JPS6356569A - Heat-resistant resin coating material - Google Patents
Heat-resistant resin coating materialInfo
- Publication number
- JPS6356569A JPS6356569A JP20046986A JP20046986A JPS6356569A JP S6356569 A JPS6356569 A JP S6356569A JP 20046986 A JP20046986 A JP 20046986A JP 20046986 A JP20046986 A JP 20046986A JP S6356569 A JPS6356569 A JP S6356569A
- Authority
- JP
- Japan
- Prior art keywords
- coating material
- plos
- pdes
- heat
- group
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229920006015 heat resistant resin Polymers 0.000 title claims description 3
- 239000000463 material Substances 0.000 title abstract description 6
- 239000011248 coating agent Substances 0.000 title abstract description 4
- 238000000576 coating method Methods 0.000 title abstract description 4
- 150000002576 ketones Chemical class 0.000 claims abstract description 9
- 125000005375 organosiloxane group Chemical group 0.000 claims abstract description 6
- 239000003973 paint Substances 0.000 claims description 7
- 239000000203 mixture Substances 0.000 claims description 6
- 229920001296 polysiloxane Polymers 0.000 claims description 4
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 abstract description 14
- 238000002156 mixing Methods 0.000 abstract description 6
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 abstract description 3
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 abstract description 2
- 239000004447 silicone coating Substances 0.000 abstract 2
- -1 acetone Chemical class 0.000 abstract 1
- 238000004321 preservation Methods 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 14
- 102100037592 Plasmanylethanolamine desaturase Human genes 0.000 description 13
- 229920003199 poly(diethylsiloxane) Polymers 0.000 description 13
- 101150085511 PEDS1 gene Proteins 0.000 description 12
- 239000004020 conductor Substances 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- 125000000962 organic group Chemical group 0.000 description 6
- 229920005989 resin Polymers 0.000 description 6
- 239000011347 resin Substances 0.000 description 6
- 238000003860 storage Methods 0.000 description 6
- 239000007788 liquid Substances 0.000 description 5
- 125000004429 atom Chemical group 0.000 description 4
- 238000006482 condensation reaction Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 125000000524 functional group Chemical group 0.000 description 4
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 4
- 239000011229 interlayer Substances 0.000 description 4
- 229920002050 silicone resin Polymers 0.000 description 4
- 238000009833 condensation Methods 0.000 description 3
- 230000005494 condensation Effects 0.000 description 3
- 238000009413 insulation Methods 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- XLPKAUDSAPXLJO-UHFFFAOYSA-N 4-bromo-2-[[2-[(5-bromo-2-hydroxyphenyl)methylideneamino]phenyl]iminomethyl]phenol Chemical compound OC1=CC=C(Br)C=C1C=NC1=CC=CC=C1N=CC1=CC(Br)=CC=C1O XLPKAUDSAPXLJO-UHFFFAOYSA-N 0.000 description 2
- 101100189588 Canis lupus familiaris PDE6B gene Proteins 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 2
- 238000004528 spin coating Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- 238000007259 addition reaction Methods 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005566 electron beam evaporation Methods 0.000 description 1
- 238000000609 electron-beam lithography Methods 0.000 description 1
- 238000001017 electron-beam sputter deposition Methods 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 238000001879 gelation Methods 0.000 description 1
- 125000005843 halogen group Chemical group 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000010365 information processing Effects 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 238000001259 photo etching Methods 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- 150000003377 silicon compounds Chemical class 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
Landscapes
- Paints Or Removers (AREA)
Abstract
Description
【発明の詳細な説明】
〔概要〕
シリコーン塗料の保存安定性を向上させる方法として、
ポリラダーオルガノシロキサンとポリジェトキシシラン
とを混合したシリコーン塗料にケトンを添加してなる樹
脂塗料。[Detailed Description of the Invention] [Summary] As a method for improving the storage stability of silicone paints,
Polyladder A resin paint made by adding ketones to a silicone paint that is a mixture of organosiloxane and polyjetoxysilane.
