JPS6356440B2 - - Google Patents

Info

Publication number
JPS6356440B2
JPS6356440B2 JP53160442A JP16044278A JPS6356440B2 JP S6356440 B2 JPS6356440 B2 JP S6356440B2 JP 53160442 A JP53160442 A JP 53160442A JP 16044278 A JP16044278 A JP 16044278A JP S6356440 B2 JPS6356440 B2 JP S6356440B2
Authority
JP
Japan
Prior art keywords
control valve
valve
suction control
load
turbo compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53160442A
Other languages
Japanese (ja)
Other versions
JPS5584896A (en
Inventor
Kazumi Hasegawa
Kyoyuki Mogi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP16044278A priority Critical patent/JPS5584896A/en
Publication of JPS5584896A publication Critical patent/JPS5584896A/en
Publication of JPS6356440B2 publication Critical patent/JPS6356440B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Control Of Positive-Displacement Air Blowers (AREA)

Description

【発明の詳細な説明】 本発明はターボ圧縮機の制御弁操作方法の改良
に係り、特に負荷から無負荷への切替時に生ずる
エネルギーロスを減少させたターボ圧縮機の制御
弁操作方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a control valve operating method for a turbo compressor, and more particularly to a control valve operating method for a turbo compressor that reduces energy loss that occurs when switching from load to no-load.

従来のターボ圧縮機の制御弁操作装置は第1図
に例示するように構成されていた。即ち、吸入フ
イルタ1から吸入された空気を吸入制御弁2を介
して圧縮機3に導き、ここで加圧した後、逆止弁
4を通してレシーバ5に貯える。圧縮機3と逆止
弁4の間から分岐する放風管に放風制御弁6を設
け、この制御弁6と吸入制御弁2を夫々スピード
コントローラ7,8で制御する。これらのスピー
ドコントローラはレシーバ5に付設した圧力スイ
ツチ9からの切替指令信号によつて作動する三方
電磁弁10により制御される。
A conventional control valve operating device for a turbo compressor is constructed as illustrated in FIG. That is, air sucked in from the suction filter 1 is guided to the compressor 3 via the suction control valve 2, pressurized there, and then stored in the receiver 5 through the check valve 4. A blow-off control valve 6 is provided in a blow-off pipe branching from between the compressor 3 and the check valve 4, and the control valve 6 and the suction control valve 2 are controlled by speed controllers 7 and 8, respectively. These speed controllers are controlled by a three-way solenoid valve 10 operated by a switching command signal from a pressure switch 9 attached to the receiver 5.

このように構成した従来装置において、ターボ
圧縮機3が負荷状態のときは吸入制御弁2は開
(加圧)、放風制御弁6は閉(加圧)、三方電磁弁
10は励磁とされており、また、無負荷状態のと
きは、吸入制御弁2は閉(無圧)、放風制御弁6
は開(無圧)、三方電磁弁10は無励磁とされる。
ターボ圧縮機3を負荷状態から無負荷に切替える
場合の経過は第2図Aに示す点→→の順に
なる。この例では圧力が7.5Kg/cm3のとき圧力ス
イツチ9が作動して無負荷となるが点から点
に移るとき点線bの経路を通るとハツチングで示
すサージ域に入り好ましくないので、実線aの経
路を通るようにするため、吸入制御弁2が閉にな
る時間を放風制御弁6が開になる時間よりも遅く
する。通常、吸入制御弁2は開から閉に約20秒で
切替わり、放風制御弁6は閉から開に約10秒で切
替わるうにセツトされる。この間の消費パワーの
経過は第2図Bのようになり、また、その時間的
経過は第2図Cのようになる。この図の斜線部分
は、空気を吐出しないのに馬力を消費している状
態であるから、全く無駄なエネルギ消費を示すこ
とになる。
In the conventional device configured as described above, when the turbo compressor 3 is under load, the suction control valve 2 is open (pressurized), the air discharge control valve 6 is closed (pressurized), and the three-way solenoid valve 10 is energized. In addition, when there is no load, the suction control valve 2 is closed (no pressure) and the air discharge control valve 6 is closed.
is open (no pressure), and the three-way solenoid valve 10 is not energized.
The process of switching the turbo compressor 3 from a loaded state to an unloaded state is in the order of points →→ shown in FIG. 2A. In this example, when the pressure is 7.5Kg/cm 3 , the pressure switch 9 is activated and there is no load, but when moving from point to point, if you follow the path indicated by dotted line b, you will enter the surge region shown by hatching, which is not desirable, so the solid line a In order to pass through the path, the time at which the suction control valve 2 closes is set later than the time at which the air discharge control valve 6 opens. Normally, the suction control valve 2 is set to switch from open to closed in about 20 seconds, and the air discharge control valve 6 is set to switch from closed to open in about 10 seconds. The course of power consumption during this period is as shown in FIG. 2B, and the time course is as shown in FIG. 2C. The shaded area in this figure is a state in which horsepower is consumed even though air is not discharged, which indicates completely wasteful energy consumption.

