JPS6356306B2 - - Google Patents

Info

Publication number
JPS6356306B2
JPS6356306B2 JP61145671A JP14567186A JPS6356306B2 JP S6356306 B2 JPS6356306 B2 JP S6356306B2 JP 61145671 A JP61145671 A JP 61145671A JP 14567186 A JP14567186 A JP 14567186A JP S6356306 B2 JPS6356306 B2 JP S6356306B2
Authority
JP
Japan
Prior art keywords
titanium
nitrogen gas
product
nitriding
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP61145671A
Other languages
Japanese (ja)
Other versions
JPS634052A (en
Inventor
Seizo Nakamura
Giichi Tsutsui
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ohara Inc
Original Assignee
Ohara Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ohara Inc filed Critical Ohara Inc
Priority to JP14567186A priority Critical patent/JPS634052A/en
Priority to DE19873705710 priority patent/DE3705710A1/en
Priority to US07/018,312 priority patent/US4768757A/en
Publication of JPS634052A publication Critical patent/JPS634052A/en
Publication of JPS6356306B2 publication Critical patent/JPS6356306B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は歯科用製品などのチタン製品の表面窒
化処理装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a surface nitriding apparatus for titanium products such as dental products.

〔従来の技術〕[Conventional technology]

従来、チタン製品の表面を窒化処理する方法と
しては、例えば特公昭56―44148号で代表される
純チタン又はαチタン合金の表面窒化方法が存在
する。この表面窒化方法では、一つの庫内でチタ
ン窒化物粉末と純チタン又はαチタン合金を接触
させた状態で窒素ガスを供給し、790℃から880℃
程度の加熱を行いながら、チタン製品の周りに存
在させたチタン窒化物の粉末で被処理用の純チタ
ンなどの表面を窒化処理するものである。又、他
の方法として、窒素ガスを処理すべきチタン製品
に加熱状態下で接触させるガス窒化法が存在す
る。
Conventionally, as a method for nitriding the surface of titanium products, there is a method for nitriding the surface of pure titanium or α-titanium alloy, as typified by, for example, Japanese Patent Publication No. 44148/1983. In this surface nitriding method, nitrogen gas is supplied while titanium nitride powder and pure titanium or α-titanium alloy are in contact with each other in one chamber, and the temperature is increased from 790°C to 880°C.
While heating the titanium product to a certain degree, the surface of the pure titanium to be treated is nitrided using titanium nitride powder that is present around the titanium product. Another method is gas nitriding, in which nitrogen gas is brought into contact with the titanium product to be treated under heated conditions.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、前述の第1の方法においては、チタン
窒化物を用いて純チタン又はαチタン合金の表面
に互いの反応により窒化物を作る構成の為、その
処理時間が長くかかるという欠点を有している。
又、第2のガス窒化法によれば、窒素ガス中に存
在する酸素や水素分の除去の為に、大型で且コス
ト的に大となる装置を必要とし、一般のローコス
ト化、汎用化という意味では阻害する原因となつ
ている。とりわけ窒素ガス中に水素や酸素分が残
存している時には、これらが処理すべき純チタン
やαチタン合金表面と反応して表面強度を変化さ
せたり、又はその着色を所望の色彩から他の色彩
へ変化させる傾向がある。
However, the first method described above has the disadvantage that it takes a long time to process because titanium nitride is used to form nitrides on the surface of pure titanium or α-titanium alloy through mutual reaction. There is.
In addition, the second gas nitriding method requires large and costly equipment to remove oxygen and hydrogen present in nitrogen gas, making it difficult to achieve general low cost and general use. In a sense, it is a cause of hindrance. In particular, when hydrogen and oxygen components remain in the nitrogen gas, these may react with the pure titanium or alpha titanium alloy surface to be treated, changing the surface strength or changing the color from the desired color to another color. There is a tendency to change to

本発明は、このような従来の純チタンやチタン
合金等のチタン製品の表面窒化方法における、一
つは装置が高額となり複雑化することを単純化せ
んとするとともに、処理時間を短時間で可能と
し、窒化処理されたチタン製品の表面状態も良好
なチタン製品の窒化処理装置を提供せんとするも
のである。
The present invention aims to simplify the conventional surface nitriding method for titanium products such as pure titanium and titanium alloys, which requires expensive and complicated equipment, and also to shorten the processing time. It is an object of the present invention to provide a nitriding apparatus for titanium products in which the surface condition of the nitrided titanium products is also good.

