JPS6356290B2 - - Google Patents

Info

Publication number
JPS6356290B2
JPS6356290B2 JP55022858A JP2285880A JPS6356290B2 JP S6356290 B2 JPS6356290 B2 JP S6356290B2 JP 55022858 A JP55022858 A JP 55022858A JP 2285880 A JP2285880 A JP 2285880A JP S6356290 B2 JPS6356290 B2 JP S6356290B2
Authority
JP
Japan
Prior art keywords
steel strip
hot
coil
present
minutes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55022858A
Other languages
Japanese (ja)
Other versions
JPS56119726A (en
Inventor
Kenichi Shinoda
Juichi Higo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP2285880A priority Critical patent/JPS56119726A/en
Publication of JPS56119726A publication Critical patent/JPS56119726A/en
Publication of JPS6356290B2 publication Critical patent/JPS6356290B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はフエライト系ステンレス鋼の熱間圧延
板に関するものであり、より具体的に熱延鋼帯の
焼鈍法の改良に関する。 一般に17%Cr鋼で代表されるSUS430などのフ
エライト系ステンレス鋼は、熱間圧延温度領域で
は(α+γ)2相混合組織となつており、熱間圧
延後の冷却過程においてγ相は変態する。このγ
相は冷却速度が小さな場合(α+炭化物)からな
るパーライトに変態するが冷却速度がきわめて大
きな場合マルテンサイトに変態し、それらの中間
の冷却速度ではベイニテイツクな中間段階組織に
変態する。すなわち冷却速度が大となるほど、γ
相は高硬度の組織に変態する。熱間圧延後コイル
に巻取られた熱間圧延鋼帯は、通常大気中で放冷
され室温まで持ち来たされるが、この間の冷却速
度は十分に小さく熱間圧延鋼帯の大部分では、熱
間圧延温度域で生成していたγ相は軟質なパーラ
イトに変態する。しかし、コイルの両エツジおよ
び内外巻取部(巻き始めと巻き終りの部分)にお
いては、大気と直接に接しているため、コイル中
心部に比べて冷却速度が大となつて中間段階組織
かマルテンサイトに変態する。このためコイルの
両エツジおよび内外巻部はコイル中心部に比べて
高硬度になる。 このようにコイルの両エツジおよび内外巻部が
高硬度となつた熱間圧延鋼帯は、焼鈍を施さずに
冷間圧延を行なうには不向きである。すなわち高
硬度のコイルエツジおよび内外周を含む鋼帯を冷
間圧延する場合、圧延荷重が大となつて冷間圧延
作業性の劣化をきたすのみでなく、硬度の不均一
性による冷間圧延後の板厚変動を大きくし、さら
には冷間圧延において張力の作用するコイルエツ
ジ部が硬化しているためクラツクを生じ易く、冷
間圧延を途中で中止せねばならないことがしばし
ば発生する。 このため、熱間圧延鋼帯は、700〜900℃の範囲
で数時間〜十数時間保持するベル型炉焼鈍を施し
たのち冷間圧延工程に投入するのが普通である。
すなわちベイナイトやマルテンサイトを含む硬質
組織を再加熱してα+炭化物からなる軟質な組織
に調質し、同時にコイル内の均一性を図つて、冷
間圧延に適した熱間圧延鋼帯とするものである。 しかし、ベル型炉での焼鈍は、一端冷却された
鋼帯を700〜900℃の高温に再加熱するものであ
り、それに要するエネルギーは多大のものがある
ばかりなく、昇温および降温時間を含めると実際
の焼鈍時間には1〜数日間の長時間を必要として
いる。 このようにベル型炉によるフエライト系ステン
レス鋼熱間圧延鋼帯の焼鈍は、十分効果のあるま
た工業的にも安定したものではあるが、多大のエ
ネルギーと時間を要するという問題を持つてお
り、ベル型炉での焼鈍を省略できれば大きなメリ
ツトが生じることが明らかであり、本発明者等は
ベル型炉焼鈍の省略を検討した。 本発明者等が注目した点は、フエライト系ステ
ンレス鋼熱間圧延鋼帯において硬質となるのは、
巻取り後の冷却で冷却速度の大きいコイルエツジ
および内外巻部のみであり、きわめて緩慢な冷却
によりパーライト相に変態したコイル中心部は、
冷却圧延が十分に可能な程度に軟質であるという
点である。すなわち巻取られた直後のコイルを再
加熱することによつて、コイルエツジおよび内外
巻部の冷却を、軟質な変態生成物であるパーライ
トへの変態が終了するように、遅滞させればよ
く、コイルエツジおよび内外巻部のみ軟化させれ
ば冷間圧延が十分に可能な熱間圧延鋼帯が得られ
る筈である。 以上の観点から、本研究者らは多くの実験を行
なつて研究を重ね、ベル型炉での焼鈍を行なうこ
となく、軟質で冷間圧延が十分に可能な熱間圧延
鋼帯の製造方法を見出した。 即ち本発明によれば、フエライト系ステンレス
鋼熱間圧延鋼帯の製造方法において、通常の熱間
圧延を終了して、550〜950℃の温度でコイルに巻
取つた熱間圧延鋼帯を巻取り終了後20分以内に
650〜850℃の温度に10〜30分間保持してから放冷
することを特徴とするコイルエツジおよび内外巻
部を含む鋼帯全体が軟質化した熱間圧延鋼帯の製
造方法が提供される。 本発明の方法は、熱間圧延温度からの冷却の過
程でγ相の変態を起こすフエライト系ステンレス
鋼一般に適用できることは当業者のよく理解する
ところであろう。しかしながらこの方法を適用し
て充分な効果を挙げるために望ましい素材は、
C:0.005〜0.15%、Si:1.0%以下、Mn:2.0%
以下、Cr:14.0〜20.0%、N:0.10%以下を含み
残部Feおよび不可避的不純物よりなる鋼である。 この組成をいくらか外れても、またいわゆる微
量添加成分と称される、金属元素が添加されて
も、γ相変態が本質的に影響を受けない限り、本
発明方法を適用することができる。 次に実験に基づいて本発明の方法を詳細に説明
する。 第1図は、C:0.068%、Si:0.53%、Mn:
0.26%、Cr:16.51%、N:0.013%のSUS430鋼熱
間圧延板を1000℃で加熱後600〜900℃で恒温保持
し、その後急冷したときの、恒温保持時間に対す
る硬度の変化を示したものである。恒温保持時間
の延長にともなつて、軟質なパーライトへの変態
量が増加するため、硬度は低下する。特に650〜
850℃での恒温保持では、10〜30分の保持時間で
大部分のγ相はパーライトに変態して低硬度を示
すようになる。 上の実験結果は、熱間圧延後の鋼帯を650〜850
℃で10〜30分保持すれば、γ相の大部分がパーラ
イトに変態することを示すものであり、冷却速度
の比較的大きなコイルエツジおよび内外巻部にお
いても、巻取直後再加熱して、上にあげた条件を
満足させれば、十分に軟化した鋼帯を得ることが
可能なことを示すものである。巻取直後のコイル
を再加熱してコイルエツジおよび内外巻部を650
〜850℃に10〜30分間保持するエネルギーと時間
は、きわめて少ない。 なぜならば、巻取直後の熱間圧延鋼帯はもとも
と500℃以上の温度を有しているからであり、さ
らには冷却速度の大きいコイルエツジおよび内外
巻部は、コイルを加熱するときには逆に外部から
の熱を取り入れ易く、巻取後再加熱するまでに
650℃以下に温度が低下した場合でも短時間内に
650℃以上に再加熱できるからである。 すなわち本発明によるフエライト系ステンレス
鋼熱間圧延鋼帯の製造方法においては、通常の熱
間圧延を終了し550〜950℃で巻取つた熱間圧延鋼
帯を、巻取終了後20分以内望ましくは10分以内に
加熱炉に装入して650〜850℃で10〜30分間保持
し、その後は加熱炉より取り出して放冷する。上
に述べたような再加熱を行なうことにより、コイ
ルエツジおよび内外巻部の冷却が遅滞しこの間に
熱間圧延時に生成したγ相の大部分はパーライト
に変態し、軟質で冷間圧延が十分に可能な熱間圧
延鋼帯がえられる。 なお、再加熱に用いる加熱炉は、熱量、時間と
もに多くを必要としないから、トンネル炉のよう
な簡便なもので十分であり、設置面積も多くを要
さず、巻取機とコイルヤードをむすぶコンベア上
に設ければよい。 次に本発明において、素材の好ましい成分範囲
を限定した理由を述べる。 Cはオーステナイト形成元素であり、熱間圧延
鋼帯の硬度を高める元素であるが、0.005%未満
では本発明の再加熱を行なわずとも熱間圧延鋼帯
の硬度は十分に低く、0.15%を越えては、本発明
の再加熱を行なつても十分に軟化させることが不
可能となるため0.005〜0.15%と限定される。 Siはフエライト形成元素でγ相の量を減少させ
るが、過剰に添加すると延靭性を損うため1%以
下とした。 Mnは靭性を向上させるが、オーステナイト形
成元素で、γ相の量を増加させ過剰に添加する
と、本発明の再加熱を行なつても十分な軟化が得
られないが本発明の目的には2.0%まで許容され
る。 Crは、耐食性および耐酸化性を附与するステ
ンレス鋼としての重要な元素であるが本発明の目
的には、直接関係がなくSUS430の規格より広く
14.0〜20%の範囲で含まれることができる。14.0
%未満では両特性ともに大きく低化し、20.0%を
