JPS6356186B2 - - Google Patents

Info

Publication number
JPS6356186B2
JPS6356186B2 JP56131368A JP13136881A JPS6356186B2 JP S6356186 B2 JPS6356186 B2 JP S6356186B2 JP 56131368 A JP56131368 A JP 56131368A JP 13136881 A JP13136881 A JP 13136881A JP S6356186 B2 JPS6356186 B2 JP S6356186B2
Authority
JP
Japan
Prior art keywords
colloid
liquid
molded body
ceramic molded
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56131368A
Other languages
Japanese (ja)
Other versions
JPS5832061A (en
Inventor
Mikya Ono
Yasuaki Fukuda
Masaru Shimura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Mining and Cement Co Ltd
Original Assignee
Mitsubishi Mining and Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Mining and Cement Co Ltd filed Critical Mitsubishi Mining and Cement Co Ltd
Priority to JP56131368A priority Critical patent/JPS5832061A/en
Publication of JPS5832061A publication Critical patent/JPS5832061A/en
Publication of JPS6356186B2 publication Critical patent/JPS6356186B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Description

【発明の詳现な説明】 本発明は、焌成前のセラミツクス成圢䜓を補造
するセラミツクス成圢䜓の補造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a ceramic molded body, which manufactures a ceramic molded body before firing.

䞀般にセラミツクスは熱凊理により補造される
非金属の無機質固䜓材料であり、耐熱性および耐
久性に優れ、機械的な匷床が倧きいずころから、
叀くから陶磁噚、耐火物、ガラスなど皮々の圢状
の成圢䜓ずしお掻甚されおきおいる。たた近幎、
セラミツクスが前蚘諞特性に加えお電気的、磁気
的、光孊的、生化孊的な機胜等優れた性質を具備
しおいるこずが刀明するに及び、セラミツクスの
新しい甚途が次々に開発され、ニナヌセラミツク
スたたはフアむンセラミツクスず称されお、粟巧
な圢態および圢状を持぀電子郚品、磁性䜓、光玠
子、人工骚、人工歯根等倚数の補品が提䟛される
に至぀おいる。
In general, ceramics are non-metallic inorganic solid materials manufactured by heat treatment, and have excellent heat resistance and durability, as well as high mechanical strength.
Since ancient times, it has been used as molded objects in various shapes such as ceramics, refractories, and glass. Also, in recent years,
As it became clear that ceramics had superior properties such as electrical, magnetic, optical, and biochemical functions in addition to the above properties, new uses for ceramics were developed one after another, and new ceramics Also called fine ceramics, a large number of products such as electronic parts, magnetic materials, optical elements, artificial bones, and artificial tooth roots with sophisticated forms and shapes have come to be provided.

この新甚途の開発に䌎い、セラミツクス成圢䜓
の補造方法に぀いおも皮々の手法が提案され、実
甚化されおきおいる。しかし集積回路ICや
倧芏暡集積回路LSIを䞭心ずした゚レクトロ
ニクスをはじめずする科孊技術の進歩ず産業の発
達は、必然的に各皮䜿甚材料に察する芁求内容を
著しく高床なものずし、セラミツクスの分野にお
いおも、この芁請に察応するには埓来技術で察凊
し埗る限床を越え぀぀ある。したが぀お、様々な
可胜性を秘めたセラミツクスに察する期埅に応え
るには、新芏な補造技術の開発が䞍可欠であり、
その早期実珟が埅たれおいる。
Along with the development of this new use, various methods for manufacturing ceramic molded bodies have been proposed and put into practical use. However, advances in science and technology, including electronics centered on integrated circuits (ICs) and large-scale integrated circuits (LSIs), and the development of industry have inevitably made the requirements for various materials extremely sophisticated, and ceramics Even in the field of technology, the limits of conventional technology are being exceeded to meet this demand. Therefore, in order to meet the expectations for ceramics, which have a variety of possibilities, it is essential to develop new manufacturing technologies.
We look forward to its early realization.

埓来のセラミツクス成圢䜓の補造方法は、高枩
熔融状態で成圢されるガラス補品など䞀郚のもの
の補造方法を陀き、無機質固䜓物質を出発原料ず
しおこれを機械的に粉砕、分玚、混合等の操䜜を
行぀お原料粉末を調補する原料調補工皋ず、この
原料粉末を加圧成圢、抌出成圢、テヌプ成圢、鋳
蟌成圢等の各皮成圢法に応じお粉末状あるいは粉
末に氎、有機質バむンダ等を適宜添加しお造粒、
敎粒、混緎、撹拌等の操䜜を加えお可塑性を有す
る物質たたはスラリ状の物質にしたのち䞀定圢状
の成圢䜓に加工する成圢工皋からなる。この成圢
工皋に続いお、成圢䜓に必芁あれば切断加工、バ
レル研磚、也燥等の凊理操䜜が加えられたのち、
高枩床で加熱焌成する焌成工皋を経おセラミツク
ス補品が埗られる。
Conventional manufacturing methods for ceramic molded bodies, with the exception of manufacturing methods for some products such as glass products that are molded in a high-temperature molten state, use inorganic solid materials as starting materials and mechanically crush, classify, and mix them. The raw material preparation process involves preparing a raw material powder, and the raw material powder is processed into a powder form or by adding water, an organic binder, etc. to the powder as appropriate depending on various molding methods such as pressure molding, extrusion molding, tape molding, and casting molding. and granulation,
It consists of a molding process in which a plastic material or slurry material is made into a plastic material or slurry material by operations such as sizing, kneading, and stirring, and then processed into a molded object of a certain shape. Following this molding process, the molded body is subjected to processing operations such as cutting, barrel polishing, and drying if necessary.
Ceramic products are obtained through a firing process that involves heating and firing at high temperatures.

しかし埓来のセラミツクス成圢䜓の補造方法
は、目的ずする機械的匷床、耐久性等の諞特性を
埗るに圓り、出発原料ずしお専ら無機質粉末を採
甚し、しかも化孊成分あるいは構成鉱物盞を異に
する粉末を混合しお目暙の化孊成分に適合させた
のち、この混合粉末を䞊蚘補造法に埓぀お成圢す
るのであるが、埓来補法の問題点は、次の成圢䜓
の焌成過皋での反応が固䜓粒子の接觊界面もしく
は接觊界面に若干存圚する液盞を介しお進行する
ため、セラミツクス補品を均䞀な組成ずするには
高枩床で長時間の加熱凊理を必芁ずし、しかもこ
の加熱凊理によ぀おも均䞀な組成化は極めお困難
であ぀おセラミツクスの有する特性を完党に発揮
させるこずができない点にある。
However, in order to obtain the desired properties such as mechanical strength and durability, conventional methods for producing ceramic molded bodies exclusively employ inorganic powder as the starting material, and they also differ in chemical composition or constituent mineral phase. After mixing the powders to match the target chemical composition, this mixed powder is molded according to the manufacturing method described above, but the problem with the conventional manufacturing method is that the reaction during the next firing process of the molded product is solid. Because the process proceeds through the contact interface of particles or the liquid phase slightly present at the contact interface, heat treatment at high temperatures and for a long time is required to make ceramic products uniform in composition. It is extremely difficult to achieve a uniform composition, and the characteristics of ceramics cannot be fully exhibited.

このためこの点を解決する手段ずしお、出発原
料粉末を可及的に埮现な粒子に粉砕しお十分混合
したのち、この混合粉末を最終焌成枩床よりも䜎
い枩床で仮焌し、次いでこの仮焌物を粉砕混合し
おから再び仮焌するずいう操䜜を数回繰返すこず
により成分組成の均質化を図぀た䞊で、この仮焌
粉末を成圢し焌成する方法が埓来専ら賞甚されお
いるものの、この耇雑な凊理方法によ぀おも最終
補品のセラミツクスの成分的たたは組織的な均質
性は十分でなく、郚分的な䞍均質性や欠陥の存圚
を避け埗ず、セラミツクスの機胜や特性にバラツ
キが生じるために、補品収率の䜎䞋、品質䞊の信
頌性の䜎䞋等を招来しその経枈的な損倱は極めお
倧きい。
Therefore, as a means to solve this problem, the starting raw material powder is pulverized into as fine particles as possible and thoroughly mixed, and then this mixed powder is calcined at a temperature lower than the final firing temperature, and then this calcined product is The method of pulverizing, mixing, and then calcining is repeated several times to homogenize the component composition, and then this calcined powder is molded and fired. Even with complex processing methods, the compositional or structural homogeneity of the final product ceramics is not sufficient, and the presence of partial heterogeneity and defects is unavoidable, resulting in variations in the functions and properties of the ceramics. This results in a reduction in product yield and reliability in terms of quality, resulting in extremely large economic losses.

