JPS6355444A - Observing method and refractory wall surface in furnace - Google Patents

Observing method and refractory wall surface in furnace

Info

Publication number
JPS6355444A
JPS6355444A JP19957586A JP19957586A JPS6355444A JP S6355444 A JPS6355444 A JP S6355444A JP 19957586 A JP19957586 A JP 19957586A JP 19957586 A JP19957586 A JP 19957586A JP S6355444 A JPS6355444 A JP S6355444A
Authority
JP
Japan
Prior art keywords
furnace
image
wall surface
images
deviation amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19957586A
Other languages
Japanese (ja)
Inventor
Shuji Yoshida
修司 吉田
Yasushi Sato
康 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP19957586A priority Critical patent/JPS6355444A/en
Publication of JPS6355444A publication Critical patent/JPS6355444A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Abstract

PURPOSE:To automatically observe a wearing state in a short time by radiating a light beam to two points in an observation range on the wall surface in a furnace, from the outside of the furnace, and executing an image pickup to the wall surface by two sets of image pickup devices. CONSTITUTION:The light beam is radiated to two points in a block which necessitates an observation to the inside of a furnace 1, and the attitude zoom quantity of an image pickup device 3 is adjusted by a reference position deciding part 4, an attitude control part 5, etc., so that a reference light spot S is positioned in the same part on both screens of two sets of image pickup devices 3 installed at a prescribed interval, by which the respective images are recorded in an image reading part 7. Subsequently, these images are inputted as similar variable density patterns at every scanning line into a computing element, and the deviation amount of its peak part is detected and recorded. After a detection related to all the screens is ended, the detected deviation quantity is superposed onto one image, and stores as information in a three-dimensional direction, on the screen. In such a way, it is unified with the same deviation amount range at every prescribed range centering around the maximum point in the adjacent deviation amount, and a singular point is regarded as an error and contained in its range. At this time point, for instance, the deviation amount is displayed in each separate color on a first image, superposed and outputted, and outputted as an image which can be discriminated even with the naked eye on one screen.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は、製鉄所における精錬炉等の炉内耐火物壁面の
観察方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to a method for observing the wall surface of a refractory in a refining furnace or the like in a steelworks.

(ロ)従来技術 製鉄関係等において溶融金属を精錬する場合、精錬炉等
の炉内耐火物寿命が製造コストの上で大きな位置を占め
ている。しかし、近年、耐火物の熱間吹付は補修技術の
進歩によシ、局部的な耐火物損耗に対しては吹付は補修
により不定形耐火物を付着させることが行われている。
(B) Prior Art When refining molten metal in the field of steel manufacturing, etc., the lifespan of refractories in the refining furnace or the like plays a large role in manufacturing costs. However, in recent years, hot spraying of refractories has become more difficult due to advances in repair technology, and in the case of localized damage to refractories, it is now possible to repair them by attaching monolithic refractories.

これにより、炉壁耐大物の寿命は著しく延び、これに伴
い、耐火物コストの低減も図られている。
As a result, the life of the large furnace wall refractories is significantly extended, and along with this, the cost of the refractories is also reduced.

このような耐火物の吹付けは、特公昭58−24185
号公報に見られるような装置で行われている。操作員が
肉眼で吹付は位置を確認している。
This type of spraying of refractories was carried out under the Japanese Patent Publication No. 58-24185.
This is done using a device like the one seen in the publication. The operator confirms the spray position with the naked eye.

例えば、転炉内の吹付けまたは高炉内の吹付は等、十分
肉眼で観察可能な場合は、有効であったが。
For example, spraying inside a converter or blast furnace was effective if it was sufficiently observable with the naked eye.