越えると加工性が劣化する。 Nは、Cと同様な作用するが、0.10%を越える
と本発明の再加熱を行なつても十分な軟化が得ら
れないため0.10%以下とした。 P、S、Ni、O等はこの種の鋼に普通含有さ
れる量で存在していて支障ない。 次に加熱条件についての限定の理由を述べる。
熱間圧延後の巻取温度を550〜950℃としたのは
550℃未満では、再加熱してγ相のパーライトへ
の変態を終了させるのに多くの加熱量と時間を要
するようになるためであり、また、再加熱時の加
熱量を少なくするためには、巻取温度が高い方が
好ましいが、950℃を越える場合フエライト粒の
粗大化等好ましくない結果を引きおこすためであ
る。 再加熱温度を650〜850℃と限定したのは、650
℃未満および850℃を越えた温度では、γ相のパ
ーライトへの変態速度が小となり、650〜850℃の
範囲で再加熱するのがもつとも短時間内にパーラ
イト変態を終了させて鋼帯の軟化が図れるからで
ある。 巻取り後の再加熱の開始を巻取り後20分以内と
限定したのは、巻取り後20分を越えて大気放冷さ
れたコイルではコイルエツジおよび内外巻部の温
度が500℃以下となり、再加熱において多大の加
熱量と時間が必要となる。この結果、熱間圧延ピ
ツチにみあう再加熱炉は巨大なものとなり、経済
的な意味が失なわれる。第2図は、板厚3.6mm、
幅1000mmに熱間圧延後730℃で巻外径1500mmとし
たコイルについて、巻取り後大気放冷した場合の
コイルエツジ部および外巻部の温度変化を示した
ものであるが、コイル外巻部は巻取り後20分間の
大気放冷で500℃に低下している。くりかえすが、
本発明の主眼は短時間加熱することでコイルエツ
ジおよび内外巻部の軟質化をえようとするところ
にあり、再加熱前のコイルの温度低下が大となつ
て、再加熱に多量の熱量と長時間が必要となれば
工業的意味が失なわれる。このことから通常のコ
イルで再加熱開始時のコイルの温度を500℃以上
となるよう巻取り後20分以内と限定した。 再加熱時間を10〜30分と限定したのは、第1図
に示すように、650〜850℃の加熱においては、10
分未満では十分な硬度の低下が得られないためで
あり、30分を越えて加熱してもそれ以上の硬度の
大きな低下は得られないためである。なお、再加
熱炉の容量の面からも加熱時間は短いほど好まし
い。 次に本発明の実施例と比較例をあげて本発明の
効果を説明する。第3図はC:0.063%、Si:0.55
%、Mn:0.26%、Cr:16.42%、N:0.023%を化
学成分とするSUS430鋼の熱間圧延において、通
常の熱間圧延を行なつて板厚3.6mm、幅100cmと
し、巻取後(巻取直径1500mm)再加熱しない比較
例1(第3図―a)と、巻取後再加熱した本発明
実施例(第3図―bおよびc)の、熱間圧延鋼帯
各位置の硬度を示す図である。 実験条件は下記のとおりである。 比較例1:650℃で巻取つた後、大気放冷した。 本発明実施例1:700℃で巻取つた後、8分後に
加熱炉に装入し、コイルエツジが720℃で20分
間保持されるように再加熱し、その後大気放冷
した。 本発明実施例2:710℃で巻取つた後、7分後に
加熱炉に装入し、コイルエツジが680℃で20分
間保持されるように再加熱し、その後大気放冷
した。 比較例1では、中央巻部のコイル巾方向中央部
は約Hv205であるが、コイルエツジおよび内外巻
部はHv240〜300の高硬度となつており、このま
までは冷間圧延を行なうに適さないものである。
しかし、実施例1および2ではコイルエツジおよ
び内外巻部での大きな軟化が得られ、コイル全体
がHv200以下となりベル型炉での焼鈍を行なうこ
となくこのままで冷間圧延が十分に可能である。 第1表は、第3図に示した本発明実施例1およ
び2と比較例1の熱間圧延鋼帯の硬度と引張特性
を、また比較例1については、ベル型炉で800℃
×10時間の焼鈍を施した焼鈍鋼帯の硬度と引張特
性を示す。 比較例1の熱間圧延鋼帯では伸びがいずれの位
置でも20%以下であり延性が低いが、本発明実施
例1および2では大幅な強度の低下と延性の向上
がみられ、コイルエツジおよび内外巻部において
も20%以上の伸びを示している。比較例1の熱間
圧延鋼帯をベル型炉にて焼鈍した焼鈍鋼帯ではビ
ツカース硬度Hv162〜163で、伸びが30%近くで
ありごく短時間の加熱しか行つていない本発明の
熱間圧延鋼帯に長時間の加熱を行つた焼鈍鋼帯と
全く同じ硬度と延性を期待するのは無理である。
しかし、冷間圧延を行なううえでは本発明で得ら
れた軟化で十分である。 第2表は、本発明実施例1および2と比較例1
につき、2回冷延の工程で製造した0.4mm厚さの
冷延板製品の硬度と引張特性を示す表である。工
程の概略は下記のとおりである。 本発明実施例 1および2 熱間圧延鋼帯7〜8分→再加熱(680〜720℃×
20分)→冷間圧延(3.6mm→1.0mm)→中間焼鈍→
冷間圧延(1.0mm→0.4mm)→仕上焼鈍 比較例 1 熱間圧延鋼帯→ベル型炉焼鈍(800℃×10時間)
→冷間圧延(3.6mm→1.0mm)→中間焼鈍→冷間圧
延(1.0mm→0.4mm)→仕上熱鈍 中間焼鈍はいずれも850℃×1分、仕上焼鈍は
いずれも810℃×1分とした。 上記の工程からも明らかなように本発明実施例
1および2ではベル型炉での焼鈍工程が省略さ
れ、工程の短縮がなされているが、第2表に示す
ように、冷延板製品の機械的性質は本発明実施例
と比較例で差がなく、本発明法によつても従来法
と遜色のない製品を製造できることが明らかであ
る。 なお本発明実施例1および2における冷間圧延
においては、特に作業上の問題を発生することな
く、ベル型炉で焼鈍した焼鈍鋼帯を冷間圧延する
場合と同等に冷間圧延できた。 第4図は、C:0.112%、Si:0.38%、Mn:
0.68%、Cr:16.42%、N:0.031%を化学成分と
するSUS430鋼の熱間圧延において、通常の熱間
圧延を行なつて板厚3.6mm、幅1000mmとし、巻取
後(巻取直径1500mm)再加熱しない比較例2(第
4図―a)と、巻取後再加熱した本発明実施例3
(第4図―b)の熱間圧延鋼帯各位置の硬度を示
す図である。 実験条件は下記のとおりである。 比較例2:670℃で巻取つた後大気放冷した。 本発明実施例3:710℃で巻取つた後、7分後に
加熱炉に装入し、コイルエツジが720℃で20分
間保持されるように再加熱し、その後大気放冷
した。 第3図に示した化学成分に較べてオーステナイ
ト形成元素の含有量が高く、比較例2の熱間圧延
鋼帯においては、コイルエツジおよび内外巻部が
Hv300〜360の高硬度となる。しかし本発明実施
例3では再加熱を行なつたことにより、コイルエ
ツジおよび内外巻部の硬度が低下し、鋼帯全体が
おおよそHv220以下に軟化できており、冷間圧延
が可能な熱間圧延鋼帯が得られている。
The present invention relates to a hot-rolled sheet of ferritic stainless steel, and more specifically to an improvement in an annealing method for hot-rolled steel strip. Generally, ferritic stainless steel such as SUS430, which is typified by 17% Cr steel, has a (α+γ) two-phase mixed structure in the hot rolling temperature range, and the γ phase transforms during the cooling process after hot rolling. This γ
When the cooling rate is low, the phase transforms to pearlite (α+ carbide), when the cooling rate is extremely high, it transforms to martensite, and at intermediate cooling rates, it transforms to a bainitic intermediate stage structure. In other words, as the cooling rate increases, γ