本発明は保存安定性を向上した耐熱樹脂塗料に関する。 The present invention relates to a heat-resistant resin paint with improved storage stability.
大量の情報を迅速に処理するため情報処理技術の進歩は
著しく、この主役を演するIC,LSIなどの半導体装
置は単位素子の小形化と集積化による大容量化が行われ
VLS Iが実用化されている。In order to quickly process large amounts of information, information processing technology has made remarkable progress, and the semiconductor devices that play the leading role in this, such as ICs and LSIs, have become larger in capacity through miniaturization and integration of unit elements, and VLSI has been put into practical use. has been done.
ここで、小形化と集積化は薄膜形成技術と写真蝕刻技術
(ホトリソグラフィ或いは電子線リソグラフィ)を用い
て形成されているが、その方法は微細な導体パターンを
形成した後、この上に絶縁層を形成して絶縁すると共に
必要に応じてスルーホールを設け、更にこの上に導体パ
ターンを形成して下層の導体パターンと導通をとる方法
を繰り返して、多層の立体回路が形成されている。Here, miniaturization and integration are achieved using thin film formation technology and photoetching technology (photolithography or electron beam lithography). A multilayer three-dimensional circuit is formed by repeating the process of forming a conductor pattern, insulating it, providing through holes as necessary, and then forming a conductor pattern thereon to establish conduction with the conductor pattern in the lower layer.
ここで、導体パターンは数1000人の厚さをもつため
に多層配線においては導体パターン上の絶縁層に段差を
生じ、この緩和が必要となる。Here, since the conductor pattern has a thickness of several thousand layers, in multilayer wiring, a step occurs in the insulating layer on the conductor pattern, and this needs to be alleviated.
すなわち、眉間絶縁層としては二酸化珪素(SiOt)
が耐圧や絶縁抵抗などの電気的性質と耐熱性や安定性な
どの化学的性質が優れていることから絶縁材料として適
している。That is, silicon dioxide (SiOt) is used as the glabella insulating layer.
It is suitable as an insulating material because it has excellent electrical properties such as withstand voltage and insulation resistance, and chemical properties such as heat resistance and stability.
然し、この5i02層を電子ビーム蒸着法やスパッタ法
などの化学的方法で形成する場合は下地と相似形をなし
て形成されるため段差の位置でこの上に形成される導体
パターンの断線が生じ易く、信頬性の点で問題がある。However, when this 5i02 layer is formed by a chemical method such as electron beam evaporation or sputtering, it is formed in a similar shape to the underlying layer, which causes disconnection of the conductor pattern formed thereon at the position of the step. However, there are problems in terms of credibility.
そこで化学気相成長法(略称CVD法)を用い、シラン
(SiH*)のような珪素化合物を酸化性の雰囲気中で
熱分解して段差が緩和されたSiO□層を作ることも行
われている。Therefore, chemical vapor deposition (abbreviated as CVD) is used to thermally decompose silicon compounds such as silane (SiH*) in an oxidizing atmosphere to create a SiO□ layer with reduced steps. There is.
然し、CVD膜の成長速度は毎分当たり1000Å以下
と遅く、また処理工程が面倒である。However, the growth rate of CVD films is slow at less than 1000 Å per minute, and the processing steps are troublesome.
これに対して、スピンナを用いるスピンコー゛ト法でシ
リコーン樹脂を被覆する方法があり、これは簡便で且つ
厚く形成することができ、また段差や表面の凹凸を無く
することができるので、多層構造をとる絶縁層として使
用されている。On the other hand, there is a method of coating silicone resin by a spin coating method using a spinner, which is simple and can be formed thickly, and also eliminates steps and surface irregularities, so it is possible to create a multilayer structure. It is used as an insulating layer.