〔問題点を解決するための手段〕[Means for solving problems]

本発明に係るチタン製品の窒化処理装置は、こ
のような問題点に鑑み発明されたもので、窒素ガ
ス供給手段に連結した流入口側から真空手段に関
係づけガス排出をする為の流出口への一つのガス
流路手段を作成し、前記ガス流路手段に配設した
容器内部に外周面に開孔を設けたガス分配管を内
装し、該ガス分配管と前記容器内面との間の空間
を窒化処理用チタン製品配置部とし、該製品配置
に設置した窒化処理用チタン製品と前記ガス分配
管の開孔表面との距離をそれぞれ均しくするとと
もにガス分配管及び製品配置部をガス流路の一部
とし、前記製品配置部又は製品配置部とは独立し
てガス流路にチタン小片又はチタン合金小片を内
蔵した窒素ガスフイルターを設け、該窒素ガスフ
イルターと前記窒化処理用チタン製品配置部とに
加熱手段を配してなることを特徴とする。
The nitriding apparatus for titanium products according to the present invention was invented in view of the above-mentioned problems, and it connects the inlet connected to the nitrogen gas supply means to the outlet connected to the vacuum means and discharges the gas. One gas flow path means is created, a gas distribution pipe with an opening on the outer peripheral surface is installed inside the container disposed in the gas flow path means, and a gas distribution pipe with an opening on the outer peripheral surface is installed between the gas distribution pipe and the inner surface of the container. The space is used as a nitriding titanium product placement area, and the distance between the nitriding titanium product installed in the product placement and the aperture surface of the gas distribution pipe is equalized, and the gas distribution pipe and product placement area are connected to the gas flow. A nitrogen gas filter having a built-in small piece of titanium or a small piece of titanium alloy is provided in the gas flow path as a part of the product placement part or independently of the product placement part, and the nitrogen gas filter and the titanium product for nitriding treatment are arranged. It is characterized in that a heating means is arranged in both parts.

〔作用〕[Effect]

本発明の構成は上述のとおりであり、窒素ガス
供給手段と真空手段によつて連続的にフローされ
る窒素ガスを加熱手段により加熱状態下で流路手
段に設けられた窒素ガスフイルターに内蔵された
チタン小片又はチタン合金小片に接触させて窒素
ガス中に含まれる水素や酸素分を除去した後、純
粋な窒素ガス状態としてこの窒素ガスを加熱状態
下でチタン製品配置部に配置した窒化処理用チタ
ン製品の表面と接触させて、その表面に窒化物層
を形成し、窒化チタン製品を得るものである。
The structure of the present invention is as described above, and the nitrogen gas continuously flowed by the nitrogen gas supply means and the vacuum means is heated by the heating means and built into the nitrogen gas filter provided in the flow path means. For nitriding treatment, the hydrogen and oxygen contained in the nitrogen gas are removed by bringing it into contact with a small piece of titanium or a small piece of titanium alloy, and then the nitrogen gas is heated to form a pure nitrogen gas and placed in the titanium product placement area. A titanium nitride product is obtained by contacting the surface of a titanium product to form a nitride layer on the surface.

〔実施例〕〔Example〕

本発明の詳細を更に図面に示した実施例にて説
明する。
The details of the present invention will be further explained with reference to embodiments shown in the drawings.