The phase transforms into a highly hard structure. After hot rolling, the hot rolled steel strip wound into a coil is normally left to cool in the atmosphere and brought to room temperature, but the cooling rate during this period is sufficiently slow for most hot rolled steel strips. , the γ phase formed in the hot rolling temperature range transforms into soft pearlite. However, since both edges of the coil and the inner and outer winding parts (the beginning and end of winding) are in direct contact with the atmosphere, the cooling rate is faster than that at the center of the coil, causing the intermediate stage structure to deteriorate. Transform into a site. Therefore, both edges of the coil and the inner and outer windings have higher hardness than the center of the coil. A hot-rolled steel strip in which both edges of the coil and the inner and outer windings have high hardness is not suitable for cold rolling without annealing. In other words, when cold rolling a steel strip that includes a highly hard coil edge and inner and outer circumferences, not only does the rolling load increase, resulting in deterioration of cold rolling workability, but also the unevenness of hardness results in poor rolling after cold rolling. This increases plate thickness variation and, furthermore, because the coil edge portions on which tension acts during cold rolling are hardened, cracks are likely to occur, and cold rolling often has to be stopped midway. For this reason, hot-rolled steel strips are usually subjected to bell-shaped furnace annealing at a temperature in the range of 700 to 900°C for several hours to more than ten hours before being introduced into a cold rolling process.
In other words, the hard structure containing bainite and martensite is reheated to become a soft structure consisting of α+ carbides, and at the same time uniformity within the coil is achieved to create a hot rolled steel strip suitable for cold rolling. It is. However, annealing in a bell furnace involves reheating the once cooled steel strip to a high temperature of 700 to 900°C, which not only requires a large amount of energy, but also takes time to raise and lower the temperature. The actual annealing time requires a long time of one to several days. As described above, annealing hot-rolled ferritic stainless steel strips in a bell-type furnace is sufficiently effective and industrially stable, but it has the problem of requiring a large amount of energy and time. It is clear that there would be a great advantage if the annealing in the bell furnace could be omitted, and the inventors have considered omitting the annealing in the bell furnace. The point that the present inventors focused on is that the hardness of ferritic stainless steel hot rolled steel strip is
During cooling after winding, only the coil edges and the inner and outer windings cool at a high rate, while the center of the coil transforms into a pearlite phase due to extremely slow cooling.
The point is that it is sufficiently soft to allow cooling rolling. In other words, by reheating the coil immediately after winding, the cooling of the coil edge and the inner and outer turns can be delayed so that the transformation to pearlite, which is a soft transformation product, is completed. If only the inner and outer turns are softened, a hot-rolled steel strip that is sufficiently cold-rollable should be obtained. From the above points of view, the present researchers conducted many experiments and researched a method for producing hot rolled steel strip that is soft and can be sufficiently cold rolled without annealing in a bell furnace. I found out. That is, according to the present invention, in the method for manufacturing a hot rolled ferritic stainless steel strip, the hot rolled steel strip is wound into a coil at a temperature of 550 to 950°C after normal hot rolling. Within 20 minutes after finishing
Provided is a method for producing a hot-rolled steel strip in which the entire steel strip including the coil edge and inner and outer winding portions is softened, the method comprising holding the steel strip at a temperature of 650 to 850° C. for 10 to 30 minutes and then allowing it to cool. It will be well understood by those skilled in the art that the method of the present invention can be applied to ferritic stainless steel in general, which undergoes γ phase transformation during cooling from hot rolling temperature. However, in order to apply this method and obtain sufficient effects, the desirable materials are:
C: 0.005-0.15%, Si: 1.0% or less, Mn: 2.0%