ここで、ポリイミドなど多数ある絶縁樹脂の内、シリコ
ーン樹脂が用いられる理由は耐熱性が優れていることで
、酸素(0□)を含む雰囲気中で500°C以上の温度
で熱処理する場合に分解が始まっても、SiO□へと分
解するため絶縁抵抗が低下せず、また平滑度も殆ど変わ
らないことによる。Here, among the many insulating resins such as polyimide, silicone resin is used because it has excellent heat resistance, and it decomposes when heat treated at a temperature of 500°C or higher in an atmosphere containing oxygen (0□). This is because even if this starts, the insulation resistance does not decrease because it decomposes into SiO□, and the smoothness hardly changes.
シリコーン樹脂は4価の原子価をもつSi原子に有機基
と官能基が結合して連鎖状の有機化合物を形成している
ものである。A silicone resin is one in which an organic group and a functional group are bonded to a tetravalent Si atom to form a chain-like organic compound.
ここで、有機基はメチル基(CH3)、エチル基(C2
1!S)+ フェニール基(C6H5)・・・などを指
し、また官能基はハロゲン基、O11基、メトキシ基・
・・などを指している。Here, the organic groups are methyl group (CH3), ethyl group (C2
1! S) + refers to phenyl group (C6H5)...etc., and functional groups include halogen group, O11 group, methoxy group, etc.
It refers to...etc.
そしてSi原子に対する有機基と官能基との付着数から
M単位、D単位、T単位、Q単位の四種類に分けられ、
そのうちT単位はSi原子当たり一個の有機基をもち梯
子形の構造をとることが知られており、基板に対する密
着性や柔軟性から絶縁層の形成材料として最も適してい
る。Based on the number of organic groups and functional groups attached to the Si atom, it is divided into four types: M units, D units, T units, and Q units.
Among them, the T unit is known to have one organic group per Si atom and to have a ladder-shaped structure, and is most suitable as a material for forming an insulating layer due to its adhesion to the substrate and flexibility.
第1図は層間絶縁用として用いられているかかるシリコ
ーン樹脂の構造式であり、梯子形の構造をとるためにポ
リラダーオルガノシロキサン(略称PLO3)と言われ
ている。FIG. 1 shows the structural formula of such a silicone resin used for interlayer insulation, and because it has a ladder-shaped structure, it is called polyladder organosiloxane (abbreviated as PLO3).
ここで、R,は有機基を指し、C1h基とC,R5基が
11の量比でこの位置に存在しており、また現実には完
全な梯子形の構造をとっておらず、結合が部分的に切れ
てOHの官能基を含んで形成されていることを示してい
る。Here, R, refers to an organic group, and C1h group and C, R5 group exist at this position in a quantitative ratio of 11, and in reality, it does not have a complete ladder structure, and the bond is This shows that it is partially cut and is formed containing an OH functional group.
そして、かかるPLOSは一般にPLOS−Gと呼び市
販されている。Such PLOS is generally called PLOS-G and is commercially available.
さて、PLOS−Gはブチルセルソルブアセテート(略
称BCA)などの溶剤を用いて粘度を調整し、被処理基
板上にスピンコードして絶縁層を作り、この上に導体パ
ターンを形成して使用されていたが、厚めに形成する場
合はヒビ割れが発生し易(、また被処理基板との密着性
にも問題があることが判った。Now, PLOS-G is used by adjusting the viscosity using a solvent such as butyl cell solve acetate (abbreviated as BCA), creating an insulating layer by spin-coating it on the substrate to be processed, and forming a conductive pattern on this. However, it has been found that when formed thickly, cracks tend to occur (and there are also problems with adhesion to the substrate to be processed).
そこで現在では第2図に構造式を示すポリジェトキシシ
ラン(略称PDεS)と略1:1の比率に混合して使用
することが行われている。Therefore, it is currently used by mixing it with polyjethoxysilane (abbreviated as PDεS) whose structural formula is shown in FIG. 2 at a ratio of about 1:1.
ここで第2図のR2はC2H5とHの各有機基を示し、
これが1:1の量比で存在していることを示している。Here, R2 in FIG. 2 represents each organic group of C2H5 and H,
This shows that they are present in a 1:1 ratio.
