JPS6355512A - Image pickup device for minute material - Google Patents

Image pickup device for minute material

Info

Publication number
JPS6355512A
JPS6355512A JP19885786A JP19885786A JPS6355512A JP S6355512 A JPS6355512 A JP S6355512A JP 19885786 A JP19885786 A JP 19885786A JP 19885786 A JP19885786 A JP 19885786A JP S6355512 A JPS6355512 A JP S6355512A
Authority
JP
Japan
Prior art keywords
image
objective lens
optical element
enlarging
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19885786A
Other languages
Japanese (ja)
Inventor
Shoji Watanabe
昭二 渡辺
Kenji Baba
研二 馬場
Mikio Yoda
幹雄 依田
Naoki Hara
直樹 原
Shunsuke Nokita
舜介 野北
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP19885786A priority Critical patent/JPS6355512A/en
Publication of JPS6355512A publication Critical patent/JPS6355512A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To change the enlarging power without changing an optical element to observe a minute living body in accordance with its properties by moving an enlarging optical element incorporated in an immersed part and a photodetector, which transmits the enlarged optical image of the expanding optical element to the outside, in the direction of the optical axis to change their relative positions by an external control mechanism. CONSTITUTION:An objective lens 21 moved forward and backward by a driver 31 is set on the side of a transmission window 28 to obtain the enlarged optical image of a suspension in a slit 29. This enlarged optical image is transmitted out of an image pickup body 3 by an image fiber 22, which is provided at the rear of the objective lens 21 and can be moved forward and backward by a driver 32, and passes an eyepiece lens 4 and is received by an ITV camera 5, and the image is converted to an electric signal and is projected on a monitor TV 6. Position adjusters 9 and 10 control extents of driving of drivers 31 and 32 in accordance with deviations of new input signals from current position signals, and the enlarging power is arbitrarily changed by this operation without interchanging the objective lens.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はバイオプロセス内懸濁液中の微小生物を撮像す
る装置に係り、特に、対象生物に対応して最適な画像を
提供するのに好適な微小生物撮像装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an apparatus for imaging microorganisms in a suspension in a bioprocess, and in particular, to an apparatus for imaging microorganisms in a suspension in a bioprocess. The present invention relates to a suitable microorganism imaging device.

〔従来の技術〕[Conventional technology]

バイオプロセスにおける生体は、その環境に対応した変
化を示し、現在のプロセス状態を判断するのに有用な情
報を持つ、この判断は、これまで回分的な顕微鏡観察に
依存していたが、最近、工業用テレビカメラに顕微鏡の
鏡筒部を接続し、その検鏡部にサンプル液を連続的に流
通させる方式%式% 〜428)や防水ボックスに収納して水中カメラ方式(
実開昭60−108394号公報)でオンラインamす
る撮像装置が提案されている。
Organisms in bioprocesses exhibit changes in response to their environment, and have useful information for determining the current state of the process. Until now, this determination has relied on batchwise microscopy, but recently, A method in which the lens barrel of a microscope is connected to an industrial television camera and the sample liquid is continuously passed through the microscope section (% formula % ~ 428), and an underwater camera method in which it is stored in a waterproof box (
Japanese Utility Model Application Publication No. 60-108394) proposes an imaging device that performs online imaging.

従来のオンライン撮像装置は、顕微鏡鏡筒の両端に対物
レンズと接眼レンズを固定し、更に、接眼レンズ側にテ
レビカメラを固定する方式となっている。このため、拡
大倍率は用いたレンズ系の仕様で固定されていた。
A conventional online imaging device has a system in which an objective lens and an eyepiece are fixed to both ends of a microscope barrel, and a television camera is further fixed to the eyepiece side. For this reason, the magnification factor was fixed by the specifications of the lens system used.