炉内の小さな混銑炉や、トーピード・カー等では、肉眼
観察は無理である。そこで、特開昭54−2906号公
報のように光学式スコープを吹付はノズル近傍に据え付
ける方法が提案されている。しかし、吹付けの粉塵等に
より実用的でない。これに類似した特開昭54−791
04号公報では、ITVを吹付はノズル近傍に据え付け
、ITVによシ観察する方法を提案しているが、この方
法も前述のように実用的ではなかった。
Visual observation is impossible in small mixed pig iron furnaces, torpedo cars, etc. Therefore, a method has been proposed in which an optical scope is installed near the spray nozzle as in Japanese Patent Laid-Open No. 54-2906. However, it is not practical due to the dust caused by spraying. JP 54-791 similar to this
Publication No. 04 proposes a method in which an ITV is installed near the spray nozzle and the ITV is used for observation, but as mentioned above, this method was also not practical.

そこで、特開昭59−145479号公報では、先に耐
火物面の状況観察を行い、不良箇所を番地分けした耐火
物として記憶しておき、次にその番地に自動的に対向す
る吹付はノズルにより補修を行うという方法を提案して
いる。この方法によりまったく人間の肉眼観察不能々炉
内でも補修可能となった。
Therefore, in Japanese Patent Application Laid-Open No. 59-145479, the condition of the refractory surface is first observed, the defective parts are stored as refractories divided into addresses, and then the spraying facing the address is automatically carried out using the nozzle. We are proposing a method of repair. This method allows repairs to be made even inside the furnace, which is impossible to observe with the naked eye.

しかし、炉内耐火物の損耗観察は極めて難しく、特に、
ITVによるテレビジョン画面上では、番地ごとの画面
に対して、人間が判断を下し、指示を入力する方法での
み実用化が行われている。例えば、レーザ距離計を用い
た耐火物面の損耗計測装置では、−点一点の計測を多数
点行う必要があり、多大の時間を要し、熱間補修として
は実用的ではなかった。
However, it is extremely difficult to observe wear and tear on the refractories inside the furnace.
On ITV television screens, the only method that has been put into practical use is one in which humans make judgments and input instructions for each address on the screen. For example, in a refractory wear measuring device using a laser distance meter, it is necessary to measure each negative point at multiple points, which takes a lot of time and is not practical for hot repair.

前述の炉内耐火物面までの距離を測定する方法では、測
定時間が長くかかり、特に転炉などの間欠的稼働炉にお
いては、そのような測定用の長時間(現状では1〜6時
間要する)休止は行えない。
The above-mentioned method of measuring the distance to the refractory surface in the furnace takes a long time to measure, especially in intermittent operation furnaces such as converters. ) Cannot be paused.

そのだめ、2点の離れた位置より写真を撮シ、この写真
にもとづき凹凸状況を立体視して管理する方法を、本出
願人は先に特願昭61−83741号で提案した。これ
も、前述のような耐火物の損耗を人間の肉眼により判断
する方法の1つである。この方法は凹凸がよくわかシ、
停止直後においても、極めて短時間で観察を終え、次の
停止時には吹付は指示が行えるという特徴があり、有効
な方法である。しかし、この方法も人的作業が多く、手
作業に伴う熟練も要し、また、判断基準のバラツキも多
い等の問題があった。
Therefore, the present applicant previously proposed in Japanese Patent Application No. 83741/1983 a method of taking photographs from two distant positions and viewing the unevenness in three dimensions based on the photographs. This is also one of the methods for determining the wear and tear of refractories as described above using the human eye. This method allows you to easily smooth out unevenness.
This is an effective method because it allows observation to be completed in a very short time even immediately after a stop, and instructions for spraying can be given at the next stop. However, this method also has problems, such as requiring a lot of manual work, requiring skill due to manual work, and having many variations in judgment criteria.

(ハ)発明が解決しようとする問題点 本発明が解決しようとする問題点は、炉内の耐火物壁面
の損耗状況を画像としてとらえ、短時間で自動的に対処
しうる観察方法を得ることにある。
(c) Problems to be Solved by the Invention The problems to be solved by the present invention are to obtain an observation method that can capture the wear and tear condition of the refractory wall inside the furnace as an image and automatically deal with it in a short period of time. It is in.