第1図は、本窒化処理装置の1実施例の説明図
で、処理炉1として、基板2上面に設けた凹所
2′に、有蓋管体の下端縁外向きに形成した鍔部
4′をパツキン部材3を介して密閉状態に設置し
て外装管4とし、該外装管4内部の基板2の中央
には、上端周縁から外向きに鍔部5′を形成した
支持管体5を配し、該支持管体5上端面には、有
底の底部中央を下方へ開口した管体を配設して容
器6とし、前記支持管5の内側、及び外側位置の
基板2にそれぞれ外部へ通ずる開口を設けてそれ
ぞれ流出口8、流入口7とし、該流入口7から外
装管4と容器6との間の空間、及び容器6、支持
管5内を経て流出口8へかけての一連の流路を形
成し、前記容器6内部には、外周面に開孔19を
設けたガス分配管18を内装し、該ガス分配管1
8と容器6内面との間の空間を窒化処理用チタン
製品配置部aとしてガス分配管18及び製品配置
部aをガス流路の一部としている。又、流入口7
には窒素ガス供給手段としての窒素ガスボンベ1
0を絞り弁11を経てパイプ9で連結し、流出口
8には、真空手段としての真空ポンプ12及び減
圧ポンプ13をそれぞれバルブ14及び絞り弁1
5を経てパイプ16で連結して処理炉1内のガス
を吸引可能としており、窒素ガスを窒素ガスボン
ベ10から処理炉1内へ順次供給しうる流路を形
成している。又、前記処理炉1内の外装管4の周
囲には処理炉1内を処理温度まで加熱する為の加
熱手段17を配してなるものである。本実施例に
おいては、容器6内の製品配置部aにチタン又は
チタン合金小片を充填して窒素ガスフイルターf
とするとともに、前記チタン又はチタン合金小片
内に窒化処理用チタン製品Tを埋設することによ
り窒素ガスフイルターfとしてのチタン又はチタ
ン小片をチタン製品配置部内で支持するための支
持部材としても用いている。
FIG. 1 is an explanatory diagram of one embodiment of the present nitriding processing apparatus, in which a flange 4' is formed in a recess 2' provided on the upper surface of a substrate 2, and a flange 4' is formed outward at the lower end of a covered tube, as a processing furnace 1. is installed in a sealed state via a packing member 3 to form an exterior tube 4, and a support tube body 5 having a flange 5' formed outward from the upper end periphery is disposed at the center of the base plate 2 inside the exterior tube 4. A container 6 is provided on the upper end surface of the support tube 5, with the center of the bottom opening downward. Openings that communicate with each other are provided as an outflow port 8 and an inflow port 7, respectively, and a series from the inflow port 7 to the space between the outer pipe 4 and the container 6, through the container 6 and the support pipe 5, and to the outflow port 8. A gas distribution pipe 18 having an opening 19 on the outer peripheral surface is installed inside the container 6, and the gas distribution pipe 1
8 and the inner surface of the container 6 is used as a nitriding titanium product placement part a, and the gas distribution pipe 18 and the product placement part a are part of the gas flow path. Also, inlet 7
A nitrogen gas cylinder 1 is used as a nitrogen gas supply means.
0 is connected by a pipe 9 via a throttle valve 11, and a vacuum pump 12 and a pressure reducing pump 13 as vacuum means are connected to the outlet 8 through a valve 14 and a throttle valve 1, respectively.
5 and are connected by a pipe 16 so that the gas inside the processing furnace 1 can be sucked, forming a flow path through which nitrogen gas can be sequentially supplied from the nitrogen gas cylinder 10 into the processing furnace 1. Further, heating means 17 for heating the inside of the processing furnace 1 to the processing temperature is arranged around the exterior tube 4 inside the processing furnace 1. In this embodiment, the product placement part a in the container 6 is filled with titanium or titanium alloy small pieces, and the nitrogen gas filter f is
In addition, by embedding the titanium product T for nitriding treatment in the titanium or titanium alloy small piece, it is also used as a support member for supporting the titanium or titanium small piece as the nitrogen gas filter f in the titanium product placement part. .

