JPS6356940B2 - - Google Patents

Info

Publication number
JPS6356940B2
JPS6356940B2 JP55012201A JP1220180A JPS6356940B2 JP S6356940 B2 JPS6356940 B2 JP S6356940B2 JP 55012201 A JP55012201 A JP 55012201A JP 1220180 A JP1220180 A JP 1220180A JP S6356940 B2 JPS6356940 B2 JP S6356940B2
Authority
JP
Japan
Prior art keywords
resistance
gas
carbon monoxide
oxide
change
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55012201A
Other languages
Japanese (ja)
Other versions
JPS56110042A (en
Inventor
Nobuaki Shohata
Masanori Suzuki
Toshisuke Hishii
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP1220180A priority Critical patent/JPS56110042A/en
Publication of JPS56110042A publication Critical patent/JPS56110042A/en
Publication of JPS6356940B2 publication Critical patent/JPS6356940B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は一酸化炭素ガスに対して大きな抵抗変
化を示し、かつ、抵抗値の経時変化の小さいガス
検知素子の製造方法に関する。 現在までガス検知素子として、各種の材料が検
討されているが、金属酸化物半導体を用いたガス
検知素子は近年各方面から注目されつつある。そ
の代表的なものに酸化亜鉛(ZnO)、酸化第2錫
(SnO2)、スピネル型フエライト酸化物、δ一酸
化鉄、酸化チタン(TiO2)などを用いた素子が
ある。これらの材料を用いるガス検知素子はいず
れもガス分子の素子表面への吸脱着の際に生ずる
酸化物半導体の抵抗値変化を利用するものであ
る。 それらの構造には種々のものがあるが大別する
と、焼結型、薄膜型および厚膜型がある。焼結型
の素子は、金属酸化物半導体を適当な溶媒と共に
ペースト状にし、コイル状に巻いたヒーター用細
線にビード状に付着させ、1対の分離した電極線
を埋込んだ後焼結して得るものである。この方法
では付着させた金属酸化物半導体のビードの大き
さ、電極間隔等を精度良く制御することが困難で
あるため、素子抵抗値およびガスに対する抵抗変
化率のばらつきが大きく、素子の再現性にも乏し
く、また特性の経時変化が大きい等の欠点があつ
た。 薄膜型の素子は金属酸化物半導体をアルミナな
どの適当な基板上にスパツタあるいは蒸着によつ
て、薄膜を作製し、抵抗測定用電極およびヒータ
ーを付与した構造である。この素子はスパツタな
いしは蒸着時に生ずる金属酸化物半導体の組成ず
れ、膜厚のばらつきなどの薄膜の均一性や、特性
の再現性に乏しく、焼結型素子と同様の難点を持
ち、製造コストも高い欠点があつた。 一方厚膜型素子は、第1図に示す様にガス検出
用半導体3を、あらかじめ電極2および加熱用ヒ
ーター4を付与した基板1上に印刷した構造であ
る。従つて、製造が容易であり、特性値も制御し
やすく、コストも低くできる特長がある。 しかしながら従来の金属酸化物半導体を用いる
素子は種々のガスに対して、同じ様な抵抗変化を
示すものしかなく、ガスに対する選択性に乏しい
欠点があつた。また一酸化炭素ガスに対しては検
知感度が劣り1000ppm以下の濃度では殆んど感度
が得られなかつた。通常一酸化炭素濃度が
100ppm程度あると、数時間、200ppm程度では2
〜3時間で頭痛がするなどの異常が生ずる。
1000ppm程度では、40〜50分程度で頭痛が生じ1
時間程度では生命に危険が発生する等重大な事態
になると云われている。従つて、1000ppm以下の
一酸化炭素濃度でも有効なガス検知素子が望まれ
ている。 またガス検知素子の信頼性も重要な因子の一つ
である。即ちガス検知素子の抵抗値の経時変化お
よびガス感度の経時変化を小さくすることも実用
上重要である。通常ガス検知素子は、素子の温度
を200〜400℃に上げ直流ないしは交流電圧を印加
した状態で使用される。この様にして使用する際
抵抗の初期安定化のために長時間を要し、はなは
だしい場合には、数日を必要とすることがあり、
また使用状態で放置しておくと、その抵抗値は次
第に変化し、また素子のガス感度も変化してしま
うという問題点を持つていた。 本発明の目的は前記従来の欠点を解決せしめた
一酸化炭素ガス検知素子の製造方法を提供するこ
とにある。 本発明によれば、酸化アルミニウム(Al2O3
0.05モル%〜2.0モル%を含有する酸化第2錫
(SnO2)と、酸化ジルコニウム(ZrO2)の溶解
量が0.1〜5.0wt%である結晶化ホウケイ酸ガラス
が重量比でそれぞれ90wt%〜40wt%および10wt
%〜60wt%とし、前記ホウケイ酸ガラスの結晶
化温度800℃〜950℃で焼成することを特徴とする
一酸化炭素ガス検知素子の製造方法が得られる。 前記本発明によれば一酸化炭素ガスに対して、
優れた高感度を有し、かつ経時変化が極めて小さ
く安定した特性を有した一酸化炭素ガス検知素子
を実現することができる。 以下一実施例に基いて本発明を詳細に説明す
る。 実施例 原料として、純度99.8%平均粒度2μの酸化第2
錫(SnO2)粉末に、酸化アルミニウム(Al2O3
を0.05モル%〜2.0モル%の比率に秤量し、ボー
ルミルを用い純水で46時間混合後ろ過乾燥し、
1200℃で2時間仮焼した。この仮焼粉末に第1表
に示した結晶化ホウケイ酸ガラスフリツトを
10wt%〜60wt%を加えた混合原料と、エチルセ
ルロース1に対して、テルピオネールを10の重量
比率にした有機ビヒクルをそれぞれ70対30の重量
比率で混練してペーストとした。 このペーストをスクリーン印刷法によつて、第
1図に示した様な、あらかじめヒーター3および
白金30パラジウム70の重量比率の合金電極ペース
トを印刷焼成した抵抗検出用電極2をもうけたア
ルミナ基板上1上に印刷し、ガラスフリツトの結
晶化温度800℃〜950℃で30分間焼成し、ガス検知
素子とした。 第2図は、この様にして得たガス検知素子のガ
ス中の抵抗RGと空気中の抵抗ROの比RG/ROをガ
ス濃度に対して示した。 図から明らかなように本発明による素子は一酸
化炭素ガス(CO)に対して、特に抵抗変化が大
きく優れた選択性を示す。 第3図は、焼成温度とRG/ROの関係を示して
いる。これから焼成温度が850℃〜950℃で特に
RG/ROが大きく、性能が優れている。第3図中
の破線は、白金およびパラジウムを抵抗検出用電
極として用いた場合の例で抵抗変化は小さく一酸
化炭素ガス検知素子として有効でない事を意味す
る。 即ち抵抗検出用電極としての材料を選択するこ
とが望ましい。 本発明になる素子がこの様に優れた性能を有す
る原因は、以下の様に推定される。即ち、結晶化
ホウケイ酸ガラスの結晶化温度範囲で焼成する際
に酸化第2錫結晶粒子同志を固着するガラス成分
がこの温度範囲で結晶化し、体積収縮を起し細孔
が発生し、酸化第2錫粒子と外気との接解面積が
増大することによる。 COガスに対する特に大きい抵抗変化はガラス
中の酸化ジルコニウム(ZrO2)の量にも酸化第
2錫(SnO2)中に固溶させる酸化アルミニウム
(Al2O3)の量にも強く依存する。第4図は第1
表に示したZrO2の重量比率を変えたガラスフリ
ツトを用いて作製した素子についてのRG/RO
結果を示した。第4図から明らかなようにCOに
対するRG/ROの値は酸化アルミニウムの添加量
およびガラス中の酸化ジルコニウムの量に強く依
存しており、一酸化炭素ガスに対する選択性を大
きくできることが明らかである。すなわち、本発
明ではSnO2にホウケイ酸ガラスを含有させてな
る焼結体を使用し、SnO2にAl2O3を添加し、また
同時にホウケイ酸ガラスにZrO2を添加して、こ
れらの2種類の添加物の量を所定量とすることに
よりRG/ROの値を大きくすることができる。
