JPS6356655A - Pattern forming method - Google Patents

Pattern forming method

Info

Publication number
JPS6356655A
JPS6356655A JP61199116A JP19911686A JPS6356655A JP S6356655 A JPS6356655 A JP S6356655A JP 61199116 A JP61199116 A JP 61199116A JP 19911686 A JP19911686 A JP 19911686A JP S6356655 A JPS6356655 A JP S6356655A
Authority
JP
Japan
Prior art keywords
film
pattern
resist
etching
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61199116A
Other languages
Japanese (ja)
Other versions
JPS6348330B2 (en
Inventor
Shuzo Oshio
大塩 修三
Koichi Kobayashi
孝一 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP61199116A priority Critical patent/JPS6356655A/en
Publication of JPS6356655A publication Critical patent/JPS6356655A/en
Publication of JPS6348330B2 publication Critical patent/JPS6348330B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/095Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers having more than one photosensitive layer

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE:To prevent a charge-up phenomenon during exposure and to improve the etching resistance of a pattern by irradiating a negative resist made of an arom. vinyl compd. polymer with far ultraviolet rays, charged corpuscular beams or X-rays to form a lower layer. CONSTITUTION:A negative resist made of an arom. vinyl compd. polymer such as chloromethylated polystyrene is applied to a substrate and uniformly irradiated with far ultraviolet rays, charged corpuscular beams or X-rays to form a lower layer. One or two upper layers are then laminated on the lower layer and exposed with charged corpuscular beams to form a pattern. When the upper layer is single, it is preferably formed with a polymer contg. Si. Since the lower layer has superior etching resistance, the thickness can be reduced and a pattern shift due to a charge-up phenomenon during the exposure of the upper layer is prevented.

Description

【発明の詳細な説明】 〔概 要〕 芳香族ビニル化合物重合体を素材とするネガレジストを
基板に塗布し、遠紫外線、X線、荷電粒子線等で露光す
ることにより多層レジストプロセスの下層膜として使用
するパターン形成方法。
[Detailed Description of the Invention] [Summary] A negative resist made of an aromatic vinyl compound polymer is applied to a substrate and exposed to deep ultraviolet rays, X-rays, charged particle beams, etc. to create the lower layer film of a multilayer resist process. A pattern forming method used as

〔産業上の利用分野〕[Industrial application field]

本発明は、パターン形成方法に関するものであり、さら
に詳しく述べるならば、近年益々微細化しつつあるレジ
ストのパターンを多層プロセスで形成する方法に関する
ものである。
The present invention relates to a pattern forming method, and more specifically, to a method of forming resist patterns, which have become increasingly finer in recent years, by a multilayer process.

〔従来の技術〕[Conventional technology]

レジストのパターン形成方法として、従来レジストを単
層で用い、これをパターンニングして得たパターンをエ
ツチング等のマスクとする方法が一般的であった。しか
しながら、半導体集積回路のデザインルール微細化、被
エツチング材料の難エツチング材料化が進んだために、
単層レジストによるパターン形成は限界に来ている。
Conventionally, as a method for forming resist patterns, it has been common to use a single layer of resist and use the resulting pattern as a mask for etching or the like. However, as design rules for semiconductor integrated circuits become finer and etching materials become more difficult to etch,
Pattern formation using a single layer resist has reached its limit.

その対策として、パイレベル、トリレベル等の多層レジ
ストプロセスによるパターン形成が進められ、実用化さ
れつつある。この多層レジストプロセスによるパターン
形成の基本的考え方は、下層レジスト膜を十分にエツチ
ングに耐えうる膜厚とし、上層レジスト膜あるいは中間
膜をエツチングできる膜厚とすることによって、レジス
トに必要とされる機能を、下層レジスト膜とそれ以外の
層とに機能分離し、以て高解像度およびすぐれた耐エツ
チング性を有するレジストパターンを形成するところに
ある。
As a countermeasure to this problem, pattern formation using multilayer resist processes such as pie level and tri level is being advanced and put into practical use. The basic idea of pattern formation using this multilayer resist process is to make the lower resist film thick enough to withstand etching, and the upper resist film or intermediate film to be thick enough to allow etching, thereby achieving the required functionality of the resist. The purpose of this method is to functionally separate the lower resist film and other layers, thereby forming a resist pattern with high resolution and excellent etching resistance.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明者等は多層レジストプロセスを電子ビームにより
露光することを試み、次のような多層レジストについて
実験を行なった。
The present inventors attempted a multilayer resist process using electron beam exposure, and conducted experiments on the following multilayer resist.