このように現在はPLOS−GとPDESとの混合物の
を用いて層間絶縁層が作られており、ヒビ割れなどの問
題は解決されている。In this way, interlayer insulating layers are currently made using a mixture of PLOS-G and PDES, and problems such as cracking have been solved.
この場合のPDESの作用はPLOS−G中に存在する
OH基とPDES中に存在する011基が結合する縮合
反応によって網目構造を形成することである。The action of PDES in this case is to form a network structure through a condensation reaction in which the OH groups present in PLOS-G and the 011 groups present in PDES bond.
さて、LSIやVLSIなどの製造工程に当たって、順
調に量産を行うには、PLOS−GとP[lESを使用
に際して混合するのではなく、予め混合しておき必要に
応じて使用することが必要であり、そのためには冷蔵庫
中で一ヶ月程度の保存安定期間が必要である。Now, in the manufacturing process of LSIs and VLSIs, in order to smoothly mass-produce PLOS-G and P[lES, it is necessary to mix them in advance and use them as needed, rather than mixing them before use. For this purpose, it needs to be kept stable for about one month in the refrigerator.
然し、冷蔵庫中でも縮合反応が徐々に進行して混合液の
粘度が上昇し、寿命が二進間程度と短いと云う問題があ
り、この改善が必要であった。However, there was a problem in that the condensation reaction gradually progressed even in the refrigerator, increasing the viscosity of the mixed liquid, and the lifespan was as short as a binary interval.Therefore, it was necessary to improve this problem.
以上記したように層間絶縁層としてPLOS−GとPD
ESとの混合物が用いられ、良い結果が得られているも
の\、保存安定性が良くないことが問題である。As mentioned above, PLOS-G and PD are used as interlayer insulating layers.
Although a mixture with ES has been used and good results have been obtained, the problem is that the storage stability is poor.
上記の問題はPLOS−GとPDESとを混合したシリ
コーン塗料にケトンを添加して使用することにより解決
することができる。The above problem can be solved by adding a ketone to a silicone paint containing a mixture of PLOS-G and PDES.
本発明はPLOS−G (!: PDESとの混合液を
保存している場合に粘度が上昇するのはPLOS−G中
に存在するOH基とPDES中の0HfAとが反応して
縮合が進行し、これによりゲル化が進行することによる
。In the present invention, the viscosity increases when a mixture of PLOS-G (!: PDES) is stored because OH groups present in PLOS-G react with 0HfA in PDES and condensation progresses. , this is due to the progress of gelation.
そこで縮合を妨げるためには双方のOH基が接近しない
ようにすればよい。Therefore, in order to prevent condensation, both OH groups should be prevented from coming close to each other.
そこで、本発明はPDESとケトンとが反応し易い点に
着目し、PLOS−GとPDESの混合液に予めケトン
を添加しておくことにより縮合反応の進行を防ぐもので
ある。Therefore, the present invention focuses on the fact that PDES and ketones easily react, and prevents the condensation reaction from proceeding by adding a ketone to a mixed solution of PLOS-G and PDES in advance.
第3図はPDBSにアセトンを添加した場合にPDES
中の0原子にアセトン分子が付加した状態を示している
。Figure 3 shows PDES when acetone is added to PDBS.
It shows a state in which an acetone molecule is added to the 0 atom inside.
ここで、ケトンを添加しても保存温度が低いために必ず
しも第3図に示すように反応するとは限らないが、ケト
ンは極性基をもっているためにPDESのOH基に接近
しており、そのためにPLOS−GとPDESとの縮合
反応が妨げられる。Here, even if a ketone is added, it does not necessarily react as shown in Figure 3 due to the low storage temperature, but since the ketone has a polar group, it approaches the OH group of PDES, and therefore The condensation reaction between PLOS-G and PDES is prevented.
