した。得られた電流−電圧特性を第
3図に示す。
The Josephson element shown in FIG. 2 was mounted on a fixture and cooled by immersing it in a liquid helium container. A current was passed through this Josephson device, and the current-voltage characteristics of the Josephson device were measured using a four-terminal method. The obtained current-voltage characteristics are shown in FIG.

第3図に示されるように、電圧0で電流値I。As shown in FIG. 3, the current value is I when the voltage is 0.

まで流れ、電流値がIoを越えると、超電導エネルギギ
ャップに相当するBの飛びがあり、常電導の抵抗状態に
遷移した。この抵抗状態から、電流を低下させてゆくと
、Cの経路を通って電圧0の状態に戻った。このような
電流−電圧特性から、この発明の製造方法によって製造
された素子が、ジョセフソン効果を有することが確認さ
れた。
When the current value exceeded Io, there was a jump in B corresponding to the superconducting energy gap, and the state transitioned to a normal conductive resistance state. When the current was lowered from this resistance state, it returned to the state of zero voltage through path C. From such current-voltage characteristics, it was confirmed that the device manufactured by the manufacturing method of the present invention has the Josephson effect.

実施例では、超電導金属線の材質としてNbを例示した
が、この発明においては、これに限定されることなく、
従来より超電導体として知られている金属や合金を用い
ることかできる。
In the examples, Nb was illustrated as the material of the superconducting metal wire, but in this invention, without being limited to this,
Metals and alloys conventionally known as superconductors can be used.

[発明の効果] 以上説明したように、この発明の製造方法によれば、ジ
ョセフソン素子の高抵抗バリア層の厚みを精度良く一定
に保つことができる。また、この発明の製造方法は、伸
線加工した線状材を幅方向に切断して、多数の輪切り状
のジョセフソン素子を取出すものであるため、1つの製
造工程で多量のジョセフソン素子を製造することができ
、したがって安代に製造することができる。
[Effects of the Invention] As explained above, according to the manufacturing method of the present invention, the thickness of the high-resistance barrier layer of the Josephson element can be kept constant with high precision. In addition, in the manufacturing method of the present invention, a drawn wire material is cut in the width direction to take out a large number of sliced Josephson elements, so a large number of Josephson elements can be produced in one manufacturing process. It can be manufactured and therefore cheaply manufactured.

この発明の製造方法により製造されたジョセフソン素子
の超電導層および高抵抗バリア層は、互いに強固に一体
化しているため、極低温と常温との間のヒートサイクル
によっても剥離や劣化を生じることはない。また、この
発明の製造方法によるジョセフソン素子において、超電
導層はその端面だけが大気中に露出しているため、従来
の薄膜型のジョセフソン素子に比べ超電導層が大気によ
り酸化されたり腐食されたりすることが少ない。
The superconducting layer and high-resistance barrier layer of the Josephson device manufactured by the manufacturing method of this invention are strongly integrated with each other, so they will not peel off or deteriorate even during heat cycles between cryogenic temperatures and room temperature. do not have. In addition, in the Josephson device manufactured by the manufacturing method of the present invention, only the end faces of the superconducting layer are exposed to the atmosphere, so the superconducting layer is less likely to be oxidized or corroded by the atmosphere than in conventional thin-film Josephson devices. There's not much to do.

さらに、実施例において示したように、高抵抗バリア層
としてCuNiのような常電導金属を用いる場合には、
過大な電流が流れて高抵抗バリア層で発熱しても、その
まわりが熱伝導の良い常電導金属で覆われているため、
高抵抗バリア層が焼損することはない。
Furthermore, as shown in the examples, when a normal conductive metal such as CuNi is used as the high resistance barrier layer,
Even if excessive current flows and heat is generated in the high-resistance barrier layer, the barrier layer is surrounded by a normal conductive metal with good thermal conductivity, so
The high resistance barrier layer will not burn out.