ところで、バイオプロセスには一種類の生体を利用する
純粋培養系と、数種類の生体から成る混合培養系がある
。純粋培養系では大きさ、形状の違う雑菌繁殖、混合培
養系でも生体毎に性状が異なり、これらの特徴量を一様
に観察するには光学素子を取替えることなく拡大倍率を
変更する必要がある。特・に、雑菌の混入および繁殖を
嫌うプロセスでは設置した状態で倍率変更を行うことが
必要条件である。この従来例によれば、拡大倍率を変更
するには撮像装置を一時分解してレンズ系を交換しなけ
ればならなかった。
By the way, bioprocesses include pure culture systems that utilize one type of living organism and mixed culture systems that use several types of living organisms. In a pure culture system, bacteria of different sizes and shapes grow, and even in a mixed culture system, each organism has different properties, and in order to uniformly observe these characteristics, it is necessary to change the magnification without changing the optical element. . In particular, in processes where the contamination and proliferation of germs is averse, it is necessary to change the magnification while the device is installed. According to this conventional example, in order to change the magnification, it was necessary to temporarily disassemble the imaging device and replace the lens system.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術は1反応状態や不慮の事故等により微小生
物の出現相や形状が変化し、拡大倍率を変更したい時に
も容易に対処できないという問題があった。
The above-mentioned conventional technology has a problem in that the appearance phase and shape of microorganisms change due to one reaction state or an unforeseen accident, and it cannot be easily dealt with when it is desired to change the magnification.

本発明の目的は、浸漬した状態で、かつ、構成機器を変
えることなく微小生物の性状に対応して拡大倍率を変更
できる撮像装置を提供することにある。
An object of the present invention is to provide an imaging device that can change the magnification in response to the properties of microorganisms in an immersed state and without changing the component equipment.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、浸漬部に内蔵された拡大光学素子とこの拡
大光学素子の拡大光像を外部に伝送する受光素子とを光
軸方向に移動可能とし、外部調節機構で両者の相対位置
を変更することにより達成される。
The above purpose is to enable the magnifying optical element built into the immersion section and the light receiving element that transmits the magnified optical image of the magnifying optical element to the outside to be movable in the optical axis direction, and to change the relative positions of the two using an external adjustment mechanism. This is achieved by

〔作用〕 拡大光学素子と拡大光像受光素子は、光軸方向に対して
互いに逆方向に動作させ、さらに、それらの間隔、すな
わち、相対距離と、被写体と拡大光学素子間の距離を外
部調節機構で所定値に維持させる。また、相対距離に対
応して被写体に照射する光量を調節する。このような操
作により、光学素子を取替えることなく、同一素子で任
意の拡大倍率およびコントラストの良好な画像を得るこ
とができる。
[Operation] The magnifying optical element and the magnifying light image receiving element are operated in opposite directions with respect to the optical axis direction, and furthermore, the distance between them, that is, the relative distance, and the distance between the subject and the magnifying optical element can be adjusted externally. A mechanism maintains it at a predetermined value. Furthermore, the amount of light irradiated onto the subject is adjusted in accordance with the relative distance. Through such operations, an image with desired magnification and contrast can be obtained using the same optical element without replacing the optical element.

〔実施例〕〔Example〕

以下、本発明の実施例を図面を用いて説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図に本発明の一実施例を示す、微生物、藻類、ある
いは、動植物細胞を含む懸濁液2にリアクタ1の外部か
ら挿入される撮像部本体3は、懸濁液2と接する部分を
密閉構造とし、その一部に懸濁液2が自由に出入りでき
るスリット29をもつ。
An embodiment of the present invention is shown in FIG. 1. An imaging section main body 3 inserted from the outside of the reactor 1 into a suspension 2 containing microorganisms, algae, or animal and plant cells has a portion that comes into contact with the suspension 2. It has a closed structure, and a part thereof has a slit 29 through which the suspension 2 can freely enter and exit.

スリット29の撮像部本体3側にガラス等から成る透過
窓28.28’ を設け、光を通せる構造とする。光は
、光源発生装N12から光ファイバ23により撮像部本
体3に導入され、集光レンズ24で光束を絞った後、プ
リズム25を介して透過窓28′に導き、スリット29
内の懸濁液2を照射する。透過窓28′は可動壁26に
固定され、スリット29の光照射領域の懸濁液厚みを変
える機能を持つ。可動壁26の駆動は、例えば、撮像部
本体3の全体、あるいは、一部領域を導通管27を介し
て圧力ガスを出し入れすることにより行う。
A transmission window 28, 28' made of glass or the like is provided on the side of the imaging unit main body 3 of the slit 29 to allow light to pass through. The light is introduced from the light source generator N12 into the imaging unit main body 3 through an optical fiber 23, and after condensing the light beam with a condenser lens 24, it is guided to a transmission window 28' via a prism 25, and then passed through a slit 29.
The suspension 2 inside is irradiated. The transmission window 28' is fixed to the movable wall 26 and has the function of changing the thickness of the suspension in the light irradiation area of the slit 29. The movable wall 26 is driven, for example, by introducing and extracting pressure gas into and out of the entire imaging section main body 3 or a partial region thereof via the conduction pipe 27.