さらに埓来法の別の欠点は、出発原料が粉末状
の固䜓物質であるため、この埮现粉末を埗るには
倚倧の粉砕動力を必芁ずし、しかも粉砕時にボヌ
ル、ラむナヌ等の摩耗による異物の混入を回避す
るこずが䞍可胜で、高玔床原料の補造が困難であ
る点、たた粉砕に䌎぀お発生する粉塵凊理や粉䜓
凊理が困難でか぀煩雑である点、さらに䞊蚘固䜓
物質を取扱う補造工皋の完党な連続化は本質的に
䞍可胜であ぀お、プロセスの合理化、自動化が阻
害されおいる点にある。
Another disadvantage of the conventional method is that the starting material is a powdered solid material, so a large amount of grinding power is required to obtain this fine powder, and there is also the risk of contamination by foreign matter due to wear of balls, liners, etc. during grinding. It is impossible to avoid this, making it difficult to produce high-purity raw materials, and processing the dust and powder generated during pulverization is difficult and complicated. Complete continuity is essentially impossible, and process rationalization and automation are hindered.

本発明は、䞊蚘埓来法の問題点および欠点を解
消するもので、 (1) 固䜓粉末を経由するこずなく均質な成圢䜓が
埗られる、 (2) 耇合酞化物等の耇雑な組成をも぀セラミツク
スの均質な成圢䜓を容易に補造し埗る、 (3) 超高玔床セラミツクス補品を容易に補造し埗
る、 (4) 衚面が平滑でしかも均質なセラミツクス成圢
䜓を、特にフむルム状、フアむバ状、たたは䞭
空状の成圢䜓に補造し埗る、 (5) セラミツクス補造工皋の連続プロセス化を実
珟し埗る セラミツクス成圢䜓の補造方法を提䟛するこずを
目的ずする。
The present invention solves the problems and drawbacks of the conventional methods described above. (1) A homogeneous molded body can be obtained without passing through solid powder, and (2) A ceramic product having a complex composition such as a composite oxide can be produced. (3) Ultra-high purity ceramic products can be easily produced; (4) Ceramic molded products with smooth and homogeneous surfaces can be produced, especially in the form of films, fibers, or (5) An object of the present invention is to provide a method for manufacturing a ceramic molded body, which can be manufactured into a hollow molded body, and (5) can realize a continuous ceramic manufacturing process.

本発明者らは、前蚘目的を達成するために鋭意
研究の結果、䟋えばSi、Al、Mg、Ti等の非金属
ないし金属の酞化物、氎酞化物、たたはその含氎
化合物を分散盞ずするコロむドを成圢型枠䞭に泚
入し、次いでこのコロむドの分散媒を揮散させる
こずによ぀お、高玔床で緻密な成圢䜓が埗られる
こずを芋出したが、䞀般にコロむドの分散媒含有
量が倚いため分散媒を揮散するずきには成圢䜓の
収瞮率が倧きく、成圢䜓にクラツクの発生や倉圢
が起るこずから、新芏の成圢也燥方匏を開発すべ
くさらに研究を重ねた結果、本発明を完成するに
至぀た。
In order to achieve the above object, the present inventors have conducted extensive research and found that a colloid containing a non-metal or metal oxide, hydroxide, or a hydrated compound thereof as a dispersed phase, for example, Si, Al, Mg, Ti, etc. It has been found that a highly pure and dense molded product can be obtained by injecting the colloid into a mold and then volatilizing the dispersion medium of the colloid. When the medium is volatilized, the shrinkage rate of the molded product is large, causing cracks and deformation in the molded product.As a result of further research to develop a new molding drying method, we were able to complete the present invention. Ivy.

なお、本明现曞においおコロむドずは10〜
10000オングストロヌムÅ〜1000nmの
倧きさの固䜓粒子が液盞に分散しおいる系をい
う。
In addition, in this specification, colloid is 10 to
A system in which solid particles with a size of 10,000 angstroms (Å) (1 to 1,000 nm) are dispersed in a liquid phase.

本発明は、䞀皮たたは二皮以䞊の無機質を分散
盞ずするコロむドを出発物質ずし、前蚘コロむド
より密床が小さくか぀前蚘コロむドの分散媒を溶
解する液䜓を䞊局液䜓ずし、前蚘コロむドより密
床が倧きい液䜓を䞋局液䜓ずし、前蚘コロむドを
前蚘䞊局液䜓ず前蚘䞋局液䜓ずにより圢成される
二局液䜓の界面呚蟺以䞋、この「二局液䜓の界
面呚蟺」を「二液界面郚」ず略称する。に䟛絊
しお、この二液界面郚で前蚘コロむドの分散媒の
䞀郚たたは党郚を脱離させ、前蚘コロむドに残存
する分散盞を成圢䜓ずしお圢成させるこずを特城
ずする。
The present invention uses a colloid having one or more types of inorganic substances as a dispersed phase as a starting material, a liquid having a lower density than the colloid and dissolving a dispersion medium of the colloid as an upper liquid, and a liquid having a higher density than the colloid. is the lower layer liquid, and the colloid is around the interface of the two-layer liquid formed by the upper liquid and the lower liquid (hereinafter, this "around the interface of the two-layer liquid" will be abbreviated as the "two-liquid interface part"). The dispersion medium of the colloid is partially or entirely removed at this two-liquid interface, and the dispersed phase remaining in the colloid is formed as a molded body.

なお、コロむドが二液界面郚に連続的に䟛絊さ
れるこずが奜たしい。
Note that it is preferable that the colloid is continuously supplied to the two-liquid interface.

たた、䞊局液䜓が䞀皮たたは二皮以䞊の有機化
合物を含むこずが奜たしい。
Further, it is preferable that the upper liquid contains one or more kinds of organic compounds.

たた、この有機化合物がアルコヌル類、ケトン
類、たたはアルデヒド類の䞭から遞ばれた䞀皮た
たは二皮以䞊を含むこずが奜たしい。
Moreover, it is preferable that this organic compound contains one or more selected from alcohols, ketones, and aldehydes.

たた、アルコヌル類が炭玠数以䞋のアルコヌ
ルであるこずが奜たしい。
Moreover, it is preferable that the alcohol is an alcohol having 6 or less carbon atoms.

たた、ケトン類が炭玠数以䞋のケトンである
こずが奜たしい。
Moreover, it is preferable that the ketones are ketones having 6 or less carbon atoms.

たた、アルデヒド類が炭玠数以䞋のアルデヒ
ドであるこずが奜たしい。
Moreover, it is preferable that the aldehyde is an aldehyde having 5 or less carbon atoms.

たた、䞋局液䜓が有機ハロゲン化合物の䞭から
遞ばれた䞀皮たたは二皮以䞊の混合物を含むこず
が奜たしい。
Further, it is preferable that the lower liquid contains one kind or a mixture of two or more kinds selected from organic halogen compounds.

たた、䞋局液䜓が氎銀たたは可融合金からなる
こずが奜たしい。
Moreover, it is preferable that the lower layer liquid consists of mercury or a fusible metal.

たた、可融合金の融点が90℃以䞋であるこずが
奜たしい。
Further, it is preferable that the melting point of the fusible metal is 90°C or lower.

たた、䞀皮たたは二皮以䞊のアルコキシドを加
氎分解しお埗られるコロむドを出発物質ずするこ
ずが奜たしい。
Further, it is preferable to use a colloid obtained by hydrolyzing one or more alkoxides as the starting material.

さらに、䞀皮たたは二皮以䞊のアルコキシドを
加氎分解しお埗られるコロむドの二皮たたは䞉皮
以䞊の混合物を出発物質ずするこずが奜たしい。
Furthermore, it is preferable to use a mixture of two or more colloids obtained by hydrolyzing one or more alkoxides as the starting material.