The present invention relates to a method for manufacturing a gas sensing element that exhibits a large resistance change with respect to carbon monoxide gas and a small change in resistance value over time. Although various materials have been considered for gas detection elements to date, gas detection elements using metal oxide semiconductors have been attracting attention from various quarters in recent years. Representative examples include elements using zinc oxide (ZnO), tin oxide (SnO 2 ), spinel-type ferrite oxide, δ iron monoxide, titanium oxide (TiO 2 ), and the like. All gas sensing elements using these materials utilize changes in the resistance value of an oxide semiconductor that occurs when gas molecules are adsorbed and desorbed onto the element surface. There are various types of these structures, but they can be broadly classified into sintered types, thin film types, and thick film types. Sintered type elements are made by making a metal oxide semiconductor into a paste with an appropriate solvent, attaching it in a bead shape to a thin coiled heater wire, embedding a pair of separate electrode wires, and then sintering it. It's something you can get. With this method, it is difficult to precisely control the size of the deposited metal oxide semiconductor bead, the electrode spacing, etc., so the element resistance value and the rate of change in resistance against gas vary widely, which affects the reproducibility of the element. There were also drawbacks such as poor performance and large changes in characteristics over time. A thin film type element has a structure in which a thin film of a metal oxide semiconductor is formed on a suitable substrate such as alumina by sputtering or vapor deposition, and electrodes for resistance measurement and a heater are provided on the thin film. This device has the same drawbacks as sintered devices, such as compositional deviation of the metal oxide semiconductor that occurs during sputtering or vapor deposition, poor uniformity of thin films such as variations in film thickness, and poor reproducibility of characteristics, and high manufacturing costs. There were flaws. On the other hand, the thick film type element has a structure in which, as shown in FIG. 1, a gas detection semiconductor 3 is printed on a substrate 1 on which an electrode 2 and a heating heater 4 have been provided in advance. Therefore, it has the advantage of being easy to manufacture, easy to control characteristic values, and low cost. However, conventional elements using metal oxide semiconductors have the drawback of exhibiting similar resistance changes with respect to various gases, and lack of selectivity with respect to gases. Furthermore, the detection sensitivity for carbon monoxide gas was poor, and almost no sensitivity was obtained at concentrations below 1000 ppm. Usually carbon monoxide concentration
If it is around 100ppm, it will last for several hours, and if it is around 200ppm, it will last for 2 hours.
After ~3 hours, abnormalities such as a headache occur.
At around 1000ppm, a headache occurs in about 40 to 50 minutes.1
It is said that if the damage lasts only a short period of time, it will be a serious situation that could be life-threatening. Therefore, a gas detection element that is effective even at carbon monoxide concentrations of 1000 ppm or less is desired. The reliability of the gas detection element is also an important factor. That is, it is also practically important to reduce changes in the resistance value of the gas detection element over time and changes in gas sensitivity over time. Typically, gas detection elements are used with the temperature of the element raised to 200 to 400°C and a DC or AC voltage applied. When used in this way, it takes a long time for the initial stabilization of the resistance, and in extreme cases it may take several days.
Furthermore, if the device is left in use, its resistance value will gradually change, and the gas sensitivity of the device will also change. SUMMARY OF THE INVENTION An object of the present invention is to provide a method for manufacturing a carbon monoxide gas detection element that overcomes the above-mentioned conventional drawbacks. According to the invention, aluminum oxide (Al 2 O 3 )