に)問題点を解決するための手段 本発明の炉内耐火物壁面の観察方法は、撮像装置を用い
て炉内耐火物壁面を観察する方法において、炉内壁面の
観察範囲内の2点に炉外より光を照射すること、該光点
を基準にして所定間隔をあけて設置された2台の撮像装
置により耐火物壁面をそれぞれ撮像すること、撮像され
た両画像位置を合せること、両画像を記録すること、両
記録画像内の各点の位相差を検出すること、該位相差を
前記画像上に合成して表示することによって、上記問題
点を解決している。
B) Means for Solving the Problems The method for observing the wall surface of a refractory in a furnace according to the present invention is a method for observing a wall surface of a refractory in a furnace using an imaging device. Irradiating light from outside the furnace, capturing images of the refractory wall using two imaging devices installed at a predetermined distance from the light point, and aligning the positions of both captured images. The above problem is solved by recording an image, detecting the phase difference between each point in both recorded images, and composing and displaying the phase difference on the image.

(ホ)実施例 本発明の観察方法の実施例を図面を参照して説明する。(e) Examples Embodiments of the observation method of the present invention will be described with reference to the drawings.

第1図および第2図に示すように、精錬炉等の炉1内の
耐火物壁面の観察を要する区画内に光源2から2点の光
線(レーザ・ビームが好ましい)を当てる。同一平面内
(観察対象面に対してほぼ平行な面とする。)に所定の
間隔で設置した2台の撮像装置(例えば、テレビ・カメ
ラ)3の両画面内の同一箇所に、基準光点Sが位置する
ように、基準位置判定部4、姿勢制御部5およびズーム
制御部6により撮像装置3の姿勢およびズーム量を調整
し、それぞれの画像を画像読込み部7に記録する。
As shown in FIGS. 1 and 2, two beams of light (preferably laser beams) are applied from a light source 2 to a section in a furnace 1, such as a smelting furnace, in which a refractory wall surface needs to be observed. A reference light point is placed at the same location on both screens of two imaging devices (e.g., television cameras) 3 installed at a predetermined interval in the same plane (a plane substantially parallel to the observation target surface). The reference position determination section 4, posture control section 5, and zoom control section 6 adjust the posture and zoom amount of the imaging device 3 so that S is located, and the respective images are recorded in the image reading section 7.

次に、記録した画像を演算器内に走査線ごとの類似濃淡
パターンとして検出し、そのピーク部分のズレ量を検出
し、記録する。全画面についてのズレ量検出を終えた後
、いずれかの画像上に前記検出ズレ量を重畳させ、画像
上に三次元方向の情報として記憶する。ズレ量について
は、後述する。
Next, the recorded image is detected as a similar density pattern for each scanning line in a computing unit, and the amount of deviation of the peak portion is detected and recorded. After the amount of deviation has been detected for the entire screen, the detected amount of deviation is superimposed on one of the images and is stored as three-dimensional information on the image. The amount of deviation will be described later.

カメラはCOD  (固体撮像素子)のモノクロが好ま
しい。その後の処理、信号はすべて、デジタル化するこ
とにより、メモリ域も少なくてすむ。
The camera is preferably a COD (solid-state image sensor) monochrome camera. All subsequent processing and signals are digitized, which reduces the memory area.

書出し部8には、lフレーム分のメモリを設け、−時記
憶させ、その記憶をメモリ9(固体磁気ディスク等)に
転送する。
The writing unit 8 is provided with a memory for l frames, stores - hours, and transfers the storage to a memory 9 (solid magnetic disk, etc.).