圧縮機3を無負荷から負荷に切替える場合にも
ほぼ同様のことが言える。即ち、無負荷から負荷
への切替えは第2図Dの点→実線c→点の経
過を通り、消費動力も同図Eの→c→のよう
になる。この場合、吸入制御弁2は閉から開に約
15秒で切替わり、放風制御弁6は開から閉に約20
秒の時間で切替わるようにセツトされるので、切
替時における無駄なエネルギー消費は同図Fの斜
線部分に示すようになる。
Almost the same thing can be said when switching the compressor 3 from no load to load. That is, the switching from no-load to load passes through the transition from point D in FIG. 2 to solid line c, and the power consumption also changes as shown in FIG. 2 E. In this case, the suction control valve 2 changes from closed to open approximately.
It switches in 15 seconds, and the air discharge control valve 6 changes from open to closed in about 20 seconds.
Since it is set to switch in seconds, the wasted energy consumption during switching is shown in the shaded area in F of the figure.

上記において吸入制御弁2と放風制御弁6の切
替え時のセツト時間を短縮できれば無駄なエネル
ギー消費を低減できるわけであり、これを実現し
たものとして実願昭52−137431号に記載された考
案がある。すなわち、実願昭52−137431号(実考
昭59−39197号公報)の考案においては負荷←→無
負荷の切替時間をタイマリレーの使用によつて短
縮し、切替時の無効動力を低減するようにしてい
る。しかしながら、このような方法においてもタ
ーボ圧縮機を負荷運転から無負荷運転に切替える
際に放風制御弁を開いた状態で吸入制御弁をあま
りにも急速に閉とするとサージングを起こすた
め、切替時の時間を無制限に下げることはできな
かつた。
In the above case, if the setting time when switching between the suction control valve 2 and the air discharge control valve 6 can be shortened, wasteful energy consumption can be reduced, and the invention described in Utility Model Application No. 137431/1987 has achieved this. There is. That is, in the invention of Utility Model Application No. 52-137431 (Utility Model Application No. 59-39197), the switching time between load ← → no load is shortened by using a timer relay, and the reactive power at the time of switching is reduced. That's what I do. However, even with this method, surging will occur if the suction control valve is closed too quickly with the air discharge control valve open when switching the turbo compressor from load operation to no-load operation. It was not possible to reduce the time indefinitely.

この発明は上述の点に鑑みてなされたもので、
上記実願昭52−137431号(実公昭59−39197号公
報)の方法において負荷→無負荷時に吸入制御弁
を開→閉にする速度を途中で変えることによつて
負荷→無負荷切替時の時間を短縮して、切替時の
無効電力をより低減するようにしたターボ圧縮機
の制御弁操作方法を提供しようとするものであ
る。
This invention was made in view of the above points,
In the method of the above-mentioned Utility Model Application No. 52-137431 (Japanese Utility Model Publication No. 59-39197), by changing the speed at which the suction control valve opens and closes during load->no-load switching, The present invention aims to provide a control valve operating method for a turbo compressor that shortens the time and further reduces reactive power during switching.

すなわち、サージングを起こすか起こさないか
は吸入制御弁の開度によつても決まり、サージン
グを起こす範囲はある狭い区間に限られることが
実験によりわかつたので、この発明においては吸
入制御弁の開度がその範囲外(サージングをおこ
すおそれのない範囲)にあるときは速い速度で該
弁を動かし、また、その範囲内(サージングを起
こすおそれのある範囲)にあるときはゆるやかに
動かすようにして、総合的に切替時間を短縮する
ようにしている。
In other words, whether surging occurs or not depends on the opening degree of the suction control valve, and it was found through experiments that the range in which surging occurs is limited to a certain narrow area. When the temperature is outside of this range (range where there is no risk of surging), move the valve at a fast speed, and when it is within that range (range where surging may occur), move the valve slowly. , the switching time is reduced overall.