Crystallized borosilicate glass containing 0.05 mol% to 2.0 mol% of stannic oxide (SnO 2 ) and zirconium oxide (ZrO 2 ) in a dissolved amount of 0.1 to 5.0 wt%, each in a weight ratio of 90 wt% to 90 wt%. 40wt% and 10wt
% to 60 wt%, and firing at a crystallization temperature of the borosilicate glass of 800° C. to 950° C. is obtained. According to the present invention, for carbon monoxide gas,
It is possible to realize a carbon monoxide gas detection element that has excellent high sensitivity and stable characteristics with extremely small changes over time. The present invention will be described in detail below based on one example. Example As a raw material, oxidized No. 2 with a purity of 99.8% and an average particle size of 2μ
Aluminum oxide (Al 2 O 3 ) to tin (SnO 2 ) powder
Weighed to a ratio of 0.05 mol% to 2.0 mol%, mixed with pure water using a ball mill for 46 hours, and then over-dried.
It was calcined at 1200°C for 2 hours. Add the crystallized borosilicate glass frit shown in Table 1 to this calcined powder.
A mixed raw material containing 10 wt% to 60 wt% and an organic vehicle containing 10 parts by weight of terpionelle to 1 part by weight of ethyl cellulose were kneaded at a weight ratio of 70:30 to form a paste. This paste was applied by screen printing to an alumina substrate 1 on which a heater 3 and a resistance detection electrode 2, which had been printed and fired with an alloy electrode paste having a weight ratio of 30 platinum and 70 palladium, as shown in Figure 1, were formed. It was printed on top and fired for 30 minutes at the glass frit crystallization temperature of 800°C to 950°C to produce a gas sensing element. FIG. 2 shows the ratio R G /R O of the resistance R G in the gas to the resistance R O in the air of the gas detection element obtained in this way, with respect to the gas concentration. As is clear from the figure, the element according to the present invention exhibits excellent selectivity with respect to carbon monoxide gas (CO), especially with a large resistance change. FIG. 3 shows the relationship between firing temperature and R G /R O. From now on, especially when the firing temperature is 850℃~950℃
R G /R O is large and performance is excellent. The broken line in FIG. 3 is an example in which platinum and palladium are used as a resistance detection electrode, which means that the resistance change is small and the electrode is not effective as a carbon monoxide gas detection element. That is, it is desirable to select a material for the resistance detection electrode. The reason why the device of the present invention has such excellent performance is estimated as follows. That is, when the crystallized borosilicate glass is fired in the crystallization temperature range, the glass component that fixes the stannic oxide crystal particles to each other crystallizes in this temperature range, causing volumetric contraction and the generation of pores. This is due to an increase in the contact area between the ditin particles and the outside air. A particularly large resistance change with respect to CO gas strongly depends on the amount of zirconium oxide (ZrO 2 ) in the glass and the amount of aluminum oxide (Al 2 O 3 ) dissolved in the stannic oxide (SnO 2 ). Figure 4 is the first
The results of R G /R O for devices fabricated using glass frits with different weight ratios of ZrO 2 shown in the table are shown. As is clear from Figure 4, the value of R G /R O for CO strongly depends on the amount of aluminum oxide added and the amount of zirconium oxide in the glass, and it is clear that the selectivity for carbon monoxide gas can be increased. It is. That is, in the present invention, a sintered body made of SnO 2 containing borosilicate glass is used, Al 2 O 3 is added to SnO 2 , and ZrO 2 is added to borosilicate glass at the same time. By adjusting the amount of each type of additive to a predetermined amount, the value of R G /R O can be increased.