このような撮像部構成で、゛透過窓28側に駆動器31
により前後方向に移動できる対物レンズ21を設置し、
スリット29内懸濁液の拡大光像を得る。この拡大光像
は対物レンズ21の後方に設置された、駆動器32によ
り前後方向に移動可能なイメージファイバ22によって
撮像部本体3の外部に伝送され、接眼レンズ4を介して
ITVカメラ5で受光される。ITVカメラ5で受光さ
れた画像は電気信号に変換され、モニターテレビ6に映
像される。
With such an imaging unit configuration, the driver 31 is placed on the transmission window 28 side.
An objective lens 21 that can be moved in the front and back direction is installed,
An enlarged optical image of the suspension inside the slit 29 is obtained. This enlarged light image is transmitted to the outside of the imaging section main body 3 by an image fiber 22 installed behind the objective lens 21 and movable in the front and back direction by a driver 32, and is received by the ITV camera 5 via the eyepiece lens 4. be done. The image received by the ITV camera 5 is converted into an electrical signal and displayed on a monitor television 6.

駆動器31及び32は制御モータ等の回転運動を往復動
に変える機能をもち1回転運動を与える駆動源は撮像部
本体3の外側に設けて良い、駆動指令は以下のように行
う、設定器7で、まず、希望する倍率を入力し、入力倍
率値に応じて指令回路8で対物レンズ21及びイメージ
ファイバ22の位置を演算する。位置決めを行うに際し
ては、使用対物レンズ21の倍率と距離特性を指令回路
8に入力しておく、同一レンズの場合、倍率と距離特性
は第2図に示すような関係にある。図中のWdは作動距
離で、撮像対象懸濁液から対物レンズ21までの距離を
意味し、Lは撮像対象懸濁液と対物レンズ21で結像さ
れる像点までの距離を意味する。二九らWd及びLの演
算は次式で求めることができる。
The drivers 31 and 32 have the function of converting the rotational motion of a control motor or the like into reciprocating motion, and the drive source that provides one rotational motion may be provided outside the imaging unit main body 3.The drive command is issued as follows. 7, first, a desired magnification is input, and the positions of the objective lens 21 and the image fiber 22 are calculated by the command circuit 8 according to the input magnification value. When performing positioning, the magnification and distance characteristics of the objective lens 21 to be used are input into the command circuit 8. In the case of the same lens, the magnification and distance characteristics have the relationship as shown in FIG. In the figure, Wd is a working distance, which means the distance from the suspension to be imaged to the objective lens 21, and L means the distance from the suspension to be imaged to the image point formed by the objective lens 21. The calculation of Wd and L can be obtained using the following equation.

ここで、mllは対物レンズ21の正規倍率、mは設定
倍率、fは対物レンズ21の集魚距離、WdS及びLl
lは倍率m−時の作動距離及び物体・像点間距煎である
。(1)、(2)式によれば、倍率を高めるには作動距
離Wdを短かくシ、物体・像点間距31Lを長くすれば
良い、これは、Lの位置にイメージファイバ22の端面
を設置すると、倍率変更に対して対物レンズ21とイメ
ージファイバ22の動作は互いに逆方向となる。
Here, mll is the normal magnification of the objective lens 21, m is the set magnification, f is the fish collection distance of the objective lens 21, WdS and Ll
l is the working distance and object-to-image distance at magnification m. According to equations (1) and (2), in order to increase the magnification, it is sufficient to shorten the working distance Wd and lengthen the object-to-image distance 31L. This means that the end face of the image fiber 22 is placed at the position L. When installed, the objective lens 21 and the image fiber 22 operate in opposite directions with respect to magnification changes.