PLOS−Gの10重四%に相当するアセトン(CI、
C0CH5)を用意し、まずPDESを等量のBCAに
溶解した液にアセトンとPLOS−Gを加えて攪拌し、
均一に混合して樹脂液を作った。Acetone (CI,
Prepare C0CH5), first add acetone and PLOS-G to a solution of PDES dissolved in an equal amount of BCA and stir.
A resin liquid was prepared by uniformly mixing.
ここで、PLOS−GとPDESの混合比率はl:lで
ある。Here, the mixing ratio of PLOS-G and PDES is 1:1.
この樹脂液を3°Cに保持した冷蔵庫中に保存したが、
−箇月経過後においても粘度上昇は起こらず、保存安定
性が改良されたことが立証された。This resin liquid was stored in a refrigerator maintained at 3°C.
- No increase in viscosity occurred even after several months had passed, proving that the storage stability was improved.
なお、この樹脂液を従来のようにスピンコ−1・し、2
00℃で1時間加熱して縮合させ硬化させた結果はアセ
トンを添加しない従来の絶縁層と同様であり、層間絶縁
層として優れた特性を示した。In addition, this resin liquid was spin-coated in the conventional manner, and then
The results of condensation and curing by heating at 00° C. for 1 hour were similar to those of a conventional insulating layer to which no acetone was added, and showed excellent properties as an interlayer insulating layer.
以上記したように本発明の実施によりPLoS−GとP
DIESとからなる樹脂液の保存安定性を増すことがで
き、これにより作業性の向上が可能となる。As described above, by implementing the present invention, PLoS-G and PLoS-G
It is possible to increase the storage stability of the resin liquid consisting of DIES, thereby making it possible to improve workability.
第1図はポリラダーオルガノシロキサン(PLOS−G
)の構造式、
第2図はポリジェトキシシラン(PDBS)の構造式、
第3図はアセトンが付加反応したポリジェトキシシラン
の構造式、
である。
淋
、朴ス
”?’ Fl l) cH3161Jr=2A木°リ
ラダ1オル77”ノシO初ン(FLOE−6r)6’)
溝道、大第1I2に
ニマ” Pop IプC2Hル/青=′/1オーフジ4
)キシシラン (PCI:S)〜端j麦J(休
邦2図
λ゛11ニガ
゛ゼトンガイ・1刀opツムLだ白〉エトヤシシクンつ
渚哨庁しプe33 図Figure 1 shows polyladder organosiloxane (PLOS-G).
), Figure 2 is the structural formula of polyjethoxysilane (PDBS), and Figure 3 is the structural formula of polyjethoxysilane subjected to an addition reaction with acetone.淋、Pakusu"?'Fl l) cH3161Jr=2A Tree ° Rirada 1 or 77" Noshi O Hatsun (FLOE-6r) 6')
Mizomichi, Dai No. 1 I2 Nima” Pop I C2H Le/Blue='/1 Ofuji 4
) Xysilane (PCI:S)
Country 2 Diagram λ゛11 Nigazetongai 1 Sword OP Tsum L Da White>
Claims (1)
とを混合したシリコーン塗料にケトンを添加してなるこ
とを特徴とする耐熱性樹脂塗料。A heat-resistant resin paint characterized by adding ketones to a silicone paint that is a mixture of polyladder organosiloxane and polydiethoxysilane.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20046986A JPS6356569A (en) | 1986-08-27 | 1986-08-27 | Heat-resistant resin coating material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20046986A JPS6356569A (en) | 1986-08-27 | 1986-08-27 | Heat-resistant resin coating material |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6356569A true JPS6356569A (en) | 1988-03-11 |
Family
ID=16424835
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20046986A Pending JPS6356569A (en) | 1986-08-27 | 1986-08-27 | Heat-resistant resin coating material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6356569A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5655111A (en) * | 1995-02-09 | 1997-08-05 | Mitsubishi Denki Kabushiki Kaisha | In-circuit emulator |
EP0902067A1 (en) * | 1997-09-09 | 1999-03-17 | Lucent Technologies Inc. | Method for coating an article with a ladder siloxane polymer and coated article |
-
1986
- 1986-08-27 JP JP20046986A patent/JPS6356569A/en active Pending
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5655111A (en) * | 1995-02-09 | 1997-08-05 | Mitsubishi Denki Kabushiki Kaisha | In-circuit emulator |
EP0902067A1 (en) * | 1997-09-09 | 1999-03-17 | Lucent Technologies Inc. | Method for coating an article with a ladder siloxane polymer and coated article |