【表】 次に本発明で得られた素子の抵抗ROおよび空
気に対する一酸化炭素濃度1000ppmにおける抵抗
比RG/ROの経時変化を第2表に示す。第2表の
結果は素子に20V.D.C.の印加電圧下、素子温度
を300℃に保つて、CO1000ppm中で500時間放置
後空気中に2時間放置し、改めて測定した。第2
表から、結晶化ガラスを使
[Table] Next, Table 2 shows the resistance R O of the element obtained according to the present invention and the change over time in the resistance ratio R G /R O at a carbon monoxide concentration of 1000 ppm with respect to air. The results shown in Table 2 were measured again under an applied voltage of 20 V.DC to the device, with the device temperature kept at 300° C., and after being left in CO 1000 ppm for 500 hours, it was left in air for 2 hours. Second
From the table, crystallized glass is used.

【表】 用しない従来の素子は一酸化炭素ガス濃度
1000ppm中に長時間放置すると、抵抗が減少した
ままである。また一酸化炭素ガスに対する抵抗変
化も小さくなつてしまう。 一方本発明の素子は特性変化が小さく安定であ
る。 以上述べた様に本発明になる一酸化炭素ガス検
知素子はCOに対して優れた選択性を示し特性の
経時変化が小さく、極めて安定である。
[Table] Conventional elements that are not used have carbon monoxide gas concentration
If left in 1000ppm for a long time, the resistance remains reduced. Furthermore, the change in resistance against carbon monoxide gas also becomes small. On the other hand, the element of the present invention is stable with small changes in characteristics. As described above, the carbon monoxide gas detection element according to the present invention exhibits excellent selectivity to CO, exhibits little change in characteristics over time, and is extremely stable.