次に第3図に示すように、全画面に対して、近隣のズレ
量中で最も大きな点(+側のズレ量と一側のズレ量とに
分けて)を中心として、一定範囲ごとに同一ズレ量範囲
と統合し、特異点は誤差とみなして、その範囲内に入れ
る。この時点で例えば、画面にズレ量を最初の画像上に
色別表示して重ね出力し、一画面で肉眼でも判別可能な
画像として出力することも可能である。
Next, as shown in Figure 3, for the entire screen, centering on the point with the largest amount of deviation among the neighboring amounts (separated into + side deviation amount and one side deviation amount), It is integrated with the same deviation amount range, and the singular point is regarded as an error and placed within that range. At this point, for example, it is possible to display the amount of deviation on the screen in different colors on the first image and output it in an overlapping manner so that the image can be output as an image that can be discerned with the naked eye on a single screen.

自動吹付けを行う場合は、画像上の最もズレ量の多い範
囲の位置を吹付は装置に指示し、その位置への吹付けを
行わせる。位置の設定は、最初の基準となるレーザ・ビ
ームの点位置に対しての座標で決定することができる。
When performing automatic spraying, the spraying device is instructed to locate the position on the image in which the amount of deviation is greatest, and the spraying device is instructed to spray at that position. The position setting can be determined by coordinates with respect to the initial reference point position of the laser beam.

例えば、耐火物壁面を特願昭61−83741号の方法
で区画した場合、各区画の一定位置(例えば、左上隅と
右下隅)にレーザ・ビームを当てることによ)、その吹
付は指示位置を指示できる。
For example, when a refractory wall surface is partitioned by the method described in Japanese Patent Application No. 61-83741, the laser beam is applied to fixed positions of each partition (for example, the upper left corner and the lower right corner), and the spraying is carried out at the indicated position. can be instructed.

例えば、転炉炉底は、底吹羽口を中心に耐火物摩耗が最
も激し部分である。吹付けの他、炉底交換も行えるよう
になっているが1局部的なスポーリングの進展によシ突
発的に炉壁が溶損し、湯漏れ事故などが発生する恐れの
ある部分で、その管理は極めて重要である。
For example, the bottom of the converter furnace is the part where the refractory wear is most severe, centering on the bottom blowing tuyere. In addition to spraying, it is now possible to replace the furnace bottom, but the furnace wall may suddenly melt due to the progress of spalling in one area, and there is a risk of a hot water leakage accident. Management is extremely important.

まず、転炉自溶鋼5溶滓をすべて抜き出しだ後、転炉を
測定器側へ向け(通常水平とするのが好ましい)、次に
測定器を炉底全域が入る視野位置にレーザ・ビームを左
上と右下とに2点当てる。レーザ・ビームは、Arレー
ザ装置で出力2Wを分光装置により2つに分け、照射位
置は操作員が目次に、約1.8 mの間隔をあけて設け
られた2台のテレビ・カメラによシレーザ・ビームの光
点を左上と右下との一定位置に入るように、自動でカメ
ラの向き、傾き5ズーム量を調整し、調整完了時にそれ
ぞれのカメラからの画像を記録装置に記憶させる(第1
図)。
First, after extracting all the molten steel 5 slag from the converter, turn the converter toward the measuring instrument (normally horizontal is preferable), and then place the measuring instrument at a viewing position that covers the entire bottom of the furnace with a laser beam. Place two points on the top left and bottom right. The laser beam is an Ar laser device with an output of 2 W, which is divided into two parts by a spectrometer, and the operator determines the irradiation position using two television cameras placed approximately 1.8 m apart. The direction, tilt, and zoom amount of the camera are automatically adjusted so that the light spot of the laser beam is placed at a fixed position in the upper left and lower right, and when the adjustment is completed, the images from each camera are stored in the recording device ( 1st
figure).

次に、管理区画ごとに(例えば、炉底を4分割して)そ
れぞれの区画ごとに前述レーザ・ビームを当てた後、テ
レビ・カメラを自動調整させ、画像を記録する。
Next, the laser beam is applied to each control section (for example, the bottom of the hearth is divided into four), and then the television camera is automatically adjusted to record an image.