以下、この発明を添付図面の一実施例にもとづ
いて詳しく説明する。
Hereinafter, the present invention will be described in detail based on one embodiment of the accompanying drawings.

まず、この発明における吸入制御弁の開度と該
弁を開→閉にする速度との関係について説明す
る。
First, the relationship between the opening degree of the suction control valve and the speed at which the valve is opened and closed will be explained.

第3図aは、従来における吸入制御弁の動作を
示したものである。従来においては吸入制御弁を
開→閉とする速度は該弁の開度によらず一定であ
つた。このような方法においては同図に点線で示
すように弁の動作速度を速くした場合はサージン
グを起こすおそれがあるため、同図に実線で示す
ように動作速度を全体的に遅くしなければならな
かつた。しかしながら、実験したところ動作速度
を上げることによつてサージングを起こす範囲は
開度が20%から0%の範囲に限られることがわか
つた。そこで、この発明においては第3図bに示
すように開度100%から20%付近までの範囲では
速い速度で動作させ、20%付近から0%までの範
囲ではゆるやかな速度で動作させるようにしてい
る。尚、この範囲は使用機種によつて当然異な
る。
FIG. 3a shows the operation of a conventional suction control valve. In the past, the speed at which the suction control valve was opened and closed was constant regardless of the opening degree of the valve. In such a method, if the operating speed of the valve is increased as shown by the dotted line in the figure, there is a risk of surging, so the overall operating speed must be slowed down as shown by the solid line in the figure. Nakatsuta. However, through experiments, it was found that by increasing the operating speed, the range in which surging occurs is limited to an opening range of 20% to 0%. Therefore, in this invention, as shown in Fig. 3b, the operation is performed at a fast speed in the range from 100% to around 20%, and at a slow speed in the range from around 20% to 0%. ing. Note that this range naturally varies depending on the model used.

つぎに、この発明の一実施例を第4図にもとづ
いて説明する。
Next, one embodiment of the present invention will be described based on FIG. 4.

第4図において、吸入フイルタ11を通して吸
入された空気は吸入制御弁12に導かれる。吸入
制御弁12は弁の開度に応じて流量が変わる弁
(例えばバタフライ弁)で構成されている。吸入
制御弁12から出る空気はターボ圧縮機13,1
4,15に導かれ、圧縮後逆止弁16を通してレ
シーバ17に貯えられる。圧縮機15と逆止弁1
6の間から分岐した放風管には放風制御弁18が
設けられている。この放風制御弁18はピストン
弁のような高速作動の制御弁で構成されている。
In FIG. 4, air sucked through the suction filter 11 is guided to the suction control valve 12. In FIG. The suction control valve 12 is composed of a valve (for example, a butterfly valve) whose flow rate changes depending on the opening degree of the valve. The air coming out of the intake control valve 12 is sent to the turbo compressor 13,1.
4 and 15, and after compression is stored in the receiver 17 through the check valve 16. Compressor 15 and check valve 1
A blowoff control valve 18 is provided in the blowoff pipe branched from between the holes 6 and 6. The air discharge control valve 18 is composed of a high-speed operation control valve such as a piston valve.

上記吸入制御弁12および放風制御弁18はレ
シーバ17に付設された圧力スイツチ19からの
切替指令信号によつて作動する三方電磁弁20,
21によつて制御される。
The suction control valve 12 and the air discharge control valve 18 are three-way solenoid valves 20 operated by a switching command signal from a pressure switch 19 attached to the receiver 17;
21.