The following steel contains 14.0 to 20.0% Cr, 0.10% or less N, and the balance is Fe and unavoidable impurities. The method of the present invention can be applied even if the composition deviates somewhat from this composition, or even if a metal element, so-called a minor additive component, is added, as long as the γ phase transformation is not essentially affected. Next, the method of the present invention will be explained in detail based on experiments. Figure 1 shows C: 0.068%, Si: 0.53%, Mn:
0.26%, Cr: 16.51%, N: 0.013% hot-rolled SUS430 steel plate was heated at 1000℃, kept at constant temperature at 600-900℃, and then rapidly cooled, showing the change in hardness with constant temperature holding time. It is something. As the constant temperature holding time increases, the amount of transformation into soft pearlite increases, resulting in a decrease in hardness. Especially from 650
When kept at a constant temperature of 850°C, most of the γ phase transforms into pearlite and exhibits low hardness after a holding time of 10 to 30 minutes. The above experimental results show that the steel strip after hot rolling is 650~850
This indicates that most of the γ phase transforms into pearlite if held at ℃ for 10 to 30 minutes, and even in the coil edge and inner and outer winding parts, where the cooling rate is relatively high, it is possible to reheat immediately after winding and transform the upper part into pearlite. This shows that it is possible to obtain a sufficiently softened steel strip if the conditions listed above are satisfied. Reheat the coil immediately after winding to heat the coil edges and inner and outer windings to 650℃.
The energy and time required to hold it at ~850°C for 10-30 minutes is extremely low. This is because the hot-rolled steel strip immediately after coiling originally has a temperature of 500°C or higher, and furthermore, the coil edges and inner and outer winding parts, which have a high cooling rate, are heated from the outside when heated. It is easy to take in heat, and it takes until reheating after winding.
Even if the temperature drops below 650℃, it can be used within a short period of time.
This is because it can be reheated to 650°C or higher. That is, in the method for producing a hot-rolled ferritic stainless steel strip according to the present invention, a hot-rolled steel strip that has been subjected to normal hot rolling and coiled at 550 to 950°C is preferably heated within 20 minutes after the completion of coiling. is charged into a heating furnace within 10 minutes, held at 650-850°C for 10-30 minutes, and then taken out from the heating furnace and allowed to cool. By performing the reheating described above, the cooling of the coil edge and the inner and outer windings is delayed, and during this time, most of the γ phase generated during hot rolling transforms into pearlite, making it soft and cold rolling sufficient. A possible hot rolled steel strip is obtained. Note that the heating furnace used for reheating does not require a large amount of heat or time, so a simple one such as a tunnel furnace is sufficient. It may be installed on the connected conveyor. Next, in the present invention, the reason why the preferred range of ingredients of the material is limited will be described. C is an austenite-forming element and is an element that increases the hardness of the hot rolled steel strip, but if it is less than 0.005%, the hardness of the hot rolled steel strip is sufficiently low even without the reheating of the present invention; If it exceeds this, it will be impossible to sufficiently soften it even if the reheating of the present invention is performed, so the content is limited to 0.005 to 0.15%. Si is a ferrite-forming element that reduces the amount of γ phase, but excessive addition impairs ductility and toughness, so it was limited to 1% or less. Mn improves toughness, but is an austenite-forming element that increases the amount of γ phase and if added in excess, sufficient softening cannot be obtained even with the reheating of the present invention. % is allowed. Cr is an important element in stainless steel that provides corrosion resistance and oxidation resistance, but it is not directly related to the purpose of the present invention and is used more widely than the SUS430 standard.
It can be included in the range of 14.0-20%. 14.0