従って、指令回路8には(1)及び(2)式と、対物レ
ンズ21の仕様であるWd拳、m拳、L・、とjを予じ
め入力する。指令回路8で求められたWdは位置調節器
9に入力され、Lは位置調節器10に入力される0位置
調節器9及び10は、現在の位置信号に対して新たな入
力信号との偏差により駆動器31及び32の駆動量を制
御するもので、位置決めエンコーダ等を用いる。この操
作により、対物レンズを交換することなく、拡大倍率を
任意に変更することができる。
Therefore, equations (1) and (2) and the specifications of the objective lens 21, such as Wd, m, L, and j, are input in advance to the command circuit 8. Wd determined by the command circuit 8 is input to the position adjuster 9, and L is input to the position adjuster 10. The position adjusters 9 and 10 calculate the deviation between the current position signal and the new input signal. The driving amount of the drivers 31 and 32 is controlled by using a positioning encoder or the like. By this operation, the magnification can be changed arbitrarily without changing the objective lens.

一方、拡大倍率の変更は対物レンズ21とイメージファ
イバ22の!置間隔、すなわち、距離が変化し、光源発
生装置12の光量を一定に維持しておくとモニターテレ
ビ6の映像画質が変化する。
On the other hand, the magnification can be changed by changing the magnification of the objective lens 21 and the image fiber 22! If the placement interval, that is, the distance changes, and the amount of light from the light source generator 12 is maintained constant, the image quality of the monitor television 6 will change.

第3図は、距離、すなわち、倍率と発生光量の関係を示
すもので、画質は大きく三段階に分けられる。第一段階
は光量が弱く、コントラストがはっきりせず画質が不鮮
明になる領域、第二段階はコントラストが良好で、鮮明
画質が得られる領域で、第三段階は光量が強すぎ、画面
が光った状態のハレーション領域である。このことから
、鮮明な画質を得るには、光量を調節する必要があり、
その調節法は指令回路8の出力値から両者の間隔L′を
求め、光量a筒器11に入力する。光′量調節器11で
は、現在間隔L’ oと入力値L′に対応して光源発生
装置12の光量を調節する。実験例によれば、第3図に
示す画質状態は、拡大光像を受光するイメージファイバ
22上の単位面積当りの光量、すなわち、光度が、距離
に関係なく特定範囲に維持することにより鮮明画質が得
られる。従って、光源発生装置12の光量調節は距離間
隔L’ oとL′の比の二乗に対応させてやると良い。
FIG. 3 shows the relationship between distance, that is, magnification, and the amount of light generated, and the image quality can be roughly divided into three levels. The first stage is an area where the light intensity is weak and the contrast is not clear and the image quality is unclear.The second stage is an area where the contrast is good and a clear image quality can be obtained.The third stage is an area where the light intensity is too strong and the screen shines. This is the halation region of the state. Therefore, in order to obtain clear image quality, it is necessary to adjust the amount of light.
The adjustment method is to find the distance L' between the two from the output value of the command circuit 8 and input it to the light amount a cylinder 11. The light quantity adjuster 11 adjusts the light quantity of the light source generator 12 in accordance with the current interval L'o and the input value L'. According to the experimental example, the image quality shown in FIG. 3 can be achieved by maintaining the amount of light per unit area on the image fiber 22 that receives the enlarged light image, that is, the luminous intensity, within a specific range regardless of the distance. is obtained. Therefore, it is preferable that the light amount adjustment of the light source generator 12 be made to correspond to the square of the ratio of the distance intervals L'o and L'.

上記実施例は、対物レンズ21及びイメージファイバ2
2を個別に駆動する方式としたが1例えば、第4図のよ
うに受光するイメージファイバ22を駆動器32で任意
に移動させ、他方の駆動器31で対物レンズ21とイメ
ージファイバ22を連動させる方式とすることも可能で
ある。この場合の動作方法は、初めに駆動器32でイメ
ージファイバ22の位置決めを対物レンズ21間の距離
L′で行い、その後で作動距離Wdを調節する。
In the above embodiment, the objective lens 21 and the image fiber 2
1. For example, as shown in FIG. 4, the image fiber 22 that receives light is arbitrarily moved by a driver 32, and the other driver 31 is used to interlock the objective lens 21 and the image fiber 22. It is also possible to use a method. The operating method in this case is to first position the image fiber 22 using the driver 32 at a distance L' between the objective lenses 21, and then adjust the working distance Wd.