US5962067A (en) * | 1997-09-09 | 1999-10-05 | Lucent Technologies Inc. | Method for coating an article with a ladder siloxane polymer and coated article |
US6251486B1 (en) | 1997-09-09 | 2001-06-26 | Agere Systems Guardian Corp. | Method for coating an article with a ladder siloxane polymer and coated article |
EP1111019A2 (en) * | 1997-09-09 | 2001-06-27 | Lucent Technologies Inc. | Method for coating an article with a ladder siloxane polymer and coated article |
EP1123955A2 (en) * | 1997-09-09 | 2001-08-16 | Lucent Technologies Inc. | Method for coating an article with a ladder siloxane polymer and coated article |
EP1111019A3 (en) * | 1997-09-09 | 2001-09-19 | Lucent Technologies Inc. | Method for coating an article with a ladder siloxane polymer and coated article |
EP1123955A3 (en) * | 1997-09-09 | 2001-09-26 | Lucent Technologies Inc. | Method for coating an article with a ladder siloxane polymer and coated article |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101490145B (en) | Precursor composition for porous membrane, process for preparation of the precursor composition, porous membrane, process for production of the porous membrane, and semiconductor device | |
JPS59178749A (en) | Wiring structure | |
KR101833800B1 (en) | Composition for forming silica based layer, method for manufacturing silica based layer, and electronic device including the silica based layer | |
WO1998047943A1 (en) | Stable inorganic polymers | |
JP6599640B2 (en) | Silica-based film forming composition, silica-based film, and electronic device | |
JP2018037641A (en) | Composition for silica film formation, and silica film | |
JP6795331B2 (en) | Silica film manufacturing method, silica film and electronic device | |
JPS6046826B2 (en) | semiconductor equipment | |
JPS6356569A (en) | Heat-resistant resin coating material | |
JP2002534804A (en) | Dielectric film with organic hydride siloxane resin | |
TW201811671A (en) | Composition for forming silica layer, silica layer, and electronic device | |
JP2004307693A (en) | Composition for forming porous film, method for producing porous film, porous film, interlayer dielectric film and semiconductor device | |
KR101968224B1 (en) | Method for manufacturing silica layer, silica layer, and electronic device | |
EP0424638A2 (en) | Fabrication of a semiconductor device including a step for prodiving a layer of insulating material formed from an organo-silica sol | |
KR102161847B1 (en) | Composition for preparing low temperature-curing organic/inorganic polymer complex used for semiconductor insulator film and use thereof | |
JPS63125579A (en) | Silicone resin coating material | |
KR102015404B1 (en) | Composition for forming silica layer, method for manufacturing silica layer, and electric device includimg silica layer | |
TWI580815B (en) | Composition for forming silica layer, silica layer and method for manufacturing the same, and electronic device including the silica layer | |
JPS63196669A (en) | Silicone resin paint | |
JP2000021872A (en) | Low-dielectric const. resin compsn., method of forming low-dielectric const. insulation film and manufacturing semiconductor device | |
JP4324786B2 (en) | LAMINATE, MANUFACTURING METHOD THEREOF, INSULATING FILM AND SEMICONDUCTOR DEVICE | |
JP2001262062A (en) | Coating liquid for forming silica coating film, preparation process of silica coating film, silica coating film, semiconductor element using the film and multi-layer wiring board | |
JPS5957437A (en) | Forming method for silicon oxide film | |
JPH0120531B2 (en) | ||
JPH06271772A (en) | Silsesquioxane polymer composition |