上述のようにこの発明の製造方法によるジョセフソン素
子は、優れた特性を有するため、従来からのジョセフソ
ン素子の用途である5QUIDを用いた最高感度磁束7
!p1定計や磁束勾配!1す宇高感度電圧計などに応用
することができる。これらは、磁気探査、医療用心磁針
、熱雑音温度計(μにオーダ)等多方面に利用されてい
る。また、ジョセフソン素子単体としては、高感度光検
出器として用いることができ、ミリ波から赤外線までの
範囲で有効に用いることができる。さらに、検出のみだ
けではなく、パラメトリック増幅器やミクサーなどに応
用でき、これによって光通信、赤外線天文学等にも利用
が可能である。また、コンピュータ素子としても従来の
ジョセフソン素子と同様に利用することができる。
As mentioned above, the Josephson element manufactured by the manufacturing method of the present invention has excellent characteristics, so it has the highest sensitivity magnetic flux 7 using 5QUID, which is the conventional application of Josephson element.
! p1 constant meter and magnetic flux gradient! 1. It can be applied to high-sensitivity voltmeters, etc. These are used in a wide variety of fields, including magnetic exploration, medical magnetic needles, and thermal noise thermometers (on the order of μ). Furthermore, the Josephson element alone can be used as a highly sensitive photodetector, and can be effectively used in the range from millimeter waves to infrared rays. Furthermore, it can be applied not only to detection, but also to parametric amplifiers, mixers, etc., and can also be used for optical communications, infrared astronomy, etc. Furthermore, it can be used as a computer element in the same way as a conventional Josephson element.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、この発明の製造方法に従って伸線加工された
後の状態を示す断面図である。第2図は、この発明の一
実施例によるジョセフソン素子を示す斜視図である。第
3図は、第2図に示すジョセフソン素子の電流−電圧特
性を示す図である。 図において、1は超電導金属線、2は高抵抗バリア層、
3はスポット溶接、4は電流端子、5は埋込材、6は電
圧端子を示す。 第7図 第3図 第2図
FIG. 1 is a sectional view showing the state after wire drawing according to the manufacturing method of the present invention. FIG. 2 is a perspective view showing a Josephson element according to an embodiment of the present invention. FIG. 3 is a diagram showing the current-voltage characteristics of the Josephson element shown in FIG. 2. In the figure, 1 is a superconducting metal wire, 2 is a high-resistance barrier layer,
3 is a spot weld, 4 is a current terminal, 5 is an embedded material, and 6 is a voltage terminal. Figure 7 Figure 3 Figure 2

Claims (2)

【特許請求の範囲】[Claims] (1)1対の超伝導金属線の間に高抵抗線が位置するよ
うに束ね、該高抵抗線により形成される高抵抗バリア層
がトンネル効果を示す厚みとなるまで複合伸線加工し、
次いで幅方向に切断して輪切り状に取出し、ジョセフソ
ン素子とすることを特徴とする、ジョセフソン素子の製
造方法。
(1) A pair of superconducting metal wires is bundled so that a high resistance wire is located between them, and a composite wire drawing process is performed until a high resistance barrier layer formed by the high resistance wire has a thickness that exhibits a tunnel effect,
A method for manufacturing a Josephson element, which comprises: then cutting in the width direction and taking out slices to obtain a Josephson element.
(2)前記高抵抗線が常電導金属からなることを特徴と
する、特許請求の範囲第1項記載のジョセフソン素子の
製造方法。
(2) The method for manufacturing a Josephson element according to claim 1, wherein the high resistance wire is made of a normally conducting metal.
JP61202810A 1986-08-28 1986-08-28 Manufacture of josephson device Pending JPS6356969A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61202810A JPS6356969A (en) 1986-08-28 1986-08-28 Manufacture of josephson device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61202810A JPS6356969A (en) 1986-08-28 1986-08-28 Manufacture of josephson device

Publications (1)

Publication Number Publication Date
JPS6356969A true JPS6356969A (en) 1988-03-11

Family

ID=16463577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61202810A Pending JPS6356969A (en) 1986-08-28 1986-08-28 Manufacture of josephson device

Country Status (1)

Country Link
JP (1) JPS6356969A (en)

Similar Documents

Publication Publication Date Title
US5474833A (en) Magnetoresistive transducer and method of manufacture
JP4917205B2 (en) Electrically stabilized thin film high temperature superconductor and method of manufacturing the same
JPH02253517A (en) Superconducting wire
EP0752161B1 (en) Superconductive junction
EP0538077A2 (en) Super conducting quantum interference device
JPS6356969A (en) Manufacture of josephson device
US6186661B1 (en) Schmidt-Boelter gage
JP5537312B2 (en) Magnetic sensor for underground resource exploration
JPS6356970A (en) Manufacture of josephson device
JPH05267889A (en) Magnetic shield for sensor
EP0381541B1 (en) Superconductive magnetoresistive device
Rissman et al. Preparation and lifetest of niobium Josephson junction tunnel diodes and arrays
KR20040073073A (en) Method for fabrication of superconducting quantum interference devices using high-tc intrinsic josephson junctions
JP2801462B2 (en) Superconducting magnetic sensor and method of manufacturing the same
JP3824075B2 (en) Radiation detector
JPH1082807A (en) Superconductor and measuring method for its alternating current loss
JPH08186300A (en) Pickup coil for oxide squid
US2426494A (en) Heat detection device
JP3084043B2 (en) Elements using superconductivity
JP4113664B2 (en) Sample assembly for light irradiation type thermoelectric measuring device
JPS6369275A (en) Manufacture of josephson device
JP2752674B2 (en) Sensor
JPS6399583A (en) Manufacture of josephson element
JPH01197677A (en) Superconducting magnetometer
JPS62267629A (en) Thermometer for cryogenic temperature