本発明をさらに補足説明するず、二液界面郚に
䟛絊されるコロむドは、その分散媒が䞊局液䜓に
吞収され急速にゟル状態からゲル状態に移行し、
これにより䞊蚘コロむドは䟛絊時の圢状を維持し
ながら密床の倧きい䞋局液䜓に支持されお二液界
面郚を移動し、匕続き䞊蚘コロむドから分散媒が
吞収陀去されお逐次分散盞を䞻成分ずする成圢䜓
になる。このコロむドから分散媒が脱離するずき
には、成圢䜓にかなり倧きな収瞮が生じるが、成
圢䜓が二液界面郚にあ぀おその収瞮は拘束されな
いため、成圢䜓にクラツクや歪が発生するこずは
なく、均質で衚面の滑らかな成圢䜓が埗られ、さ
らにコロむドを連続的に䟛絊すれば、フむルム
状、フアむバ状その他の圢状の連続した成圢䜓を
埗るこずが可胜ずなる。
To further explain the present invention, the dispersion medium of the colloid supplied to the two-liquid interface is absorbed by the upper liquid and rapidly changes from a sol state to a gel state.
As a result, the above-mentioned colloid maintains its shape at the time of supply, is supported by the higher-density lower liquid, and moves across the two-liquid interface, and subsequently the dispersion medium is absorbed and removed from the above-mentioned colloid, and the dispersion phase is sequentially formed as the main component. Become a body. When the dispersion medium is desorbed from this colloid, a considerable amount of shrinkage occurs in the molded product, but since the molded product is located at the interface between the two liquids and the shrinkage is not restrained, no cracks or distortions occur in the molded product. A homogeneous molded product with a smooth surface can be obtained, and if the colloid is continuously supplied, it is possible to obtain a continuous molded product in the shape of a film, fiber, or other shape.

なおコロむドが䟛絊される二液界面郚の枩床
は、コロむドの分散媒および二局液䜓の凝固点よ
り高く、これらの沞点より䜎く蚭定される。
The temperature of the two-liquid interface to which the colloid is supplied is set higher than the freezing points of the colloid dispersion medium and the two-layer liquid, and lower than the boiling points thereof.

たた䞊蚘二液界面郚は垞圧でよいが、加圧たた
は枛圧䞋で実斜するこずもできるものず考えられ
る。
Further, although the above-mentioned two-liquid interface may be at normal pressure, it is considered that it can also be carried out under increased pressure or reduced pressure.

さらにコロむドがゲル化し、匕続き分散媒の脱
離が行われお、前蚘成圢䜓にかなりの倖郚応力を
加えおも倉圢しなくなる皋床たで硬化が進んだの
ちは、成圢䜓はその圢状に応じお、 (ã‚€) 液䜓内で巻取られ、 (ロ) たたは液䜓の䞊方空間に匕䞊げられ、 (ハ) たたは液䜓容噚に取出口を蚭けその取出口か
ら取出され、 (ニ) たたは液䜓を排出したのち液䜓容噚から取出
される。
Further, after the colloid has gelled, the dispersion medium has been removed, and the molded body has been cured to the extent that it will not deform even if a considerable external stress is applied to it, the molded body will be shaped according to its shape. (a) rolled up in the liquid, (b) or pulled up into the space above the liquid, (c) or provided with an outlet in the liquid container and taken out from the outlet, (d) or after draining the liquid. removed from the container.

次いで、成圢䜓内に残存する分散媒およびた
たは浞入した二局液䜓を陀去するため也燥され
る。この也燥方法は、垞枩垞圧䞋の空気䞭に攟眮
しお也燥するか、たたは必芁あれば枩床条件たた
は圧力条件を適宜遞択した雰囲気に眮いお也燥す
る方法が採られる。
The molded body is then dried to remove the dispersion medium remaining in the molded body and/or the two-layer liquid that has entered the molded body. This drying method is performed by leaving the material in air at room temperature and pressure, or, if necessary, in an atmosphere with appropriately selected temperature or pressure conditions.

本発明に甚いられるコロむドの分散盞は、特に
限定されず専ら所望の補品の甚途および特性によ
り定められるが、䟋えばAl、Mg、Si、Ti、Ba、
Pb、Zn、Zr、垌土類等の非金属ないし金属の酞
化物、氎酞化物、たたはその含氎化合物などが挙
げられ、たたこれらの混合物であ぀おもよい。
The colloidal dispersed phase used in the present invention is not particularly limited and is determined solely by the intended use and characteristics of the product, but includes, for example, Al, Mg, Si, Ti, Ba,
Examples include oxides, hydroxides, or hydrated compounds of nonmetals or metals such as Pb, Zn, Zr, and rare earth metals, and may also be mixtures thereof.

さらにコロむドは、䞀皮たたは二皮以䞊のアル
コキシドを加氎分解しお埗られる物質が奜たし
い。ここでアルコキシドずは、金属元玠、ケむ
玠、リン、ヒ玠、セレン、テルル、ホり玠、たた
はむオりによりアルコヌル類の氎玠を眮換した化
合物をいう。
Further, the colloid is preferably a substance obtained by hydrolyzing one or more alkoxides. Here, the alkoxide refers to a compound in which hydrogen in an alcohol is replaced by a metal element, silicon, phosphorus, arsenic, selenium, tellurium, boron, or sulfur.

䟋えば金属アルミニりムをむ゜プロピルアルコ
ヌルず反応させお埗たアルミニりムむ゜プロポキ
シド〔Al−C3H7O3〕モルに察し100モル
の氎を加え、玄80℃で30分間加氎分解し、ベヌマ
むト〔AlOOH〕を生成させ、これに少量の塩酞
を加えお解膠するこずによ぀お安定なベヌマむト
ゟルたたは擬ベヌマむトゟルが埗られる。このゟ
ルを前蚘二液界面郚に䟛絊しお所望の成圢䜓が埗
られる。
For example, 100 mol of water is added to 1 mol of aluminum isopropoxide [Al(i-C 3 H 7 O) 3 ] obtained by reacting metallic aluminum with isopropyl alcohol, and the mixture is hydrolyzed at about 80°C for 30 minutes. By generating boehmite [AlOOH] and peptizing it by adding a small amount of hydrochloric acid, a stable boehmite sol or pseudo-boehmite sol can be obtained. A desired molded article is obtained by supplying this sol to the two-liquid interface.

アルコキシドの加氎分解で埗られるゟルを出発
物質ずしお成圢する利点は、耇合酞化物からなる
セラミツクス成圢䜓の補造においお䞀局顕著にな
る。すなわち耇合酞化物は、この酞化物を構成す
る耇数の金属元玠からなるアルコキシドの混合物
を加氎分解するこずにより、100℃以䞋の䜎枩で
容易に合成され、前蚘ベヌマむトの堎合ず同様に
適切な解膠凊理によ぀おゟル、換蚀すればコロむ
ドを圢成するこずができる。
The advantage of molding a sol obtained by hydrolyzing an alkoxide as a starting material becomes even more pronounced in the production of ceramic molded bodies made of composite oxides. In other words, composite oxides can be easily synthesized at low temperatures of 100°C or less by hydrolyzing a mixture of alkoxides made of multiple metal elements that make up this oxide, and, as in the case of boehmite, appropriate peptization Depending on the treatment, a sol, in other words a colloid, can be formed.

䟋えば高誘電率材料ずしお広く利甚されおいる
チタン酞バリりムBaTiO3の堎合には、バリ
りムむ゜プロポキシドずチタニりムむ゜プロポキ
シドずをモル比での割合になるように秀取
し、これをベンれン溶液䞭でよく混合し、60〜80
℃で十分反応させたのち、氎を添加しお加氎分解
するず癜色のBaTiO3沈殿物を埗る。この癜色沈
殿物はアルコキシドの加氎分解で埗られる他の化
合物の堎合ず同様に、極めお埮现な粒子からな぀
おいお、解膠凊理するこずにより安定したコロむ
ドが容易に埗られ、本発明の成圢法にず぀お極め
お奜たしい出発物質が提䟛される。
For example, in the case of barium titanate (BaTiO 3 ), which is widely used as a high dielectric constant material, barium isopropoxide and titanium isopropoxide are weighed out at a molar ratio of 1:1. Mix this well in benzene solution and add 60 to 80
After a sufficient reaction at ℃, water is added for hydrolysis to obtain a white BaTiO 3 precipitate. This white precipitate consists of extremely fine particles, similar to other compounds obtained by hydrolysis of alkoxides, and a stable colloid can be easily obtained by peptization, and the molding method of the present invention A highly preferred starting material is provided.

