JPS635558A - Nonvolatile random access memory - Google Patents

Nonvolatile random access memory

Info

Publication number
JPS635558A
JPS635558A JP61148641A JP14864186A JPS635558A JP S635558 A JPS635558 A JP S635558A JP 61148641 A JP61148641 A JP 61148641A JP 14864186 A JP14864186 A JP 14864186A JP S635558 A JPS635558 A JP S635558A
Authority
JP
Japan
Prior art keywords
recall
node
channel
sram
eeprom
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61148641A
Other languages
Japanese (ja)
Inventor
Haruo Konishi
小西 春男
Yoshikazu Kojima
芳和 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP61148641A priority Critical patent/JPS635558A/en
Publication of JPS635558A publication Critical patent/JPS635558A/en
Pending legal-status Critical Current

Links

Landscapes

  • Non-Volatile Memory (AREA)
  • Static Random-Access Memory (AREA)
  • Semiconductor Memories (AREA)

Abstract

PURPOSE:To obtain an integrated circuit of high integration and large memory capacity by a method wherein recall action is made performable only by capacity difference according to existence of the channel of an EEPRON part. CONSTITUTION:A drain region 7 is provided according to an N-type diffusion layer on a P-type substrate 8, a floating gate 4 is provided on the P-type substrate 8 interposing an insulating film 100 between them, and moreover a control gate b is provided on the floating gate 4 interposing an insulating film 101 between them to construct an EEPROM 3. When recall is to be performed, a difference is provided to the capacitance value of capacity to be connected between nodes Q, Q according to existence of the channel 9 of the EEPROM part 3, and the recall condition of an SRAM is decided using the difference of the capacitance value thereof. Accordingly, the number of elements is reduced, the area of memory cells is reduced, the device is made suitable for high integration, and chip cost is also reduced.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、MISFETにより構成されたSRAMとE
EPROMとから成る高集積化に適した不揮発性RAM
に関する。
Detailed Description of the Invention (Industrial Application Field) The present invention provides an SRAM and an E
Non-volatile RAM suitable for high integration consisting of EPROM
Regarding.

(発明の概要) 一般に、不揮発性RAMにおいて、EEPROMの内容
をSRAMへ読み出すことをリコールと呼ぶ。
(Summary of the Invention) Generally, in nonvolatile RAM, reading the contents of EEPROM to SRAM is called recall.

本発明は、不揮発性RAMのリコール時において、EE
PROM部のチャンネルの有無による容量差を利用する
ことにより、リコール動作が行なえる様にしたものであ
る。
The present invention provides EE when recalling nonvolatile RAM.
The recall operation is made possible by utilizing the capacitance difference between the presence and absence of a channel in the PROM section.

(従来の技術) 従来、不揮発性RAMのリコールは、第2図におイテ、
SRAM(7)電rA電圧VRC11を一1f“0”レ
ベルまで立ち下げ、その後、徐々にVRCllを立ち上
げてゆく。その際、フローティングゲート4に電子が注
入されており、EEPROM3が、非導通状態であれば
、容量5は、ノードQと切り岨され、ノードQよりノー
ド0の付加容量の方が大きくなり、VRCI 1が完全
に立ち土がった状態では、ノードQは“0”、ノードQ
は°“1″レベルでそれぞれ安定した状態となり、結局
“1″がリコールされたことになる。
(Prior art) Conventionally, nonvolatile RAM recalls are as shown in Figure 2.
The SRAM (7) rA voltage VRC11 is lowered to the 1f "0" level, and then VRCll is gradually raised. At that time, if electrons are injected into the floating gate 4 and the EEPROM 3 is in a non-conducting state, the capacitor 5 is cut off from the node Q, and the additional capacitance of the node 0 becomes larger than that of the node Q. 1 is completely standing on the ground, node Q is “0”, node Q
are in a stable state at the "1" level, and in the end "1" is recalled.