上記の窒化処理装置を使用してのチタン製品の
窒化処理の操作は、まず窒化用チタン製品配置部
a及び窒素ガスフイルターfとしての容器6内に
充填されたチタン又はチタン合金小片内に窒化処
理用チタン製品Tを、前記ガス分配管18に設け
た開孔19からの距離が略均しくなるように埋没
する。次いで窒素ガスボンベ10の絞り弁11を
閉じた状態で真空ポンプ12にて処理炉1内を高
真空に減圧した後バルブ14を閉じ、絞り弁11
を開放して窒素ガスボンベ10より処理炉1内に
窒素ガスを封入する。この減圧、窒素ガス封入操
作を2〜3回繰り返し、処理炉1内の空気をでき
るだけ排除するとともに加熱手段により、処理炉
1内を所定処理温度、例えば700℃〜880℃程度に
加熱し、しかる後窒素ガスボンベ10に連結した
絞り弁11を調節して窒素ガスを供給すると同時
に、絞り弁15を調節しながら減圧ポンプ13を
作動させ、例えば300〜数Torrの減圧状態で窒素
ガスをフローさせ窒化処理を行うものである。而
して、窒素ガスボンベ10から流入口7を経て処
理炉1へ導入された窒素ガスは外装管4周囲の加
熱手段17によつて予め予熱されることにより活
性化され、先ず容器6内の窒素ガスフイルターf
としてのチタン又はチタン合金小片と接触して窒
素ガス中に含まれている酸素や水素等の不純物が
除去され、純粋な窒素ガスとしてチタン製品Tと
接触することによりチタン製品表面と反応し、該
チタン製品T表面に窒化物の被膜を形成するもの
である。又、窒素ガスは、供給手段としての窒素
ガスボンベ10と真空手段としての減圧ポンプ1
3によつてフローさせることにより、常にチタン
製品には新鮮な窒素ガスが接触するので、より良
好な処理表面を形成しうるものである。尚、処理
時の窒素ガス圧を上述の如く300〜数Torrに調節
することにより、チタン製品の窒化処理表面を良
好にするものである。又、操作手順としては、窒
化処理操作初期において上述のとおり処理炉1内
を真空ポンプ12で減圧し高真空にした状態で窒
素ガスを導入したり、又は窒素ガスを流入させ通
過させながら処理炉1内を窒素ガス雰囲気にする
方法等が採用される。又、加熱も処理炉1内を窒
素ガス雰囲気にした後に加熱したり、又は予め処
理炉1内を昇温させておき、この状態で処理用部
材としてのチタン製品Tを挿入し、且つ窒素ガス
を供給したりすることも任意にしうることであ
る。尚、本実施例では真空手段として真空ポンプ
12と減圧ポンプ13を併用することにより、処
理開始時の処理炉1内の窒素置換を迅速に行い且
つ処理時の窒素ガスのフローを容易に調節しうる
ようにしているが、この真空ポンプ12及び減圧
ポンプ13を一つのポンプで併用することもでき
る。更に、本実施例のように処理炉1内をたせ型
2重構造とすれば、加熱手段17による窒素ガス
の予熱活性化及びチタン製品Tとの反応をより効
果的にしうるものであり、又、基板2内を水冷構
造としてもよい。
The operation of nitriding a titanium product using the above-mentioned nitriding equipment is performed first by nitriding small pieces of titanium or titanium alloy filled in a container 6 serving as a nitriding titanium product placement part a and a nitrogen gas filter f. The titanium product T is buried so that the distance from the opening 19 provided in the gas distribution pipe 18 is approximately equal. Next, with the throttle valve 11 of the nitrogen gas cylinder 10 closed, the pressure inside the processing furnace 1 is reduced to high vacuum using the vacuum pump 12, and then the valve 14 is closed, and the throttle valve 11 is
is opened and nitrogen gas is filled into the processing furnace 1 from the nitrogen gas cylinder 10. This depressurization and nitrogen gas filling operation is repeated 2 to 3 times to eliminate as much air as possible inside the processing furnace 1, and the heating means heats the inside of the processing furnace 1 to a predetermined processing temperature, for example, about 700°C to 880°C. After adjusting the throttle valve 11 connected to the nitrogen gas cylinder 10 to supply nitrogen gas, at the same time operating the pressure reducing pump 13 while adjusting the throttle valve 15, the nitrogen gas is flowed under a reduced pressure of, for example, 300 to several Torr to perform nitriding. It performs processing. The nitrogen gas introduced into the processing furnace 1 from the nitrogen gas cylinder 10 through the inlet 7 is activated by being preheated by the heating means 17 around the outer tube 4, and first the nitrogen in the container 6 is activated. gas filter f
Impurities such as oxygen and hydrogen contained in the nitrogen gas are removed by contact with titanium or titanium alloy small pieces, and when it comes into contact with the titanium product T as pure nitrogen gas, it reacts with the surface of the titanium product, and the nitrogen gas reacts with the surface of the titanium product. A nitride film is formed on the surface of the titanium product T. Further, nitrogen gas is supplied by a nitrogen gas cylinder 10 as a supply means and a decompression pump 1 as a vacuum means.
By flowing through step 3, fresh nitrogen gas is always in contact with the titanium product, so that a better treated surface can be formed. By adjusting the nitrogen gas pressure during the treatment to 300 to several Torr as described above, the nitrided surface of the titanium product can be improved. In addition, as for the operating procedure, as mentioned above, at the beginning of the nitriding process, the pressure inside the processing furnace 1 is reduced to a high vacuum using the vacuum pump 12, and nitrogen gas is introduced, or nitrogen gas is introduced and passed through the processing furnace. A method of creating a nitrogen gas atmosphere inside 1 is adopted. In addition, the heating may be performed after the inside of the processing furnace 1 is made into a nitrogen gas atmosphere, or the inside of the processing furnace 1 may be heated in advance, and in this state, the titanium product T as a processing member is inserted, and the nitrogen gas atmosphere is It is also possible to supply it as desired. In this embodiment, by using a vacuum pump 12 and a decompression pump 13 together as vacuum means, nitrogen replacement in the processing furnace 1 at the start of processing can be quickly performed and the flow of nitrogen gas during processing can be easily adjusted. However, the vacuum pump 12 and the decompression pump 13 can also be used together in one pump. Furthermore, if the inside of the processing furnace 1 has a vertical double structure as in this embodiment, the preheating activation of the nitrogen gas by the heating means 17 and the reaction with the titanium product T can be made more effective. , the inside of the substrate 2 may have a water-cooled structure.