圧力スイツチ19としては例えば7.5Kg/cm3
上でオフ、6.5Kg/cm3以下でオンとなるものが使
用され、第5図に示すように並列接続した特殊タ
イマリレー30,31を介して電源線32,33
間に接続される。圧力スイツチ19がオフのとき
は無負荷指令(負荷から無負荷へ切替えるべきこ
との指令)として作用し、オンのときは負荷指令
(無負荷から負荷へ切替えるべきことの指令)と
して作用する。また、三方電磁弁20は特殊タイ
マリレー30の常開接点30′を通して電源線3
2,33間に接続されている。また、三方電磁弁
21は特殊タイマリレー31の常開接点31′を
通して電源線32,33間に接続されている。な
お、特殊タイマリレー30,31としては2秒程
度の遅延時間を持つものが使用される。
For example, a pressure switch 19 that turns off at 7.5 kg/cm 3 or more and turns on at 6.5 kg/cm 3 or less is used, and the power is supplied via special timer relays 30 and 31 connected in parallel as shown in Figure 5. lines 32, 33
connected between. When the pressure switch 19 is off, it acts as a no-load command (a command to switch from load to no-load), and when it is on, it works as a load command (a command to switch from no-load to load). In addition, the three-way solenoid valve 20 is connected to the power line 3 through the normally open contact 30' of the special timer relay 30.
It is connected between 2 and 33. Furthermore, the three-way solenoid valve 21 is connected between power lines 32 and 33 through a normally open contact 31' of a special timer relay 31. Note that as the special timer relays 30 and 31, those having a delay time of about 2 seconds are used.

特殊タイマリレー30は信号の立下り時に遅延
特性を有し(すなわち無負荷指令を遅延する)、
他方の特殊タイマリレー31は信号の立上がり時
に遅延特性を有する(すなわち負荷指令を遅延す
る)。従つて、圧力スイツチ19がオフになると、
タイマリレー31は直ちに消勢されるが、タイマ
リレー30はその固有の遅延時間(例えば2秒)
後に消勢される。また、圧力スイツチ19がオン
になると、タイマリレー30は直ちに付勢される
が、タイマリレー31はその固有の遅延時間(例
えば2秒)後に付勢される。
The special timer relay 30 has a delay characteristic at the falling edge of the signal (that is, it delays the no-load command),
The other special timer relay 31 has a delay characteristic at the rise of the signal (that is, it delays the load command). Therefore, when the pressure switch 19 is turned off,
Timer relay 31 is de-energized immediately, but timer relay 30 is de-energized by its inherent delay time (e.g. 2 seconds).
It is later deactivated. Also, when pressure switch 19 is turned on, timer relay 30 is energized immediately, but timer relay 31 is energized after its own delay time (eg, 2 seconds).

タイマリレー31が付勢されると放風制御弁1
8を制御する電磁弁21のコイルSV2は励磁され
て放風制御弁18は閉となり、反対にタイマリレ
ー31が消勢されるとコイルSV2は消磁されて放
風制御弁18は開となる。
When the timer relay 31 is energized, the air discharge control valve 1
When the timer relay 31 is deenergized, the coil SV 2 of the solenoid valve 21 that controls the solenoid valve 8 is energized, and the air discharge control valve 18 is closed. Conversely, when the timer relay 31 is deenergized, the coil SV 2 is demagnetized and the air discharge control valve 18 is opened. Become.