If it is less than 20.0%, both properties will deteriorate significantly, and if it exceeds 20.0%, workability will deteriorate. N has the same effect as C, but if it exceeds 0.10%, sufficient softening cannot be obtained even if the reheating of the present invention is performed, so the content is set to 0.10% or less. P, S, Ni, O, etc. are present in the amounts normally contained in this type of steel and pose no problem. Next, the reason for the limitations on heating conditions will be described.
The coiling temperature after hot rolling was set at 550 to 950℃.
This is because if the temperature is lower than 550°C, a large amount of heating and time will be required to complete the transformation of the γ phase into pearlite. Although it is preferable that the winding temperature be high, if it exceeds 950°C, undesirable results such as coarsening of ferrite grains will occur. The reheating temperature was limited to 650 to 850℃.
At temperatures below 850°C and below 850°C, the rate of transformation of the γ phase to pearlite is slow, and reheating in the range of 650 to 850°C completes the pearlite transformation within a short time and softens the steel strip. This is because it can be achieved. The reason for limiting the start of reheating after winding to within 20 minutes after winding is that if a coil is left to cool in the atmosphere for more than 20 minutes after winding, the temperature of the coil edge and inner and outer windings will be below 500°C, making it impossible to reheat the coil. Heating requires a large amount of heat and a large amount of time. As a result, the reheating furnace that can accommodate the hot rolling pitch becomes so large that it loses its economic significance. Figure 2 shows a plate thickness of 3.6mm.
The figure shows the temperature change at the coil edge and outer winding part when the coil is hot-rolled to a width of 1000 mm and rolled at 730°C with an outer diameter of 1500 mm.The figure shows the temperature change at the coil edge and outer winding part when the coil is left to cool in the atmosphere after winding. After winding, the temperature drops to 500°C after being left to cool in the air for 20 minutes. I repeat,
The main purpose of the present invention is to soften the coil edge and the inner and outer windings by heating for a short time.However, the temperature of the coil decreases significantly before reheating, and reheating requires a large amount of heat and takes a long time. If time is required, the industrial meaning is lost. For this reason, we limited the temperature of the coil at the start of reheating to 500°C or higher using a normal coil within 20 minutes after winding. The reason why we limited the reheating time to 10 to 30 minutes is because, as shown in Figure 1, when heating at 650 to 850℃,
This is because heating for less than 30 minutes does not result in a sufficient reduction in hardness, and heating for more than 30 minutes does not result in any further significant reduction in hardness. In addition, from the viewpoint of the capacity of the reheating furnace, the shorter the heating time, the more preferable. Next, the effects of the present invention will be explained with reference to Examples and Comparative Examples of the present invention. Figure 3 shows C: 0.063%, Si: 0.55
%, Mn: 0.26%, Cr: 16.42%, N: 0.023%. (Rolling diameter 1500 mm) Comparative example 1 (Fig. 3-a) without reheating and Example of the present invention (Fig. 3-b and c) in which the hot rolled steel strip was reheated after winding. It is a figure showing hardness. The experimental conditions are as follows. Comparative Example 1: After being wound at 650°C, it was allowed to cool in the atmosphere. Example 1 of the present invention: After being wound at 700°C, it was charged into a heating furnace 8 minutes later, and reheated so that the coil edge was maintained at 720°C for 20 minutes, and then allowed to cool in the atmosphere. Example 2 of the present invention: After being wound at 710°C, it was charged into a heating furnace 7 minutes later, and reheated so that the coil edge was maintained at 680°C for 20 minutes, and then allowed to cool in the atmosphere. In Comparative Example 1, the hardness of the central part in the width direction of the coil is approximately Hv205, but the hardness of the coil edges and the inner and outer winding parts is Hv240-300, which is not suitable for cold rolling as it is. be.