ここで、窒素ガスフイルターfとして用いるチ
タン小片又はチタン合金小片は、加熱により窒素
ガス中の酸素分等と接触して燃焼しない程度の大
きさ又は形状のものが使用されなければならな
い。即ち、窒化が通常700℃程度から開始するの
で、この温度程度でチタン又はチタン合金小片が
窒素ガス中の酸素分等と接触することにより、燃
焼を始めない大きさであることが必要であり、そ
の大きさとしては100メツシユ程度であるが、更
には窒素ガス中の酸素、水素等をチタン製品表面
より窒素ガスフイルターfとしてのチタン又はフ
エロチタン小片と反応させ易くするためには、窒
素ガスフイルターfの温度をチタン製品配置部a
の温度より高く設定する方が有利であり、そのた
めに80メツシユよりも大きなチタン又はフエロチ
タン小片を用いることがより好ましい使用態様と
いえる。このような大きさのものを使用すること
により、チタン製品表面における窒化処理温度よ
り高い温度の加熱状態下の窒素ガスと接触して
も、窒素ガス中の酸素や水素成分と接触して燃焼
することを阻害するに充分な状態を与えるのであ
る。更に、窒素ガスフイルターfを窒化用チタン
製品配置部a内に設けた場合には、窒素ガスがチ
タン小片又はチタン合金小片間を通過し窒化処理
用チタン製品Tとが容易に接触する為に、チタン
小片はなるべく細かい小片でない状態、即ち通気
性が良い状態が望まれるところである。この意味
からは、60メツシユよりも大きな小片、例えば35
メツシユ乃至10mm程度の小片を用いれば、チタン
の窒化初期の温度が約700℃程度で又変形点が900
℃弱であることから、窒素ガスと接触しても燃焼
が開始することもなく、又これらチタン又はチタ
ン合金小片のフイルターとしての寿命を延長する
ことができより好ましい使用態様といえる。尚、
チタン小片としては、純チタンの板状のもの、切
屑及びスポンジチタン等、又チタン合金小片とし
てフエロチタン小片等が使用しうる。
Here, the small titanium pieces or small titanium alloy pieces used as the nitrogen gas filter f must be of a size or shape that does not come into contact with the oxygen content in the nitrogen gas and burn when heated. That is, since nitriding usually starts at about 700°C, it is necessary that the titanium or titanium alloy small pieces be of a size that will not start burning due to contact with the oxygen content in nitrogen gas at about this temperature. Its size is about 100 meshes, but in order to make it easier for oxygen, hydrogen, etc. in the nitrogen gas to react with the titanium or ferrotitanium pieces as the nitrogen gas filter f from the surface of the titanium product, a nitrogen gas filter f is required. The temperature of titanium product placement part a
It is advantageous to set the temperature higher than , and therefore it is more preferable to use titanium or ferrotitanium pieces larger than 80 mesh. By using a material of this size, even if it comes into contact with nitrogen gas heated at a temperature higher than the nitriding temperature on the surface of the titanium product, it will come into contact with the oxygen and hydrogen components in the nitrogen gas and burn. It provides conditions sufficient to prevent this. Furthermore, when the nitrogen gas filter f is provided in the nitriding titanium product arrangement part a, the nitrogen gas passes between the titanium pieces or the titanium alloy pieces and easily comes into contact with the nitriding titanium product T. It is desired that the titanium pieces be as small as possible, that is, have good air permeability. In this sense, pieces larger than 60 meshes, e.g. 35
If a mesh or a small piece of about 10 mm is used, the initial temperature of titanium nitriding is about 700℃, and the deformation point is about 900℃.
Since the temperature is a little less than 0.degree. C., combustion will not start even if it comes into contact with nitrogen gas, and the life of these titanium or titanium alloy pieces as a filter can be extended, making this a more preferable usage mode. still,
As the titanium pieces, pure titanium plates, scraps, sponge titanium, etc. can be used, and as the titanium alloy pieces, ferrotitanium pieces etc. can be used.