また、逆に、フローティングゲート4から電子が抜かれ
、フローティングゲート4が正に帯電され、εEPRO
Mが尋通状態であれば、容量5はノードQと接続された
ことになり、ノードQよりノードQの付加容量の方が大
きくなり、VRCllが完全に立ち上がった状態では、
ノード◇は“1#、ノードQは“0”レベルでそれぞれ
安定した状態となり、結局“0″がリコールされること
になる。
Conversely, electrons are extracted from the floating gate 4, the floating gate 4 is positively charged, and εEPRO
If M is in interrogation state, capacitor 5 is connected to node Q, the additional capacitance of node Q is larger than that of node Q, and when VRCll is fully started up,
The node ◇ becomes stable at the "1#" level, and the node Q becomes stable at the "0" level, and eventually "0" is recalled.

(発明が解決しようとする問題点) しかし、従来の不揮発性RAMは、SRAMとEEPR
OM以外に容量を1ピツトごとに設けなければならない
ので、メモリーセルの面積が大きくなり、高集積化に適
さないばかりでなく、チップコストも高くなるという欠
点があった。
(Problem to be solved by the invention) However, conventional non-volatile RAM is SRAM and EEPR.
Since a capacitor other than OM must be provided for each pit, the area of the memory cell becomes large, which not only makes it unsuitable for high integration but also increases chip cost.

そこで、本発明は、従来のこの様な欠点を解決するため
に、高集積で、メモリ容&の大きな集積回路を得ること
を目的としている。
SUMMARY OF THE INVENTION In order to solve these conventional drawbacks, it is an object of the present invention to provide a highly integrated circuit with a large memory capacity.

(問題点を解決するための手段) 上記問題点を解決するために、本発明は、εEPROM
部のチャンネルの有無による容量差だけでリコール動作
が行なえるようにした。
(Means for Solving the Problems) In order to solve the above problems, the present invention provides an εEPROM
The recall operation can be performed only by the difference in capacity depending on the presence or absence of a channel.

(作用) 本発明は、ノードQ、◇に接続される容量を、εEPR
OM部のチャンネルの有無によってその容量値に差を与
え、その容11E[の差を用いて、SRAMのリコール
状態を決定するものである。
(Function) The present invention sets the capacitance connected to the node Q, ◇ to εEPR
A difference is given to the capacitance value depending on the presence or absence of a channel in the OM section, and the recall state of the SRAM is determined using the difference in the capacitance 11E.

(実施例) 以下に、本発明の実施例を図面にもとづいて、詳細に説
明する。
(Example) Below, an example of the present invention will be described in detail based on the drawings.

第1図において、トランジスタ1のゲートは、ワード線
10に、ドレインおよびソースは、SRAMおよびピア
下112に接続され、トランジスタ2のゲートは、ワー
ド線10に、ドレインおよびソースは、SRAMおよび
ビット線13に接続され、εEPROM3のドレインは
、ノードQに接続される。また、VRCl 1は、SR
AMの電源である。
In FIG. 1, the gate of transistor 1 is connected to the word line 10, the drain and source are connected to the SRAM and the bottom pier 112, and the gate of transistor 2 is connected to the word line 10, the drain and source are connected to the SRAM and the bit line 112. 13, and the drain of εEPROM3 is connected to node Q. Also, VRCl 1 is SR
It is an AM power source.

また、第3図(a)および(b)は、第1図におけるε
EPROM3の断面図であり、P型基板8上にN型拡散
層によりドレイン7を設け、P型基板8上に絶縁g11
0oを介してフローテ)ングゲート4を設け、さらに7
0−ティングゲート4上に絶縁11101を介しコント
ロールゲート6を設けた構造となっている。
In addition, FIGS. 3(a) and (b) show ε in FIG.
It is a cross-sectional view of the EPROM 3, in which a drain 7 is provided on a P-type substrate 8 by an N-type diffusion layer, and an insulating layer G11 is provided on the P-type substrate 8.
A floating gate 4 is provided through 0o, and further 7
The control gate 6 is provided on the zeroing gate 4 with an insulator 11101 interposed therebetween.

次にその動作を説明する。Next, its operation will be explained.