(1)上層レジスト膜・・・PMSS・・・・・・・・
・0.2μm下層レジスト膜・・・0FPR−800・
・・2.0μmPMSSはシリル化ポリメチルセスキオ
キサンを指し、Otのプラズマエツチングに対する耐性
が高い物質である。0FPR−800は東京応化製ノボ
ラック系レジストであり、A1のエツチングに多用され
ている。
(1) Upper resist film...PMSS...
・0.2μm lower resist film...0FPR-800・
...2.0 μm PMSS refers to silylated polymethylsesquioxane, which is a material with high resistance to Ot plasma etching. 0FPR-800 is a novolak resist manufactured by Tokyo Ohka, and is often used for A1 etching.

(2)上層レジスト膜・・・PMSS・・・・・・・・
・0.2μm下層レジスト膜・・・CMR−100・・
・2.0μmCMR−100は富士通研究所製PMM^
系レジストである。
(2) Upper resist film...PMSS...
・0.2μm lower resist film...CMR-100...
・2.0 μm CMR-100 is PMM made by Fujitsu Laboratories.
It is a type resist.

(3)上層レジスト膜・・・CMS・・・・・・・・・
0.5μm中間膜・・・・・・・・・・・・・・・5i
Oz・・・・・・・・・0.2μm下層レジスト膜・・
・0FPR−800・・・2.0μmCMSはクロルメ
チル化ポリスチレンである。
(3) Upper resist film...CMS...
0.5μm interlayer film・・・・・・・・・・・・5i
Oz......0.2μm lower resist film...
-0FPR-800...2.0μmCMS is chloromethylated polystyrene.

(4)上層レジスト膜・・・CMR−100・・・0.
5μm中間膜・・・・・・・・・・・・・・・5i(h
・・・・・・・・・0.2μm下層レジスト膜・・・0
FPR−800・・・2.0μmこれらの多層レジスト
について実験の結果、0FPR−800やCMR−10
0等の有機系レジストを使用し、また電子ビーム露光に
より上層レジスト膜および中間膜の露光を行なったとこ
ろ、チャージアップ現象が生じた。即ち、電子ビームを
レジスト膜に走査して露光する際に、以前の走査により
レジスト膜に照射された電子がレジスト膜に残存し、走
査中の電子ビームに斥力を与える結果、電子ビームが曲
げられ、そして位置合わせマークの検出不良やパターン
の位置ずれが生じた。なお上層レジスト膜および中間膜
をマスクにした下層膜のエツチングは酸素プラズマエツ
チングで行なった。
(4) Upper resist film...CMR-100...0.
5μm interlayer film・・・・・・・・・・・・5i(h
......0.2μm lower resist film...0
FPR-800...2.0μm As a result of experiments on these multilayer resists, 0FPR-800 and CMR-10
When an organic resist such as No. 0 was used and the upper resist film and intermediate film were exposed by electron beam exposure, a charge-up phenomenon occurred. That is, when an electron beam is scanned onto a resist film for exposure, the electrons irradiated onto the resist film by the previous scan remain in the resist film and exert a repulsive force on the electron beam during scanning, causing the electron beam to be bent. , and alignment mark detection failures and pattern positional deviations occurred. Note that the lower layer film was etched by oxygen plasma etching using the upper resist film and the intermediate film as masks.