この方式によれば、設定倍率を変えることなく。According to this method, the set magnification does not need to be changed.

対物レンズ21の素点深度を微調整できる。The raw point depth of the objective lens 21 can be finely adjusted.

また、対物レンズ21及びイメージファイバ22の移動
方向は前後のみであったが、横方向に移動させることを
拒むものではない、この場合。
Furthermore, although the objective lens 21 and the image fiber 22 were only moved in the forward and backward directions, this does not mean that they may be moved in the lateral direction.

両者を同一に移動させても、イメージファイバ22のみ
を移動させてもよい、これは、イメージファイバ22に
よる受光像は、対物レンズ21の拡大光像の一部を対象
としており、イメージファイバ22を移動しても像を受
光できるためである。
Both may be moved at the same time, or only the image fiber 22 may be moved. This is because the image received by the image fiber 22 is a part of the enlarged light image of the objective lens 21, and the image fiber 22 is This is because the image can be received even when moving.

横方向に移動させることは、より広い視野をモニタでき
、統計的な標本を得ることができる。
Moving laterally allows a wider field of view to be monitored and a statistical sample to be obtained.

以上の実施例では、対物レンズ21側の透過窓ガラス厚
さを考慮しない位置決めをしたが、ガラス厚みを無視で
きない場合は、(1)及び(2)式に厚さ分を加味する
必要がある。用いたガラスが厚さt、屈折率ηとすると
t(クー1)だけ対物レンズ21の前面集魚距離が長く
なるので、この値を(1)、(2)式に考慮しなければ
ならない。
In the above example, the positioning was performed without considering the thickness of the transmission window glass on the objective lens 21 side, but if the glass thickness cannot be ignored, it is necessary to take the thickness into consideration in equations (1) and (2). . If the glass used has a thickness t and a refractive index η, the front fish collection distance of the objective lens 21 increases by t (Ku 1), so this value must be taken into account in equations (1) and (2).

さらに、対物レンズ21及びイメージファイバ22の位
!調節は手動でもできる構造としておくことにより、集
点合わせの微調整を容易にできる。
Furthermore, the objective lens 21 and the image fiber 22! By having a structure that allows manual adjustment, fine adjustment of focal point alignment can be easily made.

本実施例は液体を対象としてきたが、液体のみに限定す
るものでなく、倍率調整とそれに伴う光量調節は、例え
ば、気相中の微小物質の撮像、あるいは、測定に使用し
ても差支えない。
Although this example has focused on liquids, it is not limited to liquids only; magnification adjustment and accompanying light intensity adjustment may be used, for example, for imaging or measurement of minute substances in the gas phase. .

本実施例では、イメージファイバを画像伝送手段に用い
たが1本発明はこれに限定するものでない6例えば、直
接光を電気信号に変換するTVカメラを用いても良い。
In this embodiment, an image fiber is used as the image transmission means, but the present invention is not limited to this. For example, a TV camera that directly converts light into an electrical signal may be used.

この場合、イメージファイバと同様な拡大倍率を得るた
め、受光面積の狭い、あるいは、伝送された電気信号の
一部が映像されるカメラ構成にするとよい、このような
カメラは。
In this case, in order to obtain a magnification similar to that of an image fiber, such a camera should have a narrow light-receiving area or a camera configuration in which a portion of the transmitted electrical signal is imaged.

高集積された光電荷素子等の固体素子を使用することで
可能となる。これにより、光学素子の数を減らすことが
でき、解像度を高める効果が期待できる。
This becomes possible by using highly integrated solid-state devices such as photoelectric devices. As a result, the number of optical elements can be reduced, and the effect of increasing resolution can be expected.

〔発明の効果〕〔Effect of the invention〕

本発明によれば光学素子を変えることなく拡大倍率を変
更でき、微小生体の性状に対応して観察できる効果があ
る。
According to the present invention, the magnification can be changed without changing the optical element, and there is an advantage that observation can be performed in accordance with the properties of microorganisms.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の構成図、第2図は倍率調節
に伴う光学素子の位置関係の特性図、第3図は映像画質
状態を示す倍率と光度の関係図、第4図は本発明の他の
実施例の構成図である。 12・・・光源発生装置。
Fig. 1 is a configuration diagram of an embodiment of the present invention, Fig. 2 is a characteristic diagram of the positional relationship of optical elements accompanying magnification adjustment, Fig. 3 is a diagram of the relationship between magnification and luminous intensity showing the image quality state, and Fig. 4 FIG. 2 is a configuration diagram of another embodiment of the present invention. 12...Light source generator.