最初の装置調整に約3分を要した後は、1回の画像記録
までの所要時間は約2〜3分間であり、全部(5画像×
2)で18分間の時間ですむ。この記録用装置には、ハ
ート9・ディスク付きのパソコンにより、カメラの姿勢
調整や、ズーム調整を行うと共に、画像記憶まで行わせ
ることができる。
After approximately 3 minutes for initial instrument adjustment, the time required to record a single image is approximately 2-3 minutes, total (5 images x
2) takes 18 minutes. This recording device can be used to adjust the posture of the camera, adjust the zoom, and even store images using a personal computer equipped with a Heart 9 disk.

現場観察終了後、転炉は再び吹錬を行う間、前述のパソ
コンを大型プロコンに接続し、記録した画像を一画像ず
つ読み出し解析を行う。
After the on-site observation is completed, while the converter is being blown again, the computer mentioned above is connected to a large processor, and the recorded images are read out and analyzed one by one.

解析手順について第3図を参照して以下説明する。The analysis procedure will be explained below with reference to FIG.

■ ノイズ除去 走査線の/I61〜/163を平均し、その結果を第1
の走査線とし、次に屑2〜/164の平均を第2の走査
線とし、以下順次平準化し、ノイズの影響を小さくする
■ Average /I61 to /163 of the noise removal scan line and use the result as the first
Then, the average of 2 to /164 is used as a second scanning line, and thereafter, it is sequentially leveled to reduce the influence of noise.

■ 画面の縮小・基点調整 画面の上下左右の一定データをカットし、不安定部を切
り捨てる(第4図(A))。このときの切捨て基準は、
レーザ・ビーム・スポット位置が一定となるように行う
。撮像装置での調整では微少誤差が出るためである。
■ Screen reduction/base point adjustment Cut certain data on the top, bottom, left and right sides of the screen, and discard unstable parts (Figure 4 (A)). The truncation criteria at this time is
This is done so that the laser beam spot position remains constant. This is because adjustments made by the imaging device cause minute errors.

■ 位相差検出 a、左右撮像装置の画像の同一箇所の走査線を比較し、
まず、最大・最少ピーク位置のそれぞれの走査線上の位
置を検出し、この位置のズレ量をピーク位置でのズレ量
として記録する。次に、前記ピーク位置の左側での最大
ピーク位置をそれぞれ探し、同様にズレ量を記録する。
■ Phase difference detection a, comparing the scanning lines at the same location in the images of the left and right imaging devices,
First, the positions of the maximum and minimum peak positions on each scanning line are detected, and the amount of deviation of this position is recorded as the amount of deviation at the peak position. Next, each maximum peak position on the left side of the peak position is found, and the amount of deviation is similarly recorded.

ここでズレ量とは、基準レーザ・ビーム・スポット位置
(2つのうちのいずれか一方)を零点としたときの偏り
距離をいう。例えば、零点よシ左側ヘズレれば、■、右
側ヘズレればeとしてその量を表す。そして、2つの画
像のいずれかの基準画像の走査線信号位置での値として
記録する。
Here, the amount of deviation refers to the deviation distance when the reference laser beam spot position (one of the two) is taken as the zero point. For example, if it shifts to the left side of the zero point, the amount is represented by ■, and if it shifts to the right side, the amount is expressed as e. Then, it is recorded as a value at the scanning line signal position of the reference image of either of the two images.

b5走査線を微分処理し、濃淡変化度として、変化度の
近似箇所を探す。このさい、前記ピーク点が数点あるの
で、その間での変化量として探し、そのズレ量を記録す
る。
Differential processing is performed on the b5 scanning line, and an approximate location of the degree of change is searched for as the degree of change in density. At this time, since there are several peak points, the amount of change between them is searched and the amount of deviation is recorded.

c5前記処理での多数のズレ量記録を正として、未記録
位置はその間の平均的変化と仮定してズレ量を与える。
c5 The amount of deviation is given by assuming that many deviation amounts recorded in the above processing are positive, and the unrecorded position is an average change during that time.