又、上記実施例においては、容器6内の空間が
窒素ガスフイルターfとチタン製品配置部aとを
兼ねているが、第2図の如く容器6内の製品配置
部とは別に、外装管4と容器6との間の空間部を
窒素ガスフイルターfとしてチタン小片又はチタ
ン合金小片を充填してもよい。この場合には、該
第2図に示したように、チタン製品配置部aに粒
状、粉体状又は破砕片状部材、例えば石英ビーズ
又は破砕片等を支持部材sとしてチタン製品Tの
周囲に配すれば、該チタン製品Tに接触する窒素
ガスは、前記石英ビーズ間を通過してチタン製品
Tに接触する為チタン製品T表面全体にわたつて
均一に接触し、もつて窒化処理表面が均一状態と
なりより良好な表面状態の窒化チタン製品を得る
という効果を生ずるものである。このような支持
部材sとしては、上記石英ビーズ又は破砕片の他
に、窒化処理温度700〜880℃程度以上の耐熱性を
有するもの、例えばアルミナ、セラミツクス、バ
イコールガラス(高珪酸ガラス)等の粒状、粉体
状又は破砕片等のものを用いてもよいが、多孔質
で内部にガス等を含有し易いものはそれらのガス
が窒化用チタン製品と接触してチタン製品表面と
反応したりして、チタン製品表面に窒化物層以外
の被膜を形成したりするので除外される。
In the above embodiment, the space inside the container 6 also serves as the nitrogen gas filter f and the titanium product placement part a, but as shown in FIG. The space between the container 6 and the container 6 may be filled with small pieces of titanium or small pieces of titanium alloy as a nitrogen gas filter f. In this case, as shown in FIG. 2, a granular, powder-like, or crushed piece-like member, such as quartz beads or crushed pieces, is placed around the titanium product T as a support member s in the titanium product placement part a. When the nitrogen gas contacts the titanium product T, it passes between the quartz beads and comes into contact with the titanium product T, so that the nitrogen gas contacts the entire surface of the titanium product T, resulting in a uniform nitrided surface. This produces the effect of obtaining a titanium nitride product with a better surface condition. In addition to the above-mentioned quartz beads or crushed pieces, such support members s may include materials that have heat resistance at a nitriding temperature of approximately 700 to 880°C or higher, such as granular materials such as alumina, ceramics, and Vycor glass (high silicate glass). , powdered or crushed pieces may be used, but if the material is porous and easily contains gas etc., those gases may come into contact with the titanium product for nitriding and react with the surface of the titanium product. It is excluded because it forms a film other than a nitride layer on the surface of a titanium product.

又、本発明による窒化処理装置は、窒素ガスフ
イルターfを通過した後の窒素ガスを図示した如
くチタン製品配置部aとしての容器6内に側壁適
所に開孔19を設けたガス分配管18を内装し、
このガス分配管18からチタン製品配置部aへ窒
素ガスを供給するようになしたことにより、窒素
ガスをチタン製品Tの正面へ均一に接触させるこ
とを可能としてチタン製品表面に均一な窒化物層
を形成することができるのである。又、第2図の
如く窒素ガスフイルターfをチタン製品配置部a
と独立して設けた場合には、チタン製品配置部a
内のチタン製品T周囲に石英ビーズ等の支持部材
sを配することにより、窒素ガスのチタン製品表
面への接触をより均一にすることができ、処理表
面を均一で良好なものとしうるのである。
Further, the nitriding apparatus according to the present invention has a gas distribution pipe 18 in which the nitrogen gas after passing through the nitrogen gas filter f is provided with an opening 19 at an appropriate position in the side wall in the container 6 as the titanium product placement part a, as shown in the figure. interior,
By supplying nitrogen gas from this gas distribution pipe 18 to the titanium product placement part a, it is possible to uniformly contact the nitrogen gas to the front of the titanium product T, thereby forming a uniform nitride layer on the surface of the titanium product. can be formed. Also, as shown in Figure 2, the nitrogen gas filter f is placed in the titanium product placement area a.
If it is installed independently from the titanium product placement part a
By arranging support members such as quartz beads around the titanium product T in the interior, the contact of nitrogen gas to the titanium product surface can be made more uniform, and the treated surface can be made uniform and good. .