However, in Examples 1 and 2, significant softening was obtained at the coil edges and the inner and outer turns, and the entire coil became Hv200 or less, making it possible to cold-roll the coil as it is without annealing in a bell furnace. Table 1 shows the hardness and tensile properties of the hot rolled steel strips of Examples 1 and 2 of the present invention and Comparative Example 1 shown in FIG.
The hardness and tensile properties of an annealed steel strip annealed for ×10 hours are shown. In the hot-rolled steel strip of Comparative Example 1, the elongation was less than 20% at any position and the ductility was low, but in Examples 1 and 2 of the present invention, a significant decrease in strength and improvement in ductility were observed, and the coil edge and inner and outer The rolled part also shows an elongation of over 20%. The annealed steel strip obtained by annealing the hot-rolled steel strip of Comparative Example 1 in a bell-shaped furnace has a Vickers hardness of Hv162 to 163, and an elongation of nearly 30%. It is impossible to expect a rolled steel strip to have exactly the same hardness and ductility as an annealed steel strip that has been heated for a long time.
However, the softening obtained by the present invention is sufficient for cold rolling. Table 2 shows Examples 1 and 2 of the present invention and Comparative Example 1.
2 is a table showing the hardness and tensile properties of a 0.4 mm thick cold-rolled plate product produced by two cold rolling processes. The outline of the process is as follows. Examples 1 and 2 of the present invention Hot rolled steel strip 7 to 8 minutes → Reheating (680 to 720℃×
20 minutes) → Cold rolling (3.6mm → 1.0mm) → Intermediate annealing →
Cold rolled (1.0mm → 0.4mm) → Finish annealing comparison example 1 Hot rolled steel strip → Bell-shaped furnace annealing (800℃ x 10 hours)
→ Cold rolling (3.6mm → 1.0mm) → Intermediate annealing → Cold rolling (1.0mm → 0.4mm) → Finish annealing Intermediate annealing is 850℃ x 1 minute, finish annealing is 810℃ x 1 minute. And so. As is clear from the above steps, in Examples 1 and 2 of the present invention, the annealing step in the bell-shaped furnace is omitted and the steps are shortened. There is no difference in mechanical properties between the examples of the present invention and the comparative examples, and it is clear that the method of the present invention can produce products comparable to those of the conventional method. In addition, in the cold rolling in Examples 1 and 2 of the present invention, the cold rolling could be carried out in the same manner as when cold rolling an annealed steel strip annealed in a bell-shaped furnace, without causing any particular operational problems. Figure 4 shows C: 0.112%, Si: 0.38%, Mn:
In hot rolling of SUS430 steel with chemical components of 0.68%, Cr: 16.42%, and N: 0.031%, normal hot rolling was performed to obtain a plate thickness of 3.6 mm and width of 1000 mm, and after coiling (rolling diameter 1500mm) Comparative Example 2 without reheating (Figure 4-a) and Example 3 of the present invention with reheating after winding
(FIG. 4-b) is a diagram showing the hardness at each position of the hot rolled steel strip. The experimental conditions are as follows. Comparative Example 2: After being wound at 670°C, it was allowed to cool in the atmosphere. Example 3 of the present invention: After being wound at 710°C, it was charged into a heating furnace 7 minutes later, and reheated so that the coil edge was maintained at 720°C for 20 minutes, and then allowed to cool in the atmosphere. The hot rolled steel strip of Comparative Example 2 has a higher content of austenite-forming elements than the chemical composition shown in Figure 3, and the coil edges and inner and outer turns are
High hardness of Hv300-360. However, in Example 3 of the present invention, by reheating, the hardness of the coil edge and the inner and outer windings decreased, and the entire steel strip was softened to approximately Hv220 or less, making it a hot rolled steel that can be cold rolled. Obi is obtained.