d、色付は表示(画像合成) 全画面上のズレ量のの側最大とθ側最大との間を例えば
10等分し、各ズレ量に応じた色を例えば■側はオレン
ジ色、O側は青色とし、その濃淡に分割して画面上に表
示し、その画面と基準画像(モノクロ)とを重ね合せて
表示する(第4図(C))。
d. Coloring is displayed (image composition) The area between the maximum deviation amount on the side and the maximum deviation amount on the θ side on the entire screen is divided into 10 equal parts, and the color corresponding to each deviation amount is, for example, orange for the ■ side, O The side is blue, divided into shading and displayed on the screen, and the screen and the reference image (monochrome) are superimposed and displayed (FIG. 4(C)).

■ 以上の処理を5画像について行い、操作員の要求に
応じて、順次各合成画像を出力し、次回吹付の必要な位
置を容易に判別可能とする。(第4図(Bl)。
(2) The above processing is performed on the five images, and each composite image is sequentially output according to the operator's request, so that it is possible to easily determine the position where spraying is required next time. (Figure 4 (Bl).

■ オプツション・画像合成 前述処理により得られた合成画像をブラウン管上に表示
するさいに、全体を写しだ画像をもとに、その上に第2
〜第5画像を縮尺を変えて写しては、位置および縮尺を
オイレータが操作して重ね合せる。その後、第2〜第5
画像を第1画像に置き替えて表示すると、詳細な画像で
全体を表示することができる(第4図(El )。例え
ば、炉層管理用の資料として保存する画像とする。吹付
は補修部位も、1目で判別できる画像となる。
■Options/Image Synthesis When displaying the composite image obtained by the above processing on a CRT, a second image is added on top of the entire image.
~ The fifth image is copied at a different scale, and the oirator manipulates the position and scale to superimpose it. After that, 2nd to 5th
If the image is replaced with the first image and displayed, the entire image can be displayed in detail (Fig. 4 (El). For example, the image may be saved as a material for furnace layer management. Spraying is performed on the repaired area. The image can also be recognized at a glance.

■ 時間 画像処理に約30分間装した後、5つの画面をもとに、
吹付は位の指示を行う。その後、画面合成に約20〜3
0分間掛けた後、1つの画面に集約したもので記録板と
する。
■ After about 30 minutes of time image processing, based on the 5 screens,
Spraying indicates the position. After that, about 20 to 3
After running for 0 minutes, the screen is summarized on one screen and is used as a recording board.

(へ)効 果 本発明によれば、次の効果が得られる。′■ 従来、炉
底損耗量計測は約25〜50チヤージごとに30分程度
体炉し、炉内をレーザ式距離計によって、炉内耐火物の
損耗量を数点測定すると共に、目視観察により、凹凸状
況を操作員が記録誌に記入していたが、休止時間を18
分間とし、より詳しい正確な記録が得られる。々お、レ
ーザ距m計による観察は、1回の計測時に1点測定すれ
ばよく、基準点レーザ・ビームをそのまま距離計測用に
利用することにより所要時間は、画像記録時間内にて行
える。
(f) Effects According to the present invention, the following effects can be obtained. '■ Conventionally, the amount of wear at the bottom of the furnace was measured by heating the furnace for about 30 minutes every 25 to 50 charges, and measuring the amount of wear on the refractories inside the furnace at several points using a laser distance meter, as well as by visual observation. , the operator was writing down the unevenness in the record book, but the downtime was 18.
minutes, allowing for more detailed and accurate records. Furthermore, observation using a laser distance meter only requires measuring one point in one measurement, and by using the reference point laser beam as it is for distance measurement, the required time can be accomplished within the image recording time.