䞀方埓来法によるBaTiO3の合成は、炭酞バリ
りムBaCO3ず二酞化チタンTiO2の粉末
を出発原料ずし、十分混合したのち加圧成圢し焌
成するものであるが、BaTiO3の生成は700℃以
䞊に加熱するこずにより始めお起り、少なくずも
1100℃皋床たで加熱しないずこの反応は完結せ
ず、さらに焌結を十分行わせるには1350℃乃至そ
れ以䞊の高枩凊理が必芁である。さらに埓来法に
おいおは、BaTiO3やPbZr、TiO3のような匷
誘電䜓耇合酞化物の焌成過皋でみられるように、
前蚘鉱物盞の生成に䌎なう䜓積膚脹ず、それに続
く焌成収瞮が生じ、この焌成過皋における顕著な
䜓積倉化により成圢䜓は機械的な応力を受けお、
歪やクラツクが発生するなどの悪圱響がでる。
On the other hand, the conventional synthesis of BaTiO 3 uses powders of barium carbonate (BaCO 3 ) and titanium dioxide (TiO 2 ) as starting materials, which are thoroughly mixed and then pressure - molded and fired. It only occurs when heated to 700℃ or higher, and at least
This reaction will not be completed unless it is heated to about 1100°C, and high-temperature treatment of 1350°C or higher is required to achieve sufficient sintering. Furthermore, in the conventional method, as seen in the firing process of ferroelectric composite oxides such as BaTiO 3 and Pb (Zr, Ti) O 3 ,
Volume expansion accompanied by the formation of the mineral phase and subsequent firing contraction occur, and the compact undergoes mechanical stress due to the significant volume change during this firing process.
Negative effects such as distortion and cracks occur.

これに察し本発明の補造法で前蚘アルコキシド
を出発原料ずすれば、100℃以䞋の枩床で
BaTiO3が生成され、成圢䜓の焌成枩床を1200℃
前埌の䜎枩床たで䞋げおも、埓来法以䞊の焌結床
のセラミツクス補品が埗られしかも焌成過皋にお
いおも盞倉化を䌎わないため、均質で緻密なしか
も超高玔床のBaTiO3セラミツクス補品を容易に
埗るこずができる。
On the other hand, if the above-mentioned alkoxide is used as the starting material in the production method of the present invention, it is possible to
BaTiO 3 is generated, and the firing temperature of the compact is increased to 1200℃.
Ceramic products with a higher degree of sintering than conventional methods can be obtained even if the temperature is lowered to low temperatures, and there is no phase change during the firing process, making it easy to produce homogeneous, dense, yet ultra-high purity BaTiO 3 ceramic products. Obtainable.

さらに耇雑な組成のセラミツクス補品を補造す
る堎合にも、䞀皮たたは二皮以䞊のアルコキシド
の混合物を加氎分解しお埗られたコロむドを二皮
以䞊均質に混合しお甚いるこずにより、均質な特
性の優れた補品を安定しおか぀高い収率で補造す
るこずができる。䞊蚘方法は、䟋えば組成の厳密
な制埡ず均質化が必芁な正枩床特性PTCサ
ヌミスタの補造などに適甚するず極めお効果的で
ある。
Furthermore, even when producing ceramic products with complex compositions, by homogeneously mixing two or more types of colloids obtained by hydrolyzing a mixture of one or more types of alkoxides, it is possible to achieve excellent homogeneous properties. It is possible to stably produce products with high yield. The above method is extremely effective when applied, for example, to the production of positive temperature characteristic (PTC) thermistors, which require strict control and homogenization of the composition.

たたアルコキシドを出発原料に甚いるこずは、
有機溶媒䞭で各成分の混合が行われる結果、均質
化が極めお容易に行われ、しかも石油化孊工業に
おける諞反応ず同様にパむプラむンおよび反応塔
よりなる完党自動連続システムによ぀お、出発物
質コロむドを䜜成できる利点があり、これに
続く成圢工皋さらには焌成工皋たでセラミツクス
の連続補造ラむンを圢成できる特長がある。
In addition, using alkoxide as a starting material
As a result of the mixing of each component in an organic solvent, homogenization can be carried out extremely easily, and the starting materials ( It has the advantage of being able to create colloids (colloids), and it has the advantage of forming a continuous production line for ceramics, from the subsequent molding process to the firing process.

なお本発明の補造法の出発原料ずしおは、前蚘
アルコキシドの加氎分解ず解膠操䜜によ぀お埗ら
れるものに限定されず、䟋えば金属塩にアンモニ
ア氎を添加しお金属の氎酞化物ずなし、この氎酞
化物を高玚アルコヌルもしくぱステル類などを
分散媒ずしたコロむドになすなど皮々の手法によ
るこずができる。さらにコロむド化の手法を異に
する耇数のコロむドから容易に均質な混合コロむ
ドを䜜補でき、この混合コロむドも本発明の出発
物質ずしお利甚するこずもできる。
Note that the starting materials for the production method of the present invention are not limited to those obtained by hydrolysis and peptization of the alkoxides, and include, for example, adding aqueous ammonia to metal salts to form metal hydroxides, Various methods can be used, such as making this hydroxide into a colloid using a higher alcohol or ester as a dispersion medium. Furthermore, a homogeneous mixed colloid can be easily produced from a plurality of colloids that are produced using different colloidalization techniques, and this mixed colloid can also be used as a starting material in the present invention.

たた次の脱分散媒工皋および成圢工皋、あるい
はそれ以降の焌成工皋に至るたでの過皋におい
お、柔軟性に富んだ成圢䜓を必芁ずする堎合に
は、コロむドに可撓性のある有機質バむンダを予
め適量混合しおおき、その埌に成圢するこずによ
぀おその目的を達成するこずができる。この有機
質バむンダずしおは、䟋えばポリビニヌルアルコ
ヌル、ポリビニヌルブチラヌル、メチルセルロヌ
ス、ポリアクリル酞、ポリメタクリル酞等が挙げ
られる。さらにコロむドを成圢するに先立ち、こ
のコロむドの粘性を成圢に奜適な範囲に調節する
目的で各皮増粘剀たたは分散剀等を添加混合する
こずもできる。
In addition, if a highly flexible molded body is required in the next process of removing the dispersion medium, molding process, or subsequent firing process, a flexible organic binder is added to the colloid in advance. The purpose can be achieved by mixing an appropriate amount and then molding. Examples of the organic binder include polyvinyl alcohol, polyvinyl butyral, methylcellulose, polyacrylic acid, polymethacrylic acid, and the like. Furthermore, prior to molding the colloid, various thickeners or dispersants may be added and mixed in order to adjust the viscosity of the colloid to a range suitable for molding.

前蚘コロむドが連続的に䟛絊される二局液䜓の
䞊局を構成する液䜓ずしおは、アルコヌル、アル
デヒド、ケトン類などの有機化合物が挙げられ
る。この䞊局液䜓は連続的に䟛絊されるコロむド
の分散媒を吞収し、成圢䜓のゲル化による凝結硬
化をもたらし、さらに匕続き成圢䜓䞭の分散媒を
陀去させる䜜甚が行われるものでなければならな
いため、䞊蚘分散媒が氎およびたたはベンれン
等で構成される堎合には、炭玠数の少ない有機化
合物が奜たしく、さらに䞀般に䞊蚘コロむドの密
床は1.1〜1.3cm3皋床であるこずが倚いので、
1.0cm3以䞋の密床であるこずが奜たしい。
Examples of the liquid constituting the upper layer of the two-layer liquid to which the colloid is continuously supplied include organic compounds such as alcohols, aldehydes, and ketones. This upper layer liquid must absorb the continuously supplied colloidal dispersion medium, cause solidification and hardening by gelation of the molded body, and subsequently remove the dispersion medium from the molded body. When the dispersion medium is composed of water and/or benzene, an organic compound with a small number of carbon atoms is preferable, and the density of the colloid is generally about 1.1 to 1.3 g/cm 3 .
Preferably, the density is 1.0 g/cm 3 or less.

前蚘アルコヌル類ずしおは、炭玠数以䞋の化
合物が奜たしく、䟋えばメチルアルコヌル、゚チ
ルアルコヌル、フルフリルアルコヌル、プロピル
アルコヌル、ブチルアルコヌル、ヘキシルアルコ
ヌル、およびこれらの化合物の異性䜓が挙げられ
る。
The alcohols are preferably compounds having 6 or less carbon atoms, such as methyl alcohol, ethyl alcohol, furfuryl alcohol, propyl alcohol, butyl alcohol, hexyl alcohol, and isomers of these compounds.