【表】【table】

【表】 本発明の製造方法によつて得られる熱間圧延鋼
帯は、冷延板を製造するための素材として用いら
れるだけでなく、伸びが20%以上と良好な延性を
示すことから、フエライト系ステンレス鋼熱間圧
延鋼板としてそのまま使用することも勿論可能で
ある。
[Table] The hot-rolled steel strip obtained by the production method of the present invention is not only used as a material for producing cold-rolled sheets, but also exhibits good ductility with an elongation of 20% or more. Of course, it is also possible to use the ferritic stainless steel as it is as a hot-rolled steel sheet.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は恒温保持時間に対する硬度の変化を示
す図であり、(▲)印は600℃、(〇)印は650℃、
(△)印は750℃、(●)印は850℃、(▽)印は900
℃での各恒温保持温度を示す。第2図は、巻取り
後大気放冷したコイルのコイルエツジ部および外
巻部の温度変化を示した図である。第3図および
第4図は熱間圧延鋼帯の硬度分布を示す図であ
り、第3図―aは比較例1、第3図―bは本発明
実施例1、第3図―cは本発明実施例2、第4図
―aは比較例2、第4図―bは本発明実施例3に
ついてそれぞれ示すものであり、(〇)印は鋼帯
内巻部、(△)印は鋼帯中央巻部、(●)印は鋼帯
外巻部についてそれぞれ示すものである。
Figure 1 shows the change in hardness with constant temperature holding time, where (▲) indicates 600℃, (〇) indicates 650℃,
(△) mark is 750℃, (●) mark is 850℃, (▽) mark is 900℃
Each isothermal temperature in °C is shown. FIG. 2 is a diagram showing temperature changes at the coil edge portion and outer winding portion of the coil which was left to cool in the atmosphere after winding. Figures 3 and 4 are diagrams showing the hardness distribution of hot rolled steel strips, where Figure 3-a is Comparative Example 1, Figure 3-b is Invention Example 1, and Figure 3-c is Example 2 of the present invention, Fig. 4-a shows Comparative Example 2, and Fig. 4-b shows Example 3 of the present invention, where the (〇) mark indicates the inner winding part of the steel strip, and the (△) mark indicates the inner winding part of the steel strip. The center winding part of the steel strip and the symbol (●) indicate the outer winding part of the steel strip, respectively.