−最に、下層レジスト膜として使用されている0FPR
−800、CMR−100等の有機膜は塩素系ドライエ
ツチング剤に対する耐エツチング性があまり良くないた
め、下層レジスト膜として実験で採用した2、0μmの
膜厚は塩素系ドライエツチングの場合は不充分であり、
4μm程度の膜厚を必要とする。
-Finally, 0FPR is used as the lower resist film.
Organic films such as -800 and CMR-100 do not have very good etching resistance against chlorine-based dry etching agents, so the film thickness of 2.0 μm adopted in the experiment as the lower resist film is insufficient for chlorine-based dry etching. and
A film thickness of about 4 μm is required.

このような高アスペクト比のレジスト膜はパターン倒壊
や微細パターン部分のエツチング不均一性を生じる。
Such a high aspect ratio resist film causes pattern collapse and non-uniform etching of fine pattern portions.

本発明は、荷電媒体による露光時にチャージアップ現象
を招かず、また、すぐれた耐エツチング性を有するレジ
ストによるパターン形成方法を提供することを目的とす
る。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for forming a pattern using a resist that does not cause a charge-up phenomenon during exposure using a charged medium and has excellent etching resistance.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者は、芳香族ビニル化合物重合体は、荷電媒体に
よる露光時にチャージアップ現象を招かない素材である
こと、また耐エツチング性にすぐれていること、を見出
したが、解決すべき新たな問題点として芳香族ビニル化
合物重合体は通常ネガレジストとして使用されている物
質であるため、これを下層レジスト膜として使用すると
、上層レジトス膜もしくは中間膜塗布時に下層レジスト
膜が溶解する溶解性に問題があることを見出した。
The inventors of the present invention have discovered that aromatic vinyl compound polymers are materials that do not cause a charge-up phenomenon when exposed to charged media and have excellent etching resistance, but there are new problems to be solved. One point is that aromatic vinyl compound polymers are substances that are normally used as negative resists, so if they are used as a lower resist film, there is a problem with the solubility of the lower resist film when the upper resist film or intermediate film is applied. I discovered something.

これを解決する手段として、遠紫外線、荷電粒子線(電
子線、イオン線等)、X線等、を芳香族ビニル化合物重
合体に照射すると、芳香族ビニル化合物重合体が上層レ
ジスト膜もしくは中間膜(レジスト)に対して不溶化さ
せる方法を考案した。
As a means to solve this problem, when the aromatic vinyl compound polymer is irradiated with far ultraviolet rays, charged particle beams (electron beams, ion beams, etc.), We devised a method to make it insoluble in (resist).

本発明において、芳香族ビニル化合物重合体としては、
ベンゼン、トルエン、キシレン、エチルベンゼン、パラ
テルフェニル、ジフェニルメタン、スチレン、プロピル
ベンゼン、安息香酸などと、ビニルとの重合体であって
、ネガレジストとして使用可能なものを、使用すること
ができる。チャージアップ現象が特に抑制された好まし
い芳香族ビニル化合物重合体は、ビニル基の一部がハロ
ゲン、特に塩素、で置換されたものである。芳香族ビニ
ル化合物重合体は下層レジスト膜として基板に塗布する
。その厚さは、被エツチング材料にもよるが、難エツチ
ング性のAl−Cu合金の場合で2μm以下である。こ
のような薄い膜厚が可能になったのは、紫外線等により
照射を受けた芳香族ビニル化合物重合体は下地基板のエ
ッチャントに対して高い耐エツチング性を有するためで
ある。
In the present invention, the aromatic vinyl compound polymer includes:
Polymers of vinyl and benzene, toluene, xylene, ethylbenzene, paraterphenyl, diphenylmethane, styrene, propylbenzene, benzoic acid, etc., which can be used as negative resists, can be used. A preferred aromatic vinyl compound polymer in which the charge-up phenomenon is particularly suppressed is one in which a portion of the vinyl groups are substituted with halogen, particularly chlorine. The aromatic vinyl compound polymer is applied to the substrate as a lower resist film. The thickness depends on the material to be etched, but in the case of an etching-resistant Al-Cu alloy, it is 2 μm or less. Such a thin film thickness is possible because the aromatic vinyl compound polymer irradiated with ultraviolet rays or the like has high etching resistance against the etchant of the underlying substrate.