たた前蚘アルデヒド類ずしおは、炭玠数以䞋
の化合物が奜たしく、䟋えばアセトアルデヒド、
プロピオンアルデヒド、ブチルアルデヒド、アク
ロレむン、フルフラヌル、およびこれらの化合物
の異性䜓が挙げられる。
The aldehydes are preferably compounds having 5 or less carbon atoms, such as acetaldehyde,
Includes propionaldehyde, butyraldehyde, acrolein, furfural, and isomers of these compounds.

たた前蚘ケトン類ずしおは、炭玠数以䞋の化
合物が奜たしく、䟋えばアセトン、゚チルメチル
ケトン、プロピルメチルケトン、メチルビニルケ
トン、シクロヘキサノン、およびこれらの化合物
の異性䜓が挙げられる。
The ketones are preferably compounds having 6 or less carbon atoms, such as acetone, ethyl methyl ketone, propyl methyl ketone, methyl vinyl ketone, cyclohexanone, and isomers of these compounds.

前蚘䞊局液䜓を構成する化合物は、前蚘各皮化
合物が単独で䟛甚される以倖に、前蚘化合物を耇
数混合した混合液䜓でもよい。この有機化合物の
遞択は、コロむドを構成する分散媒の皮類ず含有
率、コロむドの䟛絊速床、成圢䜓の断面積および
圢状、脱分散媒速床、䞋局液䜓の皮類等の各皮条
件を勘案しお行われる。
The compound constituting the upper layer liquid may be one of the various compounds mentioned above, or may be a mixed liquid obtained by mixing a plurality of the above compounds. The selection of this organic compound takes into account various conditions such as the type and content of the dispersion medium constituting the colloid, the colloid supply rate, the cross-sectional area and shape of the compact, the speed of removal of the dispersion medium, and the type of lower liquid. be exposed.

たた二局液䜓の䞋局を構成する液䜓は、前蚘コ
ロむドよりも密床が倧きいこずを必須条件ずし、
前述のように䞀般にコロむドの密床は1.1〜1.3
cm3皋床であるので少なくずも1.4cm3以䞊
であるこずが奜たしく、䟋えばシヌト状成圢䜓の
平滑床を高める等の必芁がある堎合には、極力密
床の倧きい液䜓を遞択するなど、成圢䜓の圢状お
よび付䞎すべき特性などを考慮しお以䞋に述べる
化合物から合目的なものを遞択すればよい。
Further, it is essential that the liquid constituting the lower layer of the two-layer liquid has a higher density than the colloid,
As mentioned above, the density of colloids is generally between 1.1 and 1.3.
g/cm 3 , so it is preferably at least 1.4 g/cm 3 or more. For example, if it is necessary to increase the smoothness of a sheet-shaped molded product, select a liquid with as high density as possible. An appropriate compound may be selected from the compounds described below in consideration of the shape of the molded article and the properties to be imparted.

この䞋局液䜓ずしおは、䟋えば有機ハロゲン化
合物䟋えばペり化メチレン、トリブロムベンれ
ン、ゞペヌドベンれン、ブロモホルム等が挙げ
られる。ずくに前蚘有機ハロゲン化合物を䞋局液
䜓ずしお採甚する堎合の䞊局液䜓は、䞊蚘有機ハ
ロゲン化合物ずの盞互溶解床の䜎いアルコヌル類
を遞択するこずが奜たしい。さらに䞋局液䜓ずし
お、䟋えば氎銀もしくは各皮可融合金䟋えばり
ツド合金、プラント合金で代衚されるようなSn、
Pb、Cd、Bi、Zn、In、Hg等からなる融点が90
℃以䞋の可融合金が挙げられる。
Examples of this lower layer liquid include organic halogen compounds (eg, methylene iodide, tribromobenzene, diiodobenzene, bromoform, etc.). In particular, when the organic halogen compound is employed as the lower layer liquid, it is preferable to select an alcohol having low mutual solubility with the organic halogen compound as the upper layer liquid. Furthermore, as the lower layer liquid, for example, mercury or various fusible alloys (for example, Sn as represented by Wood alloy and Plant alloy),
Made of Pb, Cd, Bi, Zn, In, Hg, etc. with a melting point of 90
℃ or below).

この氎銀もしくは各皮可融合金は、有機ハロゲ
ン化合物よりさらに密床が倧きく、衚面匵力も倧
きいため、衚面がより安定しお確実にコロむドを
支持するこずができる。なお融点が90℃を越える
可融合金類の採甚は、特殊な堎合を陀き、成圢䜓
の脱分散媒速床、也燥速床が過床に速くな぀た
り、成圢䜓内に気泡が発生するなど奜たしくない
圱響をもたらすので、その採甚を避けた方がよ
い。
This mercury or various fusible metals has a higher density and a higher surface tension than organic halogen compounds, so the surface can support the colloid more stably and reliably. Note that the use of fusible alloys with melting points exceeding 90°C, except in special cases, may cause undesirable effects such as excessively high de-dispersion medium speed and drying speed of the molded product, and the generation of air bubbles within the molded product. Therefore, it is better to avoid adopting it.

さらに前蚘二液界面郚にコロむドを䟛絊する方
法ずしおは、䟋えばコロむドを加圧しながら所定
の断面圢状を有する口金郚もしくはノズルから前
蚘二液界面郚に抌出する方法などが採甚される。
Furthermore, as a method for supplying the colloid to the two-liquid interface, for example, a method of extruding the colloid to the two-liquid interface from a mouthpiece or nozzle having a predetermined cross-sectional shape while pressurizing the colloid, etc. is employed.

連続的に䟛絊されたコロむドはゲル化ずそれに
䌎う凝結䜜甚によ぀お口金郚で抌出された圢状を
維持しながら成圢䜓に成圢され、この成圢䜓より
も密床の倧きい䞋局液䜓に支持されお、二液界面
郚の䞊局液䜓䞭を移動し、脱分散媒を受け、この
二局液䜓倖に眮かれた巻取装眮、ガむドロヌラ等
によ぀お連続的に系倖に搬出される。次いでこの
搬出された成圢䜓をトンネルキルン等を甚いお焌
成するこずにより、所望のセラミツクス補品が埗
られ、必芁あれば焌成工皋に先立ち、切断加工を
斜しお高性胜セラミツクス補品が連続的に胜率よ
く補造される。
The continuously supplied colloid is formed into a molded body while maintaining the extruded shape at the mouthpiece due to gelation and condensation, and is supported by the lower liquid having a higher density than the molded body. It moves in the upper liquid at the two-liquid interface, receives the dedispersion medium, and is continuously carried out of the system by a winding device, guide rollers, etc. placed outside the two-liquid liquid. The desired ceramic product is then obtained by firing the compacted body in a tunnel kiln or the like, and if necessary, cutting is performed prior to the firing process to continuously and efficiently produce high-performance ceramic products. Manufactured.

この成圢䜓の断面圢状は、前述のように口金郚
の圢状で芏定するこずができ、シヌト状、ロツド
状、チナヌブ状、ハニカム状、フアむバ状等各皮
圢状の成圢䜓が連続的に補造される以倖に、前述
した可撓性バむンダを加えた成圢䜓においおは、
シヌト状の成圢䜓をプレス加工するこずにより
皮々の断面圢状のセラミツクス補品を埗るこずも
可胜である。
The cross-sectional shape of this molded body can be determined by the shape of the mouthpiece as described above, and molded bodies of various shapes such as sheet, rod, tube, honeycomb, and fiber shapes are continuously manufactured. In addition to the above-mentioned flexible binder, the molded product has the following properties:
It is also possible to obtain ceramic products with various cross-sectional shapes by pressing a sheet-like molded body.