Claims (1)

【特許請求の範囲】[Claims] 1、微小物質を拡大して撮像する装置において、拡大光
学素子と、前記拡大光学素子の拡大光像を受光して伝送
する受光素子と、前記拡大光学素子に照射する光源発生
手段と、前記拡大光学素子と前記受光素子の相対位置を
調節する移動機構手段とを具備し、前記移動機構手段の
調節量に対応して前記光源発生手段の光量を操作するこ
とを特徴とする微小物質撮像装置。
1. A device for enlarging and imaging a microscopic substance, including an enlarging optical element, a light receiving element that receives and transmits an enlarged optical image of the enlarging optical element, a light source generating means for irradiating the enlarging optical element, and an enlarging optical element. A microscopic substance imaging device comprising a moving mechanism for adjusting the relative position of an optical element and the light receiving element, and controlling the amount of light from the light source generating means in accordance with the amount of adjustment of the moving mechanism.
JP19885786A 1986-08-27 1986-08-27 Image pickup device for minute material Pending JPS6355512A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19885786A JPS6355512A (en) 1986-08-27 1986-08-27 Image pickup device for minute material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19885786A JPS6355512A (en) 1986-08-27 1986-08-27 Image pickup device for minute material

Publications (1)

Publication Number Publication Date
JPS6355512A true JPS6355512A (en) 1988-03-10

Family

ID=16398067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19885786A Pending JPS6355512A (en) 1986-08-27 1986-08-27 Image pickup device for minute material

Country Status (1)

Country Link
JP (1) JPS6355512A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5061714A (en) * 1989-03-28 1991-10-29 Nisshin Flour Milling Co., Ltd. Isoquinoline composition for the treatment of glaucoma or ocular hypertension

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5061714A (en) * 1989-03-28 1991-10-29 Nisshin Flour Milling Co., Ltd. Isoquinoline composition for the treatment of glaucoma or ocular hypertension

Similar Documents

Publication Publication Date Title
WO2010029799A1 (en) Microscope device and fluorescent observing method using same
CN106210520B (en) A kind of automatic focusing electronic eyepiece and system
EP0406413A4 (en) Scanning type tunnel microscope
DE4323329A1 (en) Medical microscopic system with optical observation system - has optical system for electronic photographing of part being observed with which beam of light from part under observation impinges on optical observation system
US4661845A (en) Microorganism monitoring apparatus
US20230228983A1 (en) Varying an illumination path of a selective plane illumination microscopy
CN105785561B (en) A kind of digital microscope and its focus method
US20190302439A1 (en) Selective plane illumination microscopy with multiple illumination units scanning an object in sync with a digital camera rolling shutter
US20060238858A1 (en) Observation or measurement means and observation or measurement system provided with the same, feeble light image pickup optical system and microscope apparatus provided with the same, microscope system provided with the microscope apparatus, and observation apparatus and observation system provided with the same
CN101071106A (en) On-line cell micro observation instrument for biochemical reactor
JPS6355512A (en) Image pickup device for minute material
CA1232056A (en) Automatic observation system for microorganisms and the like
JP4186263B2 (en) microscope
CN112213850A (en) Digital microscopic intelligent switching system and control method thereof, and slit lamp microscope
EP0819963B1 (en) Control of IR microscope
JPH04326993A (en) Apparatus and method for monitoring bacteria
Oku et al. Tracking a protozoon using high-speed visual feedback
US10129474B2 (en) Observation apparatus, measurement system and observation method
EP0624258B1 (en) Microscopy system
JPS5858779B2 (en) Field of view moving device for electron microscopes, etc.
CN117132646B (en) Split-phase automatic focusing system based on deep learning
JPS62184428A (en) Observing device for minute object in solution
JPH0220278A (en) Processing device for test specimen and operation thereof
CN2305688Y (en) Super high power microscope
JP2711291B2 (en) Observation device