上層レジスト膜は公知の多層レジストプロセスで使用さ
れている、上層レジスト膜および中間膜の任意のものを
使用することができる。すなわち、下地の芳香族ビニル
化合物重合体の作用によって上層、中間膜の物質がチャ
ージアップ性をもっていたとしても、レジスト膜全体で
のチャージアンプ性は軽減される。しかしながら、上層
レジスト膜があまり厚くなりすぎるのはチャージアップ
性のみならず、解像性の観点からも好ましくはない。
As the upper resist film, any upper resist film or intermediate film used in a known multilayer resist process can be used. That is, even if the materials of the upper layer and the intermediate film have charge-up properties due to the action of the underlying aromatic vinyl compound polymer, the charge-amplification properties of the resist film as a whole are reduced. However, if the upper resist film becomes too thick, it is not preferable not only from the viewpoint of charge-up properties but also from the viewpoint of resolution.

よって上層レジスト膜(中間膜も含む)の厚さはピンホ
ールや下層膜のエツチングにおける選択比等の条件から
決定されたなるべく薄い膜であることが好ましい0本発
明による多層レジストプロセスは、近年開発されつつあ
るシリコン含をポリマーレジストを上層レジスト膜とす
る二層レジスト法に適用すると、シリコン含有ポリマー
レジストのすぐれた耐酸素エツチング性により膜厚が薄
くでき、芳香族ビニル化合物重合体が薄い膜厚とチャー
ジアップ性軽減を実現するので、アスペクト比が小さい
ファインパターンが形成されるとともに、難エツチング
材料のファインパターンも容易に作られるようになるこ
とが期待される。
Therefore, it is preferable that the thickness of the upper resist film (including the intermediate film) be as thin as possible, determined from conditions such as pinholes and etching selectivity of the lower film. When applied to the increasingly popular two-layer resist method in which a silicon-containing polymer resist is used as the upper resist film, the film thickness can be reduced due to the excellent oxygen etching resistance of the silicon-containing polymer resist, and the aromatic vinyl compound polymer can be used to reduce the film thickness. As a result, it is expected that fine patterns with a small aspect ratio will be formed, and fine patterns made of etching-resistant materials will also be easily formed.

上層レジスト膜(中間膜も含む)のパターンニング方法
は、電子ビーム、イオン線等の荷電粒子露光による。
The upper resist film (including the intermediate film) is patterned by exposure to charged particles such as electron beams and ion beams.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

〔実施例〕〔Example〕

!立聞上 CMS (クロロメチル化ポリスチレン)をアルミニウ
ム基板に2.0μmの厚さに塗布し、100t:、20
分の条件でベークし、遠紫外光(Xe−Hgランプ、5
00W)で20秒間露光した。次に、PMSSをCMS
に0.2 p mの厚さに塗布し、80’Cl2O分間
の条件でベータし、電子ビーム(20kV)テ5 X 
10−6C/cdの露光量で所定のパターンを露光した
。続いて、MiBK (メチルイソブチルケトン)ニハ
ターンを1分間ディップし、次にIPA(イソプロピル
アルコール)で30秒間ディップ、リンスした。最後に
、プラズマエツチング装置(rfパワー300W、 0
x−100sec11.圧力−〇、02torr)でエ
ツチングを行ない、0.3μmライン、0.3μmスペ
ースのパターンを形成した。
! Ribunjo CMS (chloromethylated polystyrene) was applied to an aluminum substrate to a thickness of 2.0 μm, and 100t:, 20
Bake under conditions of 5 minutes and deep ultraviolet light (Xe-Hg lamp, 5 minutes).
00W) for 20 seconds. Next, convert PMSS to CMS
It was coated to a thickness of 0.2 pm, incubated for 80 minutes in Cl2O, and exposed to an electron beam (20 kV) for 5X.
A predetermined pattern was exposed at an exposure dose of 10-6 C/cd. Subsequently, MiBK (methyl isobutyl ketone) Nihatane was dipped for 1 minute, and then IPA (isopropyl alcohol) was dipped for 30 seconds and rinsed. Finally, a plasma etching device (RF power 300W, 0
x-100sec11. Etching was performed at a pressure of -0.02 torr) to form a pattern with 0.3 μm lines and 0.3 μm spaces.