まず、リコールを行う際は、SRAMの電源電圧VRC
11を″O″レベルまで立ち下げ、その後、徐々にVR
Cllを立ち上げてゆく。その際、第3図(a)に示す
様に、フローティングゲート4の電子が抜かれ、フロー
ティングゲート4が正に帯電した状態になっていると、
フローティングゲート4下の基板8上にチャンネル9が
形成され、ドレイン7とチャンネル9が同電位となり、
70−ティングゲート4とチャンネル9との間に容量が
形成されることになる。よって、ノード◇よりノードQ
の付加容量の方が大きくなり、VRCllが、完全に立
ち上がった状態では、ノードQは“0“、ノードdは“
1“レベルでそれぞれ安定した状態となっており、結局
、“0”がリコールされることになる。また、リコール
動作を行なう際には、コントロールゲート6の電位を安
定にするために、コントロールゲート6は接地電位に接
続される。
First, when performing a recall, the SRAM power supply voltage VRC
11 to the "O" level, then gradually increase the VR
We will launch Cll. At that time, as shown in FIG. 3(a), if the electrons in the floating gate 4 are removed and the floating gate 4 is in a positively charged state,
A channel 9 is formed on the substrate 8 under the floating gate 4, and the drain 7 and channel 9 are at the same potential.
A capacitance is formed between the 70-ring gate 4 and the channel 9. Therefore, node Q from node ◇
The additional capacitance of is larger, and when VRCll is fully started up, node Q is “0” and node d is “0”.
Each is in a stable state at the 1" level, and in the end, "0" will be recalled. Also, when performing the recall operation, in order to stabilize the potential of the control gate 6, the control gate 6 is connected to ground potential.

また、第3図(b)に示す様に、リコールを行なう際、
70−ティングゲート4に電子が注入された状態になっ
ていると、チャンネルが形成されないため、容量が形成
されないことになる。よって、ノードQよりノードQの
付加容量の方が大きくなり、VRCが完全に立ち上がっ
た状態では、ノードQは“1”、ノードQは“0”レベ
ルでそれぞれ安定した状態となっており、結局、01″
がリコールされることになる。
Also, as shown in Figure 3(b), when performing a recall,
If electrons are injected into the 70-ring gate 4, no channel will be formed and no capacitance will be formed. Therefore, the additional capacitance of node Q is larger than that of node Q, and when VRC is fully started up, node Q is in a stable state at "1" level and node Q is at "0" level, and eventually ,01″
will be recalled.

よって上記の様に、フO−ナイングゲート4に電子が注
入されているか、あるいは、電子が抜かれ正に帯電して
いるかによって容量を変化させることができるので、安
定なリコールを行なうことができる。
Therefore, as described above, the capacitance can be changed depending on whether electrons are injected into the focusing gate 4 or whether electrons are removed and the gate is positively charged, so that stable recall can be performed.

(発明の効果) 本発明は、以上説明した様に、従来の不揮発性RAMに
おいて、リコール時に1ビツトごとに必要となる付加容
置を必要としないため、素子数が少なく、メモリーセル
の面積が小さくなり、高集積化に適しており、チップコ
ストも低くなるという効果がある。
(Effects of the Invention) As explained above, the present invention does not require the additional storage required for each bit at the time of recall in conventional non-volatile RAM, so the number of elements is small and the area of the memory cell is reduced. It is small, suitable for high integration, and has the effect of reducing chip cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明にかかる不揮発性RAMの回路図、第
2図は、EEPROMのソース側に容量を接続した従来
の不揮発性RAMの回路図、第3図(a)は、フローテ
ィングゲートが正に帯電し、チャンネルが形成されたE
EPROMの断面図、第3図(b)は、フローティング
ゲートが負に帯電し、チャンネルが形成されていないE
EPROMの断面図である。 3・・・EEPROM 4・・・フローテイングゲート
Figure 1 is a circuit diagram of a non-volatile RAM according to the present invention, Figure 2 is a circuit diagram of a conventional non-volatile RAM in which a capacitor is connected to the source side of an EEPROM, and Figure 3 (a) is a circuit diagram of a non-volatile RAM according to the present invention. E is positively charged and a channel is formed.
A cross-sectional view of an EPROM, FIG. 3(b), shows an EPROM in which the floating gate is negatively charged and no channel is formed.
It is a sectional view of EPROM. 3...EEPROM 4...Floating gate