〔発明の効果〕〔Effect of the invention〕

以上の如く、本発明に係るチタンの窒化処理装
置は、窒素ガスを窒素ガス供給手段からガス流路
手段内を通つて真空手段へと順次フローさせ、加
熱状態下でフイルターに内蔵されたチタン又はチ
タン合金小片に接触させて窒素ガス中に含まれる
水素や酸素等を除去した後、純粋な窒素ガス状態
として加熱状態下でチタン製品配置部に配置した
窒化用チタン製品の表面に常に新鮮な窒素ガスを
窒化処理用チタン製品と接触させることにより、
簡単な装置で該チタン製品表面に短時間でしかも
均一な窒化物層を形成し、良好な窒化チタン製品
を提供しうるものである。更には、減圧状態で窒
素ガスをフローさせて窒化処理を行うことによ
り、チタン製品の窒化処理表面を良好にしうると
ともに、窒素ガスをガス分配管の開孔からチタン
製品表面に均一に接触させるようになしたことに
より、チタン製品に均一な窒化物層を形成しうる
のである。
As described above, the titanium nitriding apparatus according to the present invention sequentially flows nitrogen gas from the nitrogen gas supply means through the gas flow path means to the vacuum means, and under heated conditions, the titanium or After contacting a small piece of titanium alloy to remove hydrogen, oxygen, etc. contained in the nitrogen gas, fresh nitrogen is constantly applied to the surface of the titanium product for nitriding placed in the titanium product placement area under heating conditions as pure nitrogen gas. By bringing the gas into contact with titanium products for nitriding,
A uniform nitride layer can be formed on the surface of the titanium product in a short time using a simple device, and a good titanium nitride product can be provided. Furthermore, by performing nitriding treatment by flowing nitrogen gas under reduced pressure, it is possible to improve the nitrided surface of titanium products, and to ensure that the nitrogen gas comes into uniform contact with the surface of titanium products through the openings of the gas distribution pipe. This allows a uniform nitride layer to be formed on titanium products.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係るチタン製品の窒化処理装
置の1実施例を示す説明図、第2図は第1図にお
ける装置の処理炉内の他の実施例を示す説明図で
ある。 1:処理炉、2:基板、3:パツキン部材、
4:外装管、5:支持管体、6:容器、7:流入
口、8:流出口、9:パイプ、10:窒素ガスボ
ンベ、11:絞り弁、12:真空ポンプ、13:
減圧ポンプ、14:バルブ、15:絞り弁、1
6:パイプ、17:加熱手段、18:ガス分配
管、19:孔、T:チタン製品、a:チタン製品
配置部、f:窒素ガスフイルター、s:支持部
材。
FIG. 1 is an explanatory diagram showing one embodiment of the nitriding apparatus for titanium products according to the present invention, and FIG. 2 is an explanatory diagram showing another embodiment of the inside of the processing furnace of the apparatus in FIG. 1: Processing furnace, 2: Substrate, 3: Packing member,
4: Exterior pipe, 5: Support tube, 6: Container, 7: Inlet, 8: Outlet, 9: Pipe, 10: Nitrogen gas cylinder, 11: Throttle valve, 12: Vacuum pump, 13:
Decompression pump, 14: Valve, 15: Throttle valve, 1
6: pipe, 17: heating means, 18: gas distribution pipe, 19: hole, T: titanium product, a: titanium product placement part, f: nitrogen gas filter, s: support member.

Claims (1)