このパターンを利用してAl−2%Cu合金膜(厚さ一
1μm)をプラズマ装置(rrパワー400W% 5i
C14100sccn −、CI 2−303CC11
%圧’jJ −0,02torr)で4分間エツチング
した。この条件でエツチングは可能であり、レジストの
灰化量はCMSが1.2μmであった。また、パターン
ずれは0.10μm以下であった。
Using this pattern, an Al-2% Cu alloy film (thickness - 1 μm) was deposited using a plasma device (rr power 400 W% 5i
C14100sccn-, CI 2-303CC11
% pressure 'jJ -0.02 torr) for 4 minutes. Etching was possible under these conditions, and the amount of resist ashing was 1.2 μm for CMS. Further, the pattern deviation was 0.10 μm or less.

1蓋1 α−M化CMS(東洋曹達工)をアルミニウム基板に2
.0μmの厚さに塗布し、100℃、20分の条件でベ
ータし、遠紫外光(Xe−Hgランプ、500W)で2
分露光した。次に、PMSSをα−M化CMSに0.2
 p mの厚さに塗布し、80℃、20分間の条件でベ
ータした。以下、実施例1と同様な条件で電子ビーム露
光し、MiBに、IPAディップ、およびプラズマエツ
チングを行ない、0.3μmライン、0.3μmスペー
スのパターンを形成した。
1 Lid 1 α-M CMS (Toyo Sodako) on an aluminum substrate 2
.. Coat it to a thickness of 0 μm, betatize it at 100°C for 20 minutes, and heat it with deep ultraviolet light (Xe-Hg lamp, 500W) for 2 hours.
Exposed to light. Next, PMSS was converted into α-M CMS by 0.2
It was coated to a thickness of 100 pm and betatized at 80° C. for 20 minutes. Thereafter, electron beam exposure was performed under the same conditions as in Example 1, and the MiB was subjected to IPA dip and plasma etching to form a pattern of 0.3 μm lines and 0.3 μm spaces.

スm CMSをアルミニウム基板に2.0μmの厚さに塗布し
、100℃、20分の条件でベータし、遠紫外光(Xe
−Hgランプ、500W)で20秒間露光した。次に、
OCD (東京応化)をCM Sに0、2μmの厚さに
塗布し、200℃、20分間の条件でベークし、さらに
CMSを0.5μmの厚さに塗布し、100℃、20分
の条件でプリベークし、電子ビーム(20kV)でI 
X 10−’C/a!Iの露光量で所定のパターンを露
光した。さらに、アセトン/IPA=10/1 (容量
比)で60秒現像し、IPAで30秒現像し、引き続き
、プラズマエツチング装置(rfパワー300W、 C
F、−2003CC1ms圧カー0.3 torr)で
2分間中間膜のOCDをエツチングした。最後に、プラ
ズマエツチング装置(rfパワー300W、 Ox −
100scci 、圧力−0,02torr)でエツチ
ングを行ない、0.3 p mライン、0.3μmスペ
ースのパターンを形成した。
Sm CMS was coated on an aluminum substrate to a thickness of 2.0 μm, betatized at 100°C for 20 minutes, and then exposed to far ultraviolet light (Xe
-Hg lamp, 500W) for 20 seconds. next,
Apply OCD (Tokyo Ohka) to CMS to a thickness of 0.2 μm and bake at 200°C for 20 minutes, then apply CMS to a thickness of 0.5 μm and bake at 100°C for 20 minutes. Prebaked with
X 10-'C/a! A predetermined pattern was exposed with an exposure amount of I. Furthermore, it was developed with acetone/IPA=10/1 (capacity ratio) for 60 seconds, developed with IPA for 30 seconds, and then processed with a plasma etching device (RF power 300W, C
F, -2003CC1ms pressure car (0.3 torr) was used to etch the OCD of the interlayer film for 2 minutes. Finally, a plasma etching device (RF power 300W, Ox −
Etching was carried out at 100 scci, pressure -0.02 torr) to form a pattern with 0.3 pm lines and 0.3 .mu.m spaces.