【図面の簡単な説明】[Brief explanation of drawings]

第1図厚膜型素子の構造を示す。 a…断面図、b…表面図、c…裏面図、1…基
板、2…抵抗検出電極、3…半導体部、4…ヒー
ター。 第2図…空気中のガス濃度に対する抵抗変化を
示す図、図中破線は抵抗検出用電極として、パラ
ジウムおよび白金を用いた場合の例を示す。 第3図…素子焼成温度と抵抗変化率の関係を示
す図である。図中の破線は抵抗検出用電極にパラ
ジウムを用いた例である。 第4図…ガラスフリツト中の酸化ジルコニウム
の量と、抵抗変化の関係を酸化アルミニウムの含
有量との関係において示す図である。
Figure 1 shows the structure of a thick film type device. a...Cross-sectional view, b...Surface view, c...Back view, 1...Substrate, 2...Resistance detection electrode, 3...Semiconductor part, 4...Heater. FIG. 2: A diagram showing resistance change with respect to gas concentration in air. The broken line in the figure shows an example in which palladium and platinum are used as resistance detection electrodes. FIG. 3 is a diagram showing the relationship between element firing temperature and resistance change rate. The broken line in the figure is an example in which palladium is used for the resistance detection electrode. FIG. 4 is a diagram showing the relationship between the amount of zirconium oxide in the glass frit and the change in resistance in relation to the content of aluminum oxide.

Claims (1)

【特許請求の範囲】[Claims] 1 酸化アルミニウム(Al2O3)0.05モル%〜2.0
モル%を含有する酸化第2錫(SnO2)と酸化ジ
ルコニウム(ZrO2)の溶解量が0.1〜5.0wt%であ
る結晶化ホウケイ酸ガラスが重量比でそれぞれ、
90wt%〜40wt%および10wt%〜60wt%とし、前
記ホウケイ酸ガラスの結晶化温度800℃〜950℃で
焼成することを特徴とする一酸化炭素ガス検知素
子の製造方法。
1 Aluminum oxide (Al 2 O 3 ) 0.05 mol% ~ 2.0
Crystallized borosilicate glass containing mol % of stannic oxide (SnO 2 ) and zirconium oxide (ZrO 2 ) in a dissolved amount of 0.1 to 5.0 wt %, respectively, by weight.
90 wt% to 40 wt% and 10 wt% to 60 wt%, and firing at a crystallization temperature of the borosilicate glass of 800°C to 950°C.
JP1220180A 1980-02-04 1980-02-04 Co gas detecting element and manufacture thereof Granted JPS56110042A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1220180A JPS56110042A (en) 1980-02-04 1980-02-04 Co gas detecting element and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1220180A JPS56110042A (en) 1980-02-04 1980-02-04 Co gas detecting element and manufacture thereof

Publications (2)

Publication Number Publication Date
JPS56110042A JPS56110042A (en) 1981-09-01
JPS6356940B2 true JPS6356940B2 (en) 1988-11-09

Family

ID=11798784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1220180A Granted JPS56110042A (en) 1980-02-04 1980-02-04 Co gas detecting element and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS56110042A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0557391A (en) * 1991-08-30 1993-03-09 Kubota Corp Forge-forming apparatus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56109866A (en) * 1980-01-29 1981-08-31 Nippon Electric Co Carbon monoxide gas sensor element and its manufacture

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56109866A (en) * 1980-01-29 1981-08-31 Nippon Electric Co Carbon monoxide gas sensor element and its manufacture

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0557391A (en) * 1991-08-30 1993-03-09 Kubota Corp Forge-forming apparatus

Also Published As

Publication number Publication date
JPS56110042A (en) 1981-09-01

Similar Documents

Publication Publication Date Title
US4569826A (en) Gas detecting element
JPS6356940B2 (en)
JPS6250432B2 (en)
JPS5999343A (en) Gas detecting element
JPS59184847A (en) Composition for gas sensor
JPS6214921B2 (en)
JPS6128936B2 (en)
JPH0464162B2 (en)
KR840000260B1 (en) Temperature-responsive element
JPS5951336A (en) Alcohol gas detecting element
JPH0464161B2 (en)
JPH071723B2 (en) Thin film resistor
JPH0376562B2 (en)
JPS6222417B2 (en)
JPH04359141A (en) Humidity-sensitive element
JPS6411138B2 (en)
JPH05302908A (en) Moisture sensitive element
JPS6110893A (en) Heat generator
JPH052098B2 (en)
JPS6160386B2 (en)
JPS61147138A (en) Moisture sensitive material
JPH02126603A (en) Semiconductor porcelain electronic part and manufacture thereof
JPH052099B2 (en)
JPH03115965A (en) Thin film gas sensor and production therefor
JPH0552793A (en) Humidity sensitive element