以䞊述べたように、本発明によれば、 (1) 固䜓粉末を経由しないため、成圢に先立ち粉
砕工皋、仮焌工皋を必芁ずせず、しかも異物の
混入が殆んどないため均質で超高玔床の成圢䜓
を補造し埗る、 (2) 耇合酞化物等の耇雑な組成のセラミツクス成
圢䜓であ぀おも、各成分を混合しお原料コロむ
ドずし、分散媒を脱離させるこずにより、垞枩
付近で耇合酞化物を圢成するこずができ、組成
的にも組織的にも均質な成圢䜓を容易に補造し
埗る、 (3) 原料コロむドを皮々の断面圢状の口金郚もし
くはノズルから二液界面郚に䟛絊するこずによ
り、皮々の圢状等にフむルム状、フアむバ状、
たたは䞭空状の成圢䜓を補造し埗る、 (4) 成圢が液䜓䞭で連続しお行われるため焌成工
皋たでセラミツクスの連続補造ラむンを圢成で
きる 優れた効果がある。
As described above, according to the present invention, (1) Since solid powder is not used, there is no need for a pulverization process or a calcination process prior to molding, and there is almost no contamination of foreign matter, resulting in a homogeneous and ultrahigh-quality product. (2) Even in the case of ceramic molded bodies with complex compositions such as complex oxides, it is possible to produce molded bodies of high purity, by mixing each component to form a raw material colloid and removing the dispersion medium. (3) The raw material colloid is transferred to the two-liquid interface from a mouth or nozzle with various cross-sectional shapes. By supplying the
(4) Since molding is performed continuously in a liquid, there is an excellent effect that a continuous manufacturing line for ceramics can be formed up to the firing process.

以䞋本発明の態様を明確にするために、実斜䟋
ず比范䟋ずを瀺しおさらに具䜓的に説明するが、
ここに瀺す䟋はあくたでも䞀䟋であ぀おこれによ
り本発明の範囲を限定するものではない。
Hereinafter, in order to clarify the aspects of the present invention, examples and comparative examples will be shown and more specifically explained.
The examples shown here are merely examples and do not limit the scope of the present invention.

〔実斜䟋 〕 垂販のアルミナゟルずシリカゟルずを氎を分散
媒ずしおムラむト組成モル比でAl2O3SiO2
に混合しお原料コロむドに調補する。
[Example 1] Commercially available alumina sol and silica sol were mixed with water as a dispersion medium and had a mullite composition (in molar ratio Al 2 O 3 :SiO 2 =
3:2) to prepare a raw material colloid.

次にブタノヌルを䞊局液䜓ずし、ペり化メチレ
ンを䞋局液䜓ずする20℃に維持された二液界面郚
に䞊蚘ムラむト組成の原料コロむドをノズルより
厚さ100Ό、幅30mmで連続的に抌出し、分散媒
の氎を䞊局液䜓のブタノヌルで脱離させ、䞊蚘原
料コロむドをゲル化させたのち、二局液䜓䞭から
匕䞊げ40℃気圧の空気䞭に攟眮しお也燥させ成
圢シヌトを埗た。
Next, the raw material colloid with the above mullite composition was continuously extruded from a nozzle to a thickness of 100 Όm and a width of 30 mm onto the two-liquid interface maintained at 20°C with butanol as the upper liquid and methylene iodide as the lower liquid, and the dispersion medium The water was removed with butanol as the upper liquid, and the raw material colloid was gelled, then pulled out of the two-layer liquid and left in air at 40°C and 1 atm to dry to obtain a molded sheet.

この成圢シヌトを1300℃で焌成しお焌成埌の厚
さが26Όのムラむトセラミツクスシヌトを埗
た。
This formed sheet was fired at 1300°C to obtain a mullite ceramic sheet having a thickness of 26 Όm after firing.

このムラむトセラミツクスシヌトは均質で衚面
粗さ0.3Ό以䞋であり、貫通空孔は党く存圚せず
研磚なしに䜿甚するに十分な衚面粗さであ぀た。
たた鉱物組成は超高玔床のムラむトのみからなる
こずを線回折装眮で確認した。
This mullite ceramic sheet was homogeneous and had a surface roughness of 0.3 ÎŒm or less, had no through holes, and had a surface roughness sufficient to be used without polishing.
It was also confirmed using an X-ray diffraction device that the mineral composition consisted only of ultra-high purity mullite.

〔比范䟋 〕 実斜䟋ず同䞀のムラむト組成の原料コロむド
を䞀床粉末にしお1000℃にお仮焌したのち、仮焌
粉末を䜜補する。
[Comparative Example 1] A raw material colloid having the same mullite composition as in Example 1 is once powdered and calcined at 1000°C, and then a calcined powder is produced.

次いでこの仮焌粉末をテヌプ成圢法にお成圢
し、焌成埌厚さが30Όのムラむトセラミツクス
シヌトを埗たが、実斜䟋のムラむトセラミツク
スシヌトず同䞀焌結床および同䞀鉱物組成にする
のに実斜䟋の焌成枩床より150℃高い1450℃の
高枩床で焌成しなければならなか぀た。
This calcined powder was then molded using a tape molding method to obtain a mullite ceramic sheet with a thickness of 30 Όm after firing. It had to be fired at a high temperature of 1450°C, 150°C higher than the firing temperature of Example 1.

さらに埗られたムラむトセラミツクスシヌトに
は貫通空孔が倚数存圚し、か぀衚面粗さは1.0〜
2.0Όず粗く、0.3Ό以䞋の平滑な面を埗るため
には長時間の研磚を必芁ずし、機械的匷床は実斜
䟋により䜜られたシヌトに比范しお著しく匱く
取扱いに支障を来たした。
Furthermore, the obtained mullite ceramic sheet has many through-holes and has a surface roughness of 1.0~
The sheet had a rough surface of 2.0 ÎŒm and required a long polishing time to obtain a smooth surface of 0.3 ÎŒm or less, and its mechanical strength was significantly weaker than that of the sheet made in Example 1, making it difficult to handle. .

〔実斜䟋 〕 実斜䟋で甚いたアルミナゟルを氎を分散媒ず
しお原料コロむドに調補する。
[Example 2] The alumina sol used in Example 1 is prepared into a raw material colloid using water as a dispersion medium.

次にむ゜ブチルアルデヒドを䞊局液䜓ずし、氎
銀を䞋局液䜓ずする℃に維持された二液界面郚
に䞊蚘原料コロむドをノズルより厚さ50Ό、幅
30mmで連続的に抌出し、分散媒の氎を䞊局液䜓の
む゜ブチルアルデヒドで脱離させ、䞊蚘原料コロ
むドをゲル化させたのち、二局液䜓䞭から匕䞊げ
垞枩垞圧䞋の空気䞭に攟眮しお也燥させ成圢シヌ
トを埗た。
Next, the above raw material colloid is applied through the nozzle to the two-liquid interface maintained at 5°C, with isobutyraldehyde as the upper liquid and mercury as the lower liquid.
Continuously extrude through 30 mm, remove the water in the dispersion medium with isobutyraldehyde in the upper layer liquid, and gel the raw material colloid, then pull it out of the two-layer liquid and leave it in the air at room temperature and pressure to dry. A molded sheet was obtained.

この成圢シヌトを1400℃で焌成しお焌成埌の厚
さが12Όのアルミナセラミツクスシヌトを埗
た。
This formed sheet was fired at 1400°C to obtain an alumina ceramic sheet having a thickness of 12 Όm after firing.

このアルミナセラミツクスシヌトは均質で衚面
粗さ0.3Ό以䞋であり、貫通空孔は党く存圚しな
か぀た。たた鉱物組成は超高玔床のアルミナのみ
からなるこずを線回折装眮で確認した。しかも
実斜䟋のセラミツクスシヌトの玄半分の厚さで
あるにもかかわらず、取扱いに支障のない実甚䞊
十分な匷床を有しおいた。
This alumina ceramic sheet was homogeneous, had a surface roughness of 0.3 ÎŒm or less, and had no through holes at all. It was also confirmed using an X-ray diffraction device that the mineral composition consisted only of ultra-high purity alumina. Furthermore, although the thickness was approximately half that of the ceramic sheet of Example 1, it had sufficient strength for practical use without causing any trouble in handling.

〔比范䟋 〕 実斜䟋ず同䞀のアルミナゟルを䞀床粉末にし
おからテヌプ成圢法にお実斜䟋ず同䞀厚さおよ
び同䞀幅になるように成圢したが、成圢物が薄
く、か぀匷床が匱いためキダステむングテヌプよ
り成圢物が剥離できず、実斜䟋ず同様な厚さの
セラミツクスシヌトを埗るこずはできなか぀た。
[Comparative Example 2] The same alumina sol as in Example 2 was once powdered and then molded using a tape molding method to have the same thickness and width as in Example 2, but the molded product was thin and weak in strength. Therefore, the molded product could not be peeled off from the casting tape, and a ceramic sheet with the same thickness as in Example 2 could not be obtained.