1差■↓ この実施例は第2層レジストCMR−100にした以外
は殆ど実施例3と同様である。
1 difference ■↓ This example is almost the same as Example 3 except that the second layer resist CMR-100 was used.

CMSをアルミニウム基板に2.0μmの厚さに塗布し
、100℃、20分の条件でベータし、遠紫外光(Xe
−Hgランプ、500W)で20秒間露光した。次に、
OCDを0.2μmの厚さに塗布し、200℃、20分
の条件でベータし、さらにC門R−100を0.5μm
の厚さに塗布し、170℃、20分の条件でプリベーク
し、電子ビーム(20kV)で3 X 10−SC/c
dの露光量で所定のパターンを露光した。さらに、Mi
BK/酢酸工≠ル=1/1  (容量比)に60秒ディ
ップし、以下実施例3と同様に、プラズマエツチングと
rfエツチングを行なった。
CMS was coated on an aluminum substrate to a thickness of 2.0 μm, betatized at 100°C for 20 minutes, and exposed to far ultraviolet light (Xe
-Hg lamp, 500W) for 20 seconds. next,
OCD was applied to a thickness of 0.2 μm, beta-coated at 200°C for 20 minutes, and C-gate R-100 was applied to a thickness of 0.5 μm.
It was coated to a thickness of
A predetermined pattern was exposed at an exposure amount of d. Furthermore, Mi
The sample was dipped for 60 seconds at a ratio of BK/acetic acid ≠ 1/1 (volume ratio), and then plasma etching and RF etching were performed in the same manner as in Example 3.

北較炎上 1.0μmAl−2%Cu(上層) / S i Oz
(中間層)/Sin、ウェハー(基板)に叶PR−Bo
oを2.0μmの厚さに塗布し、200℃、30分の条
件でベータし、PMSSレジストを0.2μmの厚さに
塗布し、80℃、20分の条件でベータし、電子ビー4
 (20kV) で5X 10−6C/c#)+flt
で所定のパターンを露光した。さらに、続いて、MiB
ににパターンを1分間ディップし、次にIPAで30秒
間ディップ、リンスした。最後に、プラズマエツチング
装置(rfパワー300W、0202−1O0sc 、
圧力−〇、02torr)で、5分間エツチングを行な
い、0.3μmライン、0.3μmスペースのパターン
を形成した。
Northern flame 1.0 μm Al-2% Cu (upper layer) / S i Oz
(Intermediate layer)/Sin, wafer (substrate) with PR-Bo
E-beam resist was applied to a thickness of 2.0 μm and beta-baked at 200°C for 30 minutes. PMSS resist was applied to a thickness of 0.2 μm and beta-baked at 80°C for 20 minutes.
(20kV) at 5X 10-6C/c#)+flt
A predetermined pattern was exposed. Furthermore, subsequently, MiB
The pattern was dipped in garlic for 1 minute, then 30 seconds in IPA and rinsed. Finally, a plasma etching device (RF power 300W, 0202-1O0sc,
Etching was performed for 5 minutes at a pressure of -0.02 torr to form a pattern of 0.3 μm lines and 0.3 μm spaces.