タイマリレー30が付勢されると吸入制御弁1
2を制御する電磁弁20のコイルSV1は励磁さ
れ、反対にタイマリレー30が消磁されるとコイ
ルSV1は消磁される。コイルSV1が励磁されると
電磁弁20は位置20aと20cとが通じて、外
部から供給される流体(空気)を吸入制御弁12
に加え、該弁を開とする。また、コイルSV1が消
磁されると電磁弁20は位置20cと位置20b
とが通じ、吸入制御弁12に供給された流体をバ
ネ12aの反撥力で位置20b方向に逃がし、該
弁12を閉とする。電磁弁20の位置20bには
小さな抵抗で(すなわち速い流速で)流体を逃が
す電磁弁22と大きな抵抗で(すなわち遅い流速
で)流体を逃がすニードル弁23が並列に接続さ
れている。ここで、電磁弁22は吸入制御弁12
に付設した開度(角度)検出スイツチ24からの
信号によつて制御される。すなわち、開度検出ス
イツチ24は吸入制御弁12の開度が例えば100
%(全開)から約20%の間にあるとき(すなわち
サージングを起こすおそれのない開度にあると
き)オンとなり、約20%から0%(全開)の間に
あるとき(すなわちサージングを起こすおそれの
ある開度にあるとき)オフとなるスイツチであ
る。そして、開度検出スイツチ24がオンのとき
は電磁弁22のコイルSV3を励磁して該弁22を
開とし、反対にオフのときはコイルSV3を消磁し
て弁22を閉とする。尚、ニードル弁23は常に
開となつている。以上のような構成から、吸入制
御弁12を開→閉にする際(ターボ圧縮機を負荷
から無負荷に切替える際)、吸入制御弁12の開
度が100%から20%に至るまでの間は抵抗の小さ
い電磁弁22が開となつて該吸入制御弁12を急
速に閉とするように動作させる。また、吸入制御
弁12の開度が20%から0%に至るまでの間は電
磁弁22は閉となつて三方電磁弁20から逃げて
くる流体は抵抗の大きいニードル弁23のみを通
過できるようになる。したがつて、この間は吸入
制御弁12はゆるやかに閉じる。
When the timer relay 30 is energized, the suction control valve 1
The coil SV 1 of the solenoid valve 20 that controls the solenoid valve 2 is energized, and on the other hand, when the timer relay 30 is demagnetized, the coil SV 1 is demagnetized. When the coil SV 1 is excited, the solenoid valve 20 communicates between positions 20a and 20c and sucks fluid (air) supplied from the outside to the control valve 12.
In addition, the valve is opened. Moreover, when the coil SV 1 is demagnetized, the solenoid valve 20 is moved to the position 20c and the position 20b.
The fluid supplied to the suction control valve 12 is released toward the position 20b by the repulsive force of the spring 12a, and the valve 12 is closed. At position 20b of the electromagnetic valve 20, a solenoid valve 22 that releases fluid with small resistance (ie, at a high flow rate) and a needle valve 23 that releases fluid with large resistance (ie, at a slow flow rate) are connected in parallel. Here, the solenoid valve 22 is the suction control valve 12.
It is controlled by a signal from an opening (angle) detection switch 24 attached to the opening. That is, the opening detection switch 24 detects that the opening of the suction control valve 12 is, for example, 100.
It turns on when the valve is between % (fully open) and approximately 20% (i.e., the opening is at a position where there is no risk of surging), and when it is between approximately 20% and 0% (fully open) (i.e., there is a risk of surging). This is a switch that turns off when the opening is at a certain degree. When the opening detection switch 24 is on, the coil SV 3 of the electromagnetic valve 22 is energized to open the valve 22, whereas when it is off, the coil SV 3 is demagnetized and the valve 22 is closed. Note that the needle valve 23 is always open. From the above configuration, when the suction control valve 12 is opened → closed (when switching the turbo compressor from load to no-load), the opening degree of the suction control valve 12 is from 100% to 20%. The solenoid valve 22 with low resistance is opened and the suction control valve 12 is operated to rapidly close. Furthermore, while the opening degree of the suction control valve 12 goes from 20% to 0%, the solenoid valve 22 is closed so that the fluid escaping from the three-way solenoid valve 20 can only pass through the needle valve 23, which has a large resistance. become. Therefore, during this period, the suction control valve 12 closes slowly.

尚、ターボ圧縮機を無負荷から負荷に切替える
場合は電磁弁20は位置20aと位置20cとが
通じるので電磁弁22およびニードル弁23は作
用しなくなる。
Note that when the turbo compressor is switched from no load to load, the solenoid valve 20 communicates between the positions 20a and 20c, so the solenoid valve 22 and the needle valve 23 become inoperative.

第6図は第4図における電磁弁20およびニー
ドル弁23のかわりにコントローラ25を用いた
場合を示したものである。このコントローラ25
は内部に多孔質のボール25aを閉じ込めた管で
ある。ここで、吸入制御弁12の開度が100%か
ら約20%の間にあるときはボール25aは第6図
aに示すようにコントローラ25のノズル25b
から離れた位置にあつて吸入制御弁12から逃げ
てくる流体は大きな抵抗を受けずにコントローラ
25から排出される。これにより、吸入制御弁1
2は急速に閉じるように動作する。また、吸入制
御弁12の開度が約20%から0%の間にあるとき
はボール25aは第6図bに示すようにコントロ
ーラ25のノズル25bに当接した状態となる。
したがつて、このときは吸入制御弁12から逃げ
てくる流体はボール25aの中を大きな抵抗を受
けて通過してコントローラ25から排出される。
これにより、吸入制御弁にはゆるやかに閉じるよ
うに動作する。
FIG. 6 shows a case where a controller 25 is used in place of the solenoid valve 20 and needle valve 23 in FIG. This controller 25
is a tube in which a porous ball 25a is enclosed. Here, when the opening degree of the suction control valve 12 is between 100% and about 20%, the ball 25a is connected to the nozzle 25b of the controller 25 as shown in FIG. 6a.
Fluid escaping from the suction control valve 12 at a position away from the controller 25 is discharged from the controller 25 without encountering significant resistance. As a result, the suction control valve 1
2 operates to close rapidly. Further, when the opening degree of the suction control valve 12 is between about 20% and 0%, the ball 25a is in contact with the nozzle 25b of the controller 25 as shown in FIG. 6b.
Therefore, at this time, the fluid escaping from the suction control valve 12 passes through the ball 25a with great resistance and is discharged from the controller 25.
As a result, the suction control valve operates to close slowly.