【特許請求の範囲】[Claims] 1 窒素ガス供給手段に連結した流入口側から真
空手段に関係づけガス排出をする為の流出口への
一つのガス流路手段を作成し、前記ガス流路手段
に配設した容器内部に外周面に開孔を設けたガス
分配管を内装し、該ガス分配管と前記容器内面と
の間の空間を窒化処理用チタン製品配置部とし、
該製品配置に設置した窒化処理用チタン製品と前
記ガス分配管の開孔表面との距離をそれぞれ均し
くするとともにガス分配管及び製品配置部をガス
流路の一部とし、前記製品配置部又は製品配置部
とは独立してガス流路にチタン小片又はチタン合
金小片を内蔵した窒素ガスフイルターを設け、該
窒素ガスフイルターと前記窒化処理用チタン製品
配置部とに加熱手段を配してなるチタン製品の窒
化処理装置。
1. Create one gas passage means from the inlet side connected to the nitrogen gas supply means to the outlet for discharging gas in relation to the vacuum means, and create a gas passage means inside the container disposed in the gas passage means. A gas distribution pipe with an opening provided on the surface is installed, and the space between the gas distribution pipe and the inner surface of the container is used as a titanium product placement part for nitriding treatment,
The distance between the titanium product for nitriding installed in the product arrangement and the aperture surface of the gas distribution pipe is made equal, and the gas distribution pipe and the product arrangement part are made part of the gas flow path, and the product arrangement part or A nitrogen gas filter incorporating a small piece of titanium or a small titanium alloy is provided in the gas flow path independently of the product placement part, and a heating means is arranged between the nitrogen gas filter and the titanium product placement part for nitriding. Product nitriding equipment.
JP14567186A 1986-02-24 1986-06-20 Nitriding treatment device for titanium product Granted JPS634052A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP14567186A JPS634052A (en) 1986-06-20 1986-06-20 Nitriding treatment device for titanium product
DE19873705710 DE3705710A1 (en) 1986-02-24 1987-02-23 METHOD FOR NITRATING THE SURFACE OF TITANIUM MOLDED PARTS, AND NITRATING TREATMENT DEVICE
US07/018,312 US4768757A (en) 1986-02-24 1987-02-24 Apparatus for nitriding surface of shaped article of titanium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14567186A JPS634052A (en) 1986-06-20 1986-06-20 Nitriding treatment device for titanium product

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP5868088A Division JPS63241157A (en) 1988-03-12 1988-03-12 Nitriding treatment of titanium product
JP5867988A Division JPS63241156A (en) 1988-03-12 1988-03-12 Nitriding treatment for titanium product

Publications (2)

Publication Number Publication Date
JPS634052A JPS634052A (en) 1988-01-09
JPS6356306B2 true JPS6356306B2 (en) 1988-11-08

Family

ID=15390392

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14567186A Granted JPS634052A (en) 1986-02-24 1986-06-20 Nitriding treatment device for titanium product

Country Status (1)

Country Link
JP (1) JPS634052A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4879135A (en) * 1972-01-24 1973-10-24
JPS5110135A (en) * 1974-07-16 1976-01-27 Yashica Co Ltd ANMONYAGASUOMOCHIITA CHITANNO CHITSUKAHOHO

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4879135A (en) * 1972-01-24 1973-10-24
JPS5110135A (en) * 1974-07-16 1976-01-27 Yashica Co Ltd ANMONYAGASUOMOCHIITA CHITANNO CHITSUKAHOHO

Also Published As

Publication number Publication date
JPS634052A (en) 1988-01-09

Similar Documents

Publication Publication Date Title
AU642248B2 (en) Casting of dental metals
EP2325146B1 (en) Method of making a silica crucible in a controlled atmosphere
US6156123A (en) Method and apparatus for gas phase diffusion coating of workpieces made of heat resistant material
JPS6356306B2 (en)
JPS63241157A (en) Nitriding treatment of titanium product
JPS63241156A (en) Nitriding treatment for titanium product
CA2159569C (en) Apparatus and method for continuous processing of granular materials using microwaves
TW202130438A (en) Method for manufacturing oxide-removed member and oxide removal device
JPS59217641A (en) Furnace for drawing device for optical fiber
US20030060116A1 (en) Method for producing a discharge lamp
JP2799172B2 (en) Vacuum heat treatment furnace
JPS6356305B2 (en)
JP2004085134A (en) Hot isotropic pressurization device and hot isotropic pressurization method
JP2707933B2 (en) Hot press furnace
JPH03291368A (en) Vacuum carburizing method and vacuum carburizing furnace
JPH04254432A (en) Method and device for drawing optical fiber
JPH09325108A (en) Heating and pressurizing test device
JPH04187705A (en) Manufacture of aluminum powder compression compact
JPS62244123A (en) Vapor growth device
JPS6320030A (en) Manufacturing apparatus for nonoxidized powder
JPH0699059A (en) Fluid bed device for chemical treatment of workpiece
JPS63202910A (en) Lamp annealer
JPS5849779Y2 (en) Powder leak prevention device for powder discharge valve for fluidized bed
JPH0712947B2 (en) Glass lens and mold cooling method
JPS60116701A (en) High-temperature high-pressure sintering device