このパターンを利用してA1−2%Cu合金膜(厚さ一
1μm)をプラズマ装置(rfパワー400W、、 S
iSiCl4−100sc 、 C1z  30scc
ms圧カー〇、02torr)で4分間エツチングした
ところ、合金膜がエツチングされる前にレジストがエツ
チングされてしまい、レジストはマスクとしての役割を
果たさなかった。
Using this pattern, an A1-2% Cu alloy film (1 μm thick) was deposited using a plasma device (RF power 400 W, S
iSiCl4-100sc, C1z 30scc
When etching was carried out for 4 minutes at a pressure of 0.02 torr (ms pressure) for 4 minutes, the resist was etched before the alloy film was etched, and the resist did not function as a mask.

ル較拠叢 比較例1と同様な方法でレジストパターンを形成した。reference collection A resist pattern was formed in the same manner as in Comparative Example 1.

ただし、下層の0FPR−800の厚さを4.0μmと
し、プラズマエツチング(酸素の反応性イオンエッチ)
を10分間行なった。この結果、0.7μmライン、0
.7μmスペースのパターンが形成され、比較例1より
解像度低下となった。
However, the thickness of the lower layer 0FPR-800 was set to 4.0 μm, and plasma etching (oxygen reactive ion etching) was performed.
was carried out for 10 minutes. As a result, 0.7 μm line, 0
.. A pattern with a 7 μm space was formed, and the resolution was lower than in Comparative Example 1.

このパターンを利用してAl−2%Cu合金膜(厚さ一
1μm)をエツチングした。プラズマ装置(rfバ’7
  400W、 5iCIa  101005c 、 
C1z−3Qsccm、圧力−〇、02 torr)で
4分間エツチングしたところ、合金膜がエツチングされ
た。またレジストの灰化量は0FPR2,5μmであっ
た。
Using this pattern, an Al-2% Cu alloy film (thickness - 1 μm) was etched. Plasma device (RF bar'7
400W, 5iCIa 101005c,
When etching was performed for 4 minutes at C1z-3Qsccm, pressure -0, 02 torr), the alloy film was etched. Further, the amount of ashing of the resist was 0FPR2.5 μm.

裏胤炭i 実施例1と同様な方法を、CMSのシロロメチル化率を
、0.15.30,50.90%と変化させて(但し分
子量は20000と一定に保った)行ない、クロロメチ
ル化率とチャージアップ量の関係を調査した。チャージ
アップ量は基準パターンからのずれ(μm)で評価した
。結果を次の表に示す。
Uratane Charcoal i The same method as in Example 1 was carried out by changing the chloromethylation rate of CMS to 0.15.30% and 50.90% (however, the molecular weight was kept constant at 20,000). We investigated the relationship between rate and charge-up amount. The amount of charge-up was evaluated by the deviation (μm) from the reference pattern. The results are shown in the table below.

(以下余白) 第  1  表 〔発明の効果〕 本発明により形成したパターンの下層膜は耐エツチング
性にすぐれた膜であるので、実質の膜厚が従来のものに
比べて薄くてよく、パターン倒壊を引き起こさず、かつ
上層レジスト膜の露光時のチャージアンプ現象によるパ
ターンずれの問題も生じない。
(Margin below) Table 1 [Effects of the Invention] Since the lower layer film of the pattern formed according to the present invention is a film with excellent etching resistance, the actual film thickness may be thinner than that of the conventional film, and pattern collapse may occur. Also, there is no problem of pattern shift due to the charge amplifier phenomenon during exposure of the upper resist film.

Claims (1)