尚、上記実施例においては吸入制御弁12の動
作速度を切替える点を開度20%付近としたが、こ
の値は使用する機種によつて異なるものである。
また、上記実施例においては吸入制御弁12を開
→閉とする速度を2段階に切替えるようにした
が、これに限らず連続的に速度を変えていくよう
にすなわち徐々に速度を落としていくようにして
もよい。また、上記実施例においては吸入制御弁
としてバタフライ弁を使用した場合について説明
したが、これに限らず流量を即座に変化させるこ
とのできる弁であればどのような弁を使用しても
よい。
In the above embodiment, the point at which the operating speed of the suction control valve 12 is switched is set at around 20% of the opening, but this value differs depending on the model used.
Further, in the above embodiment, the speed at which the suction control valve 12 is opened → closed is switched in two stages, but the invention is not limited to this, and the speed is changed continuously, that is, the speed is gradually reduced. You can do it like this. Further, in the above embodiment, a case has been described in which a butterfly valve is used as the suction control valve, but the present invention is not limited to this, and any valve that can instantly change the flow rate may be used.

以上説明したようにこの発明によれば、ターボ
圧縮機を負荷から無負荷に切替えるために吸入制
御弁を開→閉とする場合において、吸入制御弁の
開度がターボ圧縮機がサージングを起こすおそれ
のない範囲にあるときは該吸入制御弁の動作速度
を速くし、また、サージングを起こす恐れのある
わずかな範囲にあるときは該吸入制御弁の動作速
度を遅くするようにしたので、総合的にみてサー
ジングを起こさないで吸入制御弁の動作速度を速
くすることができる。
As explained above, according to the present invention, when the suction control valve is opened and closed in order to switch the turbo compressor from load to no-load, the opening degree of the suction control valve may cause surging of the turbo compressor. The operation speed of the suction control valve is increased when it is in a range where there is no risk of surging, and it is slowed down when it is within a slight range where surging may occur. The operating speed of the suction control valve can be increased without causing surging.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のターボ圧縮機の制御弁操作装置
を示す系統図、第2図はその動作説明図、第3図
aは従来における吸入制御弁の動作を示す図、第
3図bはこの発明における吸入制御弁の動作の一
例を示す図、第4図はこの発明の一実施例を示す
系統図、第5図は第3図および第6図の実施例に
おいて使用される電気系統図、第6図はこの発明
の他の実施例を示す系統図である。 1,11……吸入フイルタ、2,12……吸入
制御弁、3,13,14,15……ターボ圧縮
機、4,16……逆止弁、5,17……レシー
バ、6,18……放風制御弁、7,8……スピー
ドコントローラ、9,19……圧力スイツチ、1
0,20,21……三方電磁弁、22……電磁
弁、23……ニードル弁、24……開度検出スイ
ツチ、25……コントローラ、25a……多孔質
ボール。
Fig. 1 is a system diagram showing a conventional turbo compressor control valve operating device, Fig. 2 is an explanatory diagram of its operation, Fig. 3a is a diagram showing the operation of a conventional suction control valve, and Fig. 3b is this diagram. A diagram showing an example of the operation of the suction control valve in the invention, FIG. 4 is a system diagram showing an embodiment of the invention, FIG. 5 is an electrical system diagram used in the embodiment of FIGS. 3 and 6, FIG. 6 is a system diagram showing another embodiment of the present invention. 1, 11... Suction filter, 2, 12... Suction control valve, 3, 13, 14, 15... Turbo compressor, 4, 16... Check valve, 5, 17... Receiver, 6, 18... ...Air discharge control valve, 7, 8...Speed controller, 9,19...Pressure switch, 1
0, 20, 21...Three-way solenoid valve, 22...Solenoid valve, 23...Needle valve, 24...Opening detection switch, 25...Controller, 25a...Porous ball.