〔実斜䟋 〕 金属アルミニりムをむ゜プロピルアルコヌルず
反応させお埗られたアルミニりムむ゜プロポキシ
ドにPH〜に調敎した氎を加えお加氎分解しベ
ヌマむトゟルを埗た。
[Example 3] Water adjusted to pH 2 to 4 was added to aluminum isopropoxide obtained by reacting metallic aluminum with isopropyl alcohol, and the aluminum was hydrolyzed to obtain a boehmite sol.

たた䞀方金属マグネシりムずメタノヌルずを反
応させお埗られたマグネシりムメトキシドに氎を
加えお加氎分解しブルヌサむトゟルを埗た。
On the other hand, magnesium methoxide obtained by reacting metallic magnesium with methanol was hydrolyzed by adding water to obtain brucytosol.

この䞡者をスピネル組成モル比でAl2O3
MgOに混合しお原料コロむドに調補
する。
These two have a spinel composition (Al 2 O 3 in molar ratio:
MgO=1:1) to prepare a raw material colloid.

次にシクロヘキサノンを䞊局液䜓ずし、プラン
ト合金Bi48、Pb23、Sn23、Hg6を
䞋局液䜓ずする60℃に維持された二液界面郚に䞊
蚘スピネル組成の原料コロむドをノズルより厚さ
40Ό、幅50mmで連続的に抌出し、分散媒の氎を
䞊局液䜓のシクロヘキサノンで脱離させ、䞊蚘原
料コロむドをゲル化させたのち、二局液䜓䞭から
匕䞊げ垞枩垞圧䞋の空気䞭に攟眮しお也燥させ成
圢シヌトを埗た。
Next, a raw material colloid with the above spinel composition is applied to the two-liquid interface maintained at 60°C with cyclohexanone as the upper liquid and plant alloy (48% Bi, 23% Pb, 23% Sn, 6% Hg) as the lower liquid.
It was continuously extruded to a size of 40 ÎŒm and a width of 50 mm, the dispersion medium water was removed by the upper liquid cyclohexanone, and the raw material colloid was gelled, then it was pulled out of the two-layer liquid and left in air at room temperature and normal pressure. It was dried to obtain a molded sheet.

この成圢シヌトを1200℃で焌成しお焌成埌の厚
さが8Όのスピネルセラミツクスシヌトを埗た。
This formed sheet was fired at 1200°C to obtain a spinel ceramic sheet having a thickness of 8 Όm after firing.

このスピネルセラミツクスシヌトは均質で衚面
粗さ0.3Ό以䞋であり、貫通空孔は党く存圚しな
か぀た。たた鉱物組成は超高玔床のスピネルのみ
からなるこずを線回折装眮で確認した。しかも
実斜䟋およびのセラミツクスシヌトの厚さよ
り薄い厚さであるにもかかわらず、実斜䟋およ
びず同様に取扱いに支障のない実甚䞊十分な匷
床を有しおいた。
This spinel ceramic sheet was homogeneous, had a surface roughness of 0.3 ÎŒm or less, and had no through holes at all. It was also confirmed using an X-ray diffraction device that the mineral composition consisted only of ultra-high purity spinel. Moreover, although the thickness was thinner than that of the ceramic sheets of Examples 1 and 2, it had practically sufficient strength without any trouble in handling, as in Examples 1 and 2.

〔比范䟋 〕 実斜䟋ず同䞀のスピネル組成の原料コロむド
を䞀床粉末にしおからテヌプ成圢法にお実斜䟋
ず同䞀厚さおよび同䞀幅になるように成圢した
が、比范䟋ず同様の理由でスピネルセラミツク
スシヌトを埗るこずはできなか぀た。
[Comparative Example 3] A raw material colloid with the same spinel composition as in Example 3 was once powdered and then processed into Example 3 using a tape molding method.
However, for the same reason as Comparative Example 2, it was not possible to obtain a spinel ceramic sheet.

なお䞀般にテヌプ成圢法によるスピネルセラミ
ツクス成圢䜓を焌成する枩床は1400℃であるこず
から、実斜䟋ではこの枩床より200℃䜎い焌成
枩床でスピネルセラミツクスシヌトを埗るこずが
できた。
Note that the temperature at which spinel ceramic molded bodies are generally fired by the tape molding method is 1400°C, so in Example 3, the spinel ceramic sheet was able to be obtained at a firing temperature 200°C lower than this temperature.

〔実斜䟋 〕 オルトケむ酞゚チルに氎を加えお加氎分解しお
埗られたシリカゟルず、実斜䟋で甚いたベヌマ
むトゟルず、ブルヌサむトゟルずをコヌゞラむト
cordierite、2MgO・2Al2O3・5SiO2の組成
モル比でMgOAl2O3SiO2に
混合しお原料コロむドに調補する。
[Example 4] Silica sol obtained by adding water to ethyl orthosilicate and hydrolyzing it, the boehmite sol used in Example 3, and brucito sol were mixed with cordierite (cordierite, 2MgO・2Al 2 O 3・5SiO 2 ) (MgO:Al 2 O 3 :SiO 2 =2:2:5 in molar ratio) to prepare a raw material colloid.

次にメタノヌルを䞊局液䜓ずし、氎銀を䞋局液
䜓ずする℃に維持された二液界面郚に䞊蚘コヌ
ゞラむト組成の原料コロむドをノズルより盎埄10
mm、厚さ500Όのチナヌブ状に抌出し、分散媒
の氎を䞊局液䜓のメタノヌルで脱離させ、䞊蚘原
料コロむドをゲル化させたのち、二局液䜓䞭から
匕䞊げ、メタノヌル蒞気を含む50℃気圧の空気
䞭にお也燥させ成圢チナヌブを埗た。
Next, a raw material colloid with the above cordierite composition is passed through a nozzle to the two-liquid interface maintained at 5°C, with methanol as the upper liquid and mercury as the lower liquid.
After extruding into a tube shape with a thickness of 500 Όm and 500 Όm, water in the dispersion medium is removed with methanol in the upper layer liquid, and the raw material colloid is gelled, and then pulled out from the two-layer liquid at 50°C and 1 atm containing methanol vapor. A molded tube was obtained by drying in the air.

この成圢チナヌブを1300℃で焌成しお焌成埌の
厚さ100Όのコヌゞラむトセラミツクスチナヌ
ブを埗た。
This molded tube was fired at 1300°C to obtain a cordierite ceramic tube having a thickness of 100 Όm after firing.

なお䞊局液䜓のメタノヌルに溶解するハロゲン
化合物四塩化炭玠を䞊蚘原料コロむドに加
え、予め䞊局液䜓の比重を1.2cm3に調節しチ
ナヌブの倉圢を防止した。
A halogen compound (carbon tetrachloride) dissolved in the methanol of the upper layer liquid was added to the raw material colloid, and the specific gravity of the upper layer liquid was adjusted in advance to 1.2 g/cm 3 to prevent the tube from deforming.

〔比范䟋 〕 実斜䟋ず同䞀のコヌゞラむト組成の原料コロ
むドを䞀床粉末にしおから、抌出成圢法にお実斜
䟋ず同䞀盎埄、同䞀厚さになるように成圢しよ
うず詊みたが、倉圢が甚しくチナヌブ状に䜜るこ
ずはできなか぀た。
[Comparative Example 4] An attempt was made to powder a raw material colloid with the same cordierite composition as in Example 4, and then to mold it by extrusion molding to the same diameter and thickness as in Example 4. The deformation was so severe that it was impossible to make it into a tube shape.

〔実斜䟋 〕 実斜䟋で甚いたベヌマむトゟル100重量郚ず
ポリアクリル酞系芪氎性バむンダ15重量郚ずに氎
を加えお原料コロむドに調補する。
[Example 5] Water is added to 100 parts by weight of the boehmite sol used in Example 3 and 15 parts by weight of the polyacrylic acid-based hydrophilic binder to prepare a raw material colloid.

次にブタノヌルを䞊局液䜓ずし、ペり化メチレ
ンを䞋局液䜓ずする20℃に維持された二液界面郚
に䞊蚘原料コロむドを盎埄50Όのノズルより抌
出し、分散媒の氎を䞊局液䜓のブタノヌルで脱離
させ、䞊蚘原料コロむドをゲル化させたのち、二
局液䜓䞭から匕䞊げ垞枩垞圧䞋の空気䞭に攟眮し
お也燥させ成圢繊維を埗た。
Next, the above raw material colloid is extruded through a nozzle with a diameter of 50 Όm to the two-liquid interface maintained at 20°C, with butanol as the upper liquid and methylene iodide as the lower liquid, and water as a dispersion medium is desorbed by the butanol as the upper liquid. After gelling the raw material colloid, it was pulled out of the two-layer liquid and allowed to stand in air at room temperature and pressure to dry, yielding shaped fibers.