【特許請求の範囲】 1、多層レジストプロセスによるパターン形成方法にお
いて、芳香族ビニル化合物重合体を素材とするネガレジ
ストを基板に塗布しそして遠紫外線、荷電粒子線、X線
で照射したものを下層膜として使用し、一層または二層
の上層膜の露光を荷電粒子線で行なうことを特徴とする
パターン形成方法。 2、上層膜が一層のシリコン含有ポリマーである特許請
求の範囲第1項記載のパターン形成方法。 3、芳香族ビニル化合物重合体がビニルポリスチレンで
ある特許請求の範囲第2項記載のパターン形成方法。 4、芳香族ビニル化合物重合体のビニル基の一部がハロ
ゲンで置換されている特許請求の範囲第1項から第3項
までの何れか1項に記載のパターン形成方法。
[Claims] 1. In a pattern forming method using a multilayer resist process, a negative resist made of an aromatic vinyl compound polymer is applied to a substrate, and the lower layer is irradiated with deep ultraviolet rays, charged particle beams, or X-rays. A pattern forming method, which is used as a film, and is characterized in that one or two upper layers are exposed to a charged particle beam. 2. The pattern forming method according to claim 1, wherein the upper layer film is a layer of silicon-containing polymer. 3. The pattern forming method according to claim 2, wherein the aromatic vinyl compound polymer is vinyl polystyrene. 4. The pattern forming method according to any one of claims 1 to 3, wherein a portion of the vinyl groups of the aromatic vinyl compound polymer are substituted with halogen.
JP61199116A 1986-08-27 1986-08-27 Pattern forming method Granted JPS6356655A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61199116A JPS6356655A (en) 1986-08-27 1986-08-27 Pattern forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61199116A JPS6356655A (en) 1986-08-27 1986-08-27 Pattern forming method

Publications (2)

Publication Number Publication Date
JPS6356655A true JPS6356655A (en) 1988-03-11
JPS6348330B2 JPS6348330B2 (en) 1988-09-28

Family

ID=16402398

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61199116A Granted JPS6356655A (en) 1986-08-27 1986-08-27 Pattern forming method

Country Status (1)

Country Link
JP (1) JPS6356655A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0315375A2 (en) * 1987-10-31 1989-05-10 Fujitsu Limited Multilayer resist material and pattern forming method using the same
EP0350873A2 (en) * 1988-07-11 1990-01-17 Hitachi, Ltd. Method for forming pattern and method for making semiconductor device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0315375A2 (en) * 1987-10-31 1989-05-10 Fujitsu Limited Multilayer resist material and pattern forming method using the same
EP0350873A2 (en) * 1988-07-11 1990-01-17 Hitachi, Ltd. Method for forming pattern and method for making semiconductor device
US5441849A (en) * 1988-07-11 1995-08-15 Hitachi, Ltd. Method of forming pattern and making semiconductor device using radiation-induced conductive resin bottom resist layer

Also Published As

Publication number Publication date
JPS6348330B2 (en) 1988-09-28

Similar Documents

Publication Publication Date Title
KR102532238B1 (en) A patterning approach to improve EUV resist and hard mask selectivity
JPH0376743B2 (en)
JP3504247B2 (en) Manufacturing method of semiconductor device
US6811959B2 (en) Hardmask/barrier layer for dry etching chrome films and improving post develop resist profiles on photomasks
US4390394A (en) Method of structuring with metal oxide masks by reactive ion-beam etching
TW505976B (en) Method for forming micro-pattern of semiconductor device
JPH01118126A (en) Pattern forming method
US7297607B2 (en) Device and method of performing a seasoning process for a semiconductor device manufacturing apparatus
JPH02191957A (en) Resist composition
JPH0368904B2 (en)
US4405707A (en) Method of producing relief structures for integrated semiconductor circuits
US3767492A (en) Semiconductor masking
US20020011462A1 (en) Method of processing organic antireflection layers
JPH03174724A (en) Method of forming pattern
JPS6356655A (en) Pattern forming method
JPH0626202B2 (en) Patterning method
JPH02252233A (en) Fine pattern forming method
JPH0794467A (en) Dry etching method
US4784936A (en) Process of forming a resist structure on substrate having topographical features using positive photoresist layer and poly(vinyl pyrrolidone) overlayer
KR20040106331A (en) Plasma polymerized electron beam resist
US4826754A (en) Method for anisotropically hardening a protective coating for integrated circuit manufacture
JP2002296791A (en) Method for forming pattern
JPH0314172B2 (en)
US20240222118A1 (en) Methods for forming semiconductor devices using modified photomask layer
EP0268595B1 (en) Pattern transfer process for fabricating integrated-circuit devices