Claims (1)

【特許請求の範囲】 1 ターボ圧縮機を負荷運転から無負荷運転に切
替えるために、ターボ圧縮機の放風制御弁を閉か
ら開に、かつ同ターボ圧縮機の吸入制御弁を開か
ら閉にそれぞれ切替えるターボ圧縮機の制御弁操
作において、 前記放風制御弁を予め高速度で開放するととも
に、 この開放されている放風制御弁に対応して、 前記吸入制御弁の開度が大きいときは該吸入制
御弁を速い動作速度で閉方向に動作させ、サージ
ングを起こす恐れの生じる程度まで開度が小さく
なつたら該吸入制御弁を遅い動作速度で閉方向に
動作させるように制御した ことを特徴とするターボ圧縮機の制御弁操作方
法。
[Claims] 1. In order to switch the turbo compressor from load operation to no-load operation, the blow-off control valve of the turbo compressor is changed from closed to open, and the suction control valve of the turbo compressor is changed from open to closed. In each switching operation of the control valve of the turbo compressor, the blow-off control valve is opened at a high speed in advance, and when the opening degree of the suction control valve is large in correspondence with the opened blow-off control valve, The suction control valve is operated in the closing direction at a fast operating speed, and when the opening degree becomes small enough to cause surging, the suction control valve is controlled to be operated in the closing direction at a slow operating speed. A control valve operation method for a turbo compressor.
JP16044278A 1978-12-22 1978-12-22 Control valve operation method for turbo-compressor Granted JPS5584896A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16044278A JPS5584896A (en) 1978-12-22 1978-12-22 Control valve operation method for turbo-compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16044278A JPS5584896A (en) 1978-12-22 1978-12-22 Control valve operation method for turbo-compressor

Publications (2)

Publication Number Publication Date
JPS5584896A JPS5584896A (en) 1980-06-26
JPS6356440B2 true JPS6356440B2 (en) 1988-11-08

Family

ID=15715011

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16044278A Granted JPS5584896A (en) 1978-12-22 1978-12-22 Control valve operation method for turbo-compressor

Country Status (1)

Country Link
JP (1) JPS5584896A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04137121A (en) * 1990-09-28 1992-05-12 Omron Corp Coordinate input device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3658415B2 (en) * 1993-12-28 2005-06-08 株式会社 日立インダストリイズ Gas turbine equipment

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS595198Y2 (en) * 1974-06-06 1984-02-16 トウキヨウガス カブシキガイシヤ Cyclic plant

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04137121A (en) * 1990-09-28 1992-05-12 Omron Corp Coordinate input device

Also Published As

Publication number Publication date
JPS5584896A (en) 1980-06-26

Similar Documents

Publication Publication Date Title
US4068980A (en) Compressor startup control
US7140389B2 (en) Vacuum producing device
JPS6356440B2 (en)
JPH0739828B2 (en) Capacity control device for multi-stage compressor
US4936740A (en) Method of protecting a turbocompressor from surging by blowing off through a blow-off valve and device for carrying out the method
JPH0148399B2 (en)
JPH0511986Y2 (en)
JPS5939197Y2 (en) Turbo compressor control valve operating device
US4219312A (en) Volume control system for compressor unit
JPS622315Y2 (en)
JPS62258183A (en) Method of controlling capacity of screw compressor
JPS6211347Y2 (en)
JPH0261632B2 (en)
JPH0247820Y2 (en)
JPH01262389A (en) Operation controlling method for compressor
JPS59203878A (en) Guide vane controlling device for hydraulic machine
JPH0752390Y2 (en) Hydraulic supply device
JPS6217571A (en) Starting compensator for air conditioner
SU1020327A1 (en) Method of controlling air flow in aspiration system with several air intake units and local suction areas
JPH0340239B2 (en)
JPH02112679A (en) Volume controlling method for compressor
JPH0417830Y2 (en)
JPS62157229A (en) Controller for supercharger
KR0133641B1 (en) Refrigerant circuit of refigerator with pressure removing apparatus
JPS5569770A (en) Pump turbine control device