Claims (1)

【特許請求の範囲】 1 フエライト系ステンレス鋼熱間圧延鋼帯の製
造方法において、通常の熱間圧延を終了して、
550〜950℃の温度でコイルに巻取つた熱間圧延鋼
帯を巻取り終了後20分以内に650〜850℃の温度に
10〜30分間保持してから放冷することを特徴とす
るコイルエツジおよび内外巻部を含む鋼帯全体が
軟質化した熱間圧延鋼帯の製造方法。 2 特許請求の範囲第1項記載の熱間圧延鋼帯の
製造方法であつて、該フエライト系ステンレス鋼
の組成が、C:0.005〜0.15%、Si:1.0%以下、
Mn:20%以下、Cr:14.0〜20.0%、N:0.10%以
下を含み、残部がFeおよび不可避的不純物から
なることを特徴とする方法。
[Claims] 1. In a method for producing a hot rolled ferritic stainless steel strip, after finishing normal hot rolling,
A hot-rolled steel strip wound into a coil at a temperature of 550 to 950℃ is heated to a temperature of 650 to 850℃ within 20 minutes after winding is completed.
A method for producing a hot-rolled steel strip in which the entire steel strip including the coil edge and inner and outer winding portions is softened, the method comprising holding the strip for 10 to 30 minutes and then allowing it to cool. 2. A method for producing a hot rolled steel strip according to claim 1, wherein the composition of the ferritic stainless steel is C: 0.005 to 0.15%, Si: 1.0% or less,
A method characterized in that it contains Mn: 20% or less, Cr: 14.0 to 20.0%, N: 0.10% or less, and the balance consists of Fe and inevitable impurities.
JP2285880A 1980-02-27 1980-02-27 Manufacture of hot rolled steel strip of ferrite stainless steel Granted JPS56119726A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2285880A JPS56119726A (en) 1980-02-27 1980-02-27 Manufacture of hot rolled steel strip of ferrite stainless steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2285880A JPS56119726A (en) 1980-02-27 1980-02-27 Manufacture of hot rolled steel strip of ferrite stainless steel

Publications (2)

Publication Number Publication Date
JPS56119726A JPS56119726A (en) 1981-09-19
JPS6356290B2 true JPS6356290B2 (en) 1988-11-08

Family

ID=12094409

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2285880A Granted JPS56119726A (en) 1980-02-27 1980-02-27 Manufacture of hot rolled steel strip of ferrite stainless steel

Country Status (1)

Country Link
JP (1) JPS56119726A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010095809A (en) * 2000-04-12 2001-11-07 이구택 Method for manufacturing ferritic stainless hot rolled steel sheet

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3067072A (en) * 1960-11-07 1962-12-04 Sharon Steel Corp Method of annealing type 430 stainless steel

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3067072A (en) * 1960-11-07 1962-12-04 Sharon Steel Corp Method of annealing type 430 stainless steel

Also Published As

Publication number Publication date
JPS56119726A (en) 1981-09-19

Similar Documents

Publication Publication Date Title
JPS5827329B2 (en) Manufacturing method of low yield ratio high tensile strength hot rolled steel sheet with excellent ductility
JP2000144258A (en) Production of titanium-containing ferritic stainless steel sheet excellent in ridging resistance
JPH01184226A (en) Production of steel sheet having high-ductility high-strength multiple structure
JPH058255B2 (en)
JPS6356290B2 (en)
JPS63241120A (en) Manufacture of high ductility and high strength steel sheet having composite structure
JPS63118013A (en) Production of hot rolled wire rod of high-si steel
JPS602364B2 (en) Manufacturing method of non-thermal high tensile strength steel plate with excellent low-temperature toughness
JPH0394017A (en) Production of high strength sheet metal excellent in local elongation
JPS60184664A (en) High ductile and high tensile steel containing stable retained austenite
JPH0238532A (en) Manufacture of cold rolled high-tensile sheet steel
JPS6119733A (en) Preparation of super 70kg grade high strength hot rolled steel plate excellent in elongation flange property
JPS5913024A (en) Manufacture of directly spheroidized steel material
US3196053A (en) Production of heat-treated sheets
JP2792896B2 (en) Method for producing carbon steel or alloy steel sheet having fine spheroidized carbide
JP3891012B2 (en) Method for producing martensitic stainless steel strip
JPS59133324A (en) Manufacture of high-tension cold-rolled steel plate with superior formability
JPH01159317A (en) Production of high-strength hot rolled steel sheet having excellent balance of strength and ductility
JPH0192317A (en) Manufacture of high-strength sheet metal excellent in stretch-flange workability
JPH0321608B2 (en)
JPS5913030A (en) Manufacture of cold rolled al killed steel plate with superior deep drawability
JPH01191739A (en) Production of hot rolled steel sheet having excellent workability, baking hardenability and room temperature delayed aging property
JPH0320407A (en) Method for preventing oxidation of grain boundary in high strength cold-rolled steel sheet
JPH01172520A (en) Manufacture of 80kgf/mm2 class electric welded steel pipe having superior toughness at low temperature and low yield ratio
JPH0250908A (en) Method for preventing intergranular oxidation of high-strength cold-rolled steel sheet