Claims (1)

【特許請求の範囲】[Claims] MISFETにより構成されたSRAMと、EEPRO
Mとから成る不揮発性RAMにおいて、前記EEPRO
Mの内容を前記SRAMへ読み出す際、前記SRAM入
力に接続されるEEPROM部のチャンネルの有無によ
って変化するEEPROMのゲート、ドレイン間の容量
を用いて、前記EEPROMの内容を前記SRAMへ読
み出すことを特徴とする不揮発性RAM。
SRAM configured by MISFET and EEPRO
In the non-volatile RAM consisting of M, the EEPRO
When reading the contents of M to the SRAM, the contents of the EEPROM are read to the SRAM using a capacitance between the gate and drain of the EEPROM that changes depending on the presence or absence of a channel in the EEPROM section connected to the SRAM input. Non-volatile RAM.
JP61148641A 1986-06-25 1986-06-25 Nonvolatile random access memory Pending JPS635558A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61148641A JPS635558A (en) 1986-06-25 1986-06-25 Nonvolatile random access memory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61148641A JPS635558A (en) 1986-06-25 1986-06-25 Nonvolatile random access memory

Publications (1)

Publication Number Publication Date
JPS635558A true JPS635558A (en) 1988-01-11

Family

ID=15457337

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61148641A Pending JPS635558A (en) 1986-06-25 1986-06-25 Nonvolatile random access memory

Country Status (1)

Country Link
JP (1) JPS635558A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5721440A (en) * 1991-05-29 1998-02-24 Gemplus Card International Memory with EEPROM cell having capacitive effect and method for the reading of such a cell
US6088303A (en) * 1991-12-11 2000-07-11 Seiko Precision Inc. Time recorder

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5721440A (en) * 1991-05-29 1998-02-24 Gemplus Card International Memory with EEPROM cell having capacitive effect and method for the reading of such a cell
US6088303A (en) * 1991-12-11 2000-07-11 Seiko Precision Inc. Time recorder

Similar Documents

Publication Publication Date Title
US5483482A (en) Semiconductor memory device having bidirectional potential barrier switching element
US4590504A (en) Nonvolatile MOS memory cell with tunneling element
US4669062A (en) Two-tiered dynamic random access memory (DRAM) cell
US5517044A (en) Non-volatile semiconductor memory device having thin film transistors equipped with floating gates
KR910007432B1 (en) Semiconductor memory
JPS6046554B2 (en) Semiconductor memory elements and memory circuits
US5444279A (en) Floating gate memory device having discontinuous gate oxide thickness over the channel region
US5012309A (en) Semiconductor memory device comprising capacitor portions having stacked structures
JPH0268792A (en) Memory-cell
KR940016841A (en) Static RAM Cells and Memory Devices
JPS5982761A (en) Semiconductor memory
KR0179175B1 (en) Method of manufacturing semiconductor memory device
KR19990036748A (en) Semiconductor memory device and manufacturing method thereof
JPS60189964A (en) Semiconductor memory
JPS5718356A (en) Semiconductor memory storage
JPH02177561A (en) Semiconductor non-volatile memory and manufacture thereof
JPS635558A (en) Nonvolatile random access memory
JPS6065559A (en) Semiconductor memory
JPH10303318A (en) Semiconductor device and manufacture thereof
US20010011739A1 (en) Ferroelectric random access memory device
US6507516B1 (en) EEPROM memory cell embedded on core CMOS for analog applications
JP2506159B2 (en) Semiconductor memory device
JPH10222984A (en) Structure of sram storing cell having n-channel thin film transistor load device and manufacture thereof
JPH01204295A (en) Semiconductor storage
JPH0415556B2 (en)