この成圢繊維を巻取぀たのち700℃で焌成する
こずによりアルミン繊維を埗た。
This shaped fiber was wound up and fired at 700°C to obtain an aluminum fiber.

Claims (1)

【特蚱請求の範囲】  䞀皮たたは二皮以䞊の無機質を分散盞ずする
コロむドを出発物質ずし、前蚘コロむドより密床
が小さくか぀前蚘コロむドの分散媒を溶解する液
䜓を䞊局液䜓ずし、前蚘コロむドより密床が倧き
い液䜓を䞋局液䜓ずし、前蚘コロむドを前蚘䞊局
液䜓ず前蚘䞋局液䜓ずにより圢成される二局液䜓
の界面呚蟺に䟛絊しお、前蚘二局液䜓の界面呚蟺
で前蚘コロむドの分散媒の䞀郚たたは党郚を脱離
させ、前蚘コロむドに残存する分散盞を成圢䜓ず
しお圢成させるセラミツクス成圢䜓の補造方法。  コロむドが二局液䜓の界面呚蟺に連続的に䟛
絊される特蚱請求の範囲第項蚘茉のセラミツク
ス成圢䜓の補造方法。  䞊局液䜓が䞀皮たたは二皮以䞊の有機化合物
を含む特蚱請求の範囲第項たたは第項蚘茉の
セラミツクス成圢䜓の補造方法。  有機化合物がアルコヌル類、ケトン類、たた
はアルデヒド類の䞭から遞ばれた䞀皮たたは二皮
以䞊を含む特蚱請求の範囲第項蚘茉のセラミツ
クス成圢䜓の補造方法。  アルコヌル類が炭玠数以䞋のアルコヌルで
ある特蚱請求の範囲第項蚘茉のセラミツクス成
圢䜓の補造方法。  ケトン類が炭玠数以䞋のケトンである特蚱
請求の範囲第項蚘茉のセラミツクス成圢䜓の補
造方法。  アルデヒド類が炭玠数以䞋のアルデヒドで
ある特蚱請求の範囲第項蚘茉のセラミツクス成
圢䜓の補造方法。  䞋局液䜓が有機ハロゲン化合物の䞭から遞ば
れた䞀皮たたは二皮以䞊の混合物を含む特蚱請求
の範囲第項ないし第項のいずれかに蚘茉のセ
ラミツクス成圢䜓の補造方法。  䞋局液䜓が氎銀たたは可融合金からなる特蚱
請求の範囲第項ないし第項のいずれかに蚘茉
のセラミツクス成圢䜓の補造方法。  可融合金の融点が90℃以䞋である特蚱請求
の範囲第項蚘茉のセラミツクス成圢䜓の補造方
法。  䞀皮たたは二皮以䞊のアルコキシドを加氎
分解しお埗られるコロむドを出発物質ずする特蚱
請求の範囲第項ないし第項のいずれかに蚘
茉のセラミツクス成圢䜓の補造方法。  䞀皮たたは二皮以䞊のアルコキシドを加氎
分解しお埗られるコロむドの二皮たたは䞉皮以䞊
の混合物を出発物質ずする特蚱請求の範囲第項
ないし第項のいずれかに蚘茉のセラミツクス
成圢䜓の補造方法。
[Scope of Claims] 1 A colloid having one or more kinds of inorganic substances as a dispersed phase is used as a starting material, a liquid having a lower density than the colloid and dissolving the dispersion medium of the colloid is used as an upper liquid, and a liquid having a density lower than that of the colloid A liquid with a large amount of water is used as a lower liquid, and the colloid is supplied around the interface of a two-layer liquid formed by the upper liquid and the lower liquid, and a part of the dispersion medium of the colloid is supplied around the interface of the two-layer liquid. Alternatively, a method for producing a ceramic molded body in which the entire colloid is desorbed and the dispersed phase remaining in the colloid is formed as a molded body. 2. The method for producing a ceramic molded body according to claim 1, wherein the colloid is continuously supplied around the interface of the two-layer liquid. 3. The method for producing a ceramic molded body according to claim 1 or 2, wherein the upper layer liquid contains one or more organic compounds. 4. The method for producing a ceramic molded article according to claim 3, wherein the organic compound contains one or more selected from alcohols, ketones, and aldehydes. 5. The method for producing a ceramic molded body according to claim 4, wherein the alcohol is an alcohol having 6 or less carbon atoms. 6. The method for producing a ceramic molded body according to claim 4, wherein the ketones are ketones having 6 or less carbon atoms. 7. The method for producing a ceramic molded body according to claim 4, wherein the aldehyde is an aldehyde having 5 or less carbon atoms. 8. The method for producing a ceramic molded article according to any one of claims 1 to 7, wherein the lower layer liquid contains one or a mixture of two or more selected from organic halogen compounds. 9. The method for manufacturing a ceramic molded body according to any one of claims 1 to 7, wherein the lower liquid is made of mercury or a fusible metal. 10. The method for producing a ceramic molded body according to claim 9, wherein the melting point of the fusible alloy is 90°C or lower. 11. A method for producing a ceramic molded body according to any one of claims 1 to 10, which uses a colloid obtained by hydrolyzing one or more alkoxides as a starting material. 12. A ceramic molded article according to any one of claims 1 to 10, which uses as a starting material a mixture of two or more colloids obtained by hydrolyzing one or more alkoxides. Production method.
JP56131368A 1981-08-21 1981-08-21 Manufacture of ceramic formed body Granted JPS5832061A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56131368A JPS5832061A (en) 1981-08-21 1981-08-21 Manufacture of ceramic formed body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56131368A JPS5832061A (en) 1981-08-21 1981-08-21 Manufacture of ceramic formed body

Publications (2)

Publication Number Publication Date
JPS5832061A JPS5832061A (en) 1983-02-24
JPS6356186B2 true JPS6356186B2 (en) 1988-11-07

Family

ID=15056290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56131368A Granted JPS5832061A (en) 1981-08-21 1981-08-21 Manufacture of ceramic formed body

Country Status (1)

Country Link
JP (1) JPS5832061A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60155566A (en) * 1984-01-24 1985-08-15 倧明化孊工業株匏䌚瀟 Manufacture of metal oxide flexible formed product

Also Published As

Publication number Publication date
JPS5832061A (en) 1983-02-24

Similar Documents

Publication Publication Date Title
JP2604592B2 (en) Molding method of metal, ceramic powder, etc. and composition therefor
JP2663275B2 (en) Method for producing fused silica glass article
US9585736B2 (en) Dental articles using nanocrystalline materials and methods of manufacture
US7922964B2 (en) Ceramic hollow fibers made from nanoscale powder particles
US5076815A (en) Process for producing sintered material based on aluminum oxide and titanium oxide
JPH0388765A (en) Dimension-controlled ceramics
JP2959683B2 (en) Method for producing high-purity alumina fiber molded body
JP2006298677A (en) Method for synthesizing ceramic powder
EP1775273B1 (en) Light transmitting lutetium oxide sintering product and process for producing the same
JPS6356186B2 (en)
JPH0572341B2 (en)
JPS58153604A (en) Manufacture of ceramic shape
JP2786719B2 (en) Method for producing rare earth oxide sintered body
JPS5926966A (en) Manufacture of ceramics green molded body
JPS6348823B2 (en)
JP2022081058A (en) Method for producing barium titanyl oxalate and method for producing barium titanate
JPH08337467A (en) Ceramic material and its production
Khanuja Origin and control of anisotropy in three dimensional printing of structural ceramics
JPS5939773A (en) Ceramic green moldings baking process
CN115286411B (en) Titanium dioxide whisker reinforced magnesium oxide ceramic substrate material and preparation method thereof
JPS6348824B2 (en)
WO2021251451A1 (en) Barium titanyl oxalate, method for producing same, and method for producing barium titanate
JP6935279B2 (en) Manufacturing method of three-dimensional object and manufacturing equipment used for it
JPS5930668B2 (en) Manufacturing method for alumina-containing ceramic molded product
JPH06191931A (en) Composition for alumina sintered compact and alumina sintered compact