■ 吹付は時間の短縮および計画性向上が図れる。吹付
は部位が予め正確にわかることより、炉停止後直ちに吹
付は作業に掛かれ、従来の停止後、再度吹付部位の確認
を行う必要がない。さらに、吹付は量もほぼ推定でき、
吹付は所要時間が推定でき、前後工程との調整を予め行
うことができ、工程混乱等がなくなる。
■ Spraying can save time and improve planning. Since the spraying area can be accurately known in advance, the spraying work can be started immediately after the furnace is shut down, and there is no need to reconfirm the spraying area after the furnace is shut down. Furthermore, the amount of spraying can be roughly estimated,
The time required for spraying can be estimated, and adjustments can be made in advance with previous and previous processes, eliminating process confusion.

■ 炉体損耗層が正確になり5画像を重ね合せたりする
ことによシ、吹付は効果の確認や、損耗の起りやすい部
位の検出等の種々の解析を機械処理で行える。
■ The wear layer of the furnace body becomes more accurate, and by overlapping the five images, various analyzes such as checking the effectiveness of spraying and detecting areas where wear is likely to occur can be performed using mechanical processing.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の方法の概略構成を示す説明図。 第2図は本発明の方法を精錬炉に適用した場合の説明図
。第3図は第1図と関連した本発明の概略構成を示す説
明図。第4図は画像処理の説明図。 1:精錬炉      2:光源 3:撮像装置 特許出願人 住友金属工業株式会社 (外5名)
FIG. 1 is an explanatory diagram showing a schematic configuration of the method of the present invention. FIG. 2 is an explanatory diagram when the method of the present invention is applied to a refining furnace. FIG. 3 is an explanatory diagram showing a schematic configuration of the present invention in relation to FIG. 1. FIG. 4 is an explanatory diagram of image processing. 1: Refining furnace 2: Light source 3: Imaging device Patent applicant Sumitomo Metal Industries, Ltd. (5 others)

Claims (1)

【特許請求の範囲】[Claims] 撮像装置を用いて炉内耐火物壁面を観察する方法におい
て、炉内壁面の観察範囲内の2点に炉外より光を照射す
ること、該光点を基準にして所定間隔をあけて設置され
た2台の撮像装置により耐火物壁面をそれぞれ撮像する
こと、撮像された両画像位置を合せること、両画像を記
録すること、両記録画像内の各点の位相差を検出するこ
と、該位相差を前記画像上に合成して表示することから
なる炉内耐火物壁面の観察方法。
A method of observing a refractory wall surface inside a furnace using an imaging device includes irradiating light from outside the furnace to two points within the observation range of the wall surface inside the furnace, and placing the light points at a predetermined interval as a reference. The following steps are required: capturing images of the refractory wall surface using two imaging devices, aligning the positions of both captured images, recording both images, detecting the phase difference between each point in both recorded images, and A method for observing a wall surface of a refractory in a furnace, which comprises displaying a phase difference by composing and displaying the phase difference on the image.
JP19957586A 1986-08-26 1986-08-26 Observing method and refractory wall surface in furnace Pending JPS6355444A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19957586A JPS6355444A (en) 1986-08-26 1986-08-26 Observing method and refractory wall surface in furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19957586A JPS6355444A (en) 1986-08-26 1986-08-26 Observing method and refractory wall surface in furnace

Publications (1)

Publication Number Publication Date
JPS6355444A true JPS6355444A (en) 1988-03-09

Family

ID=16410113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19957586A Pending JPS6355444A (en) 1986-08-26 1986-08-26 Observing method and refractory wall surface in furnace

Country Status (1)

Country Link
JP (1) JPS6355444A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000205847A (en) * 1999-01-18 2000-07-28 Kawasaki Steel Corp Method and device for inspecting surface flaw
JP2017179598A (en) * 2016-03-29 2017-10-05 Jfeスチール株式会社 Furnace bottom tuyere safety evaluation method for bottom blowing converter, furnace bottom tuyere service life extension method and operation method of bottom blowing converter
JP2020501103A (en) * 2016-12-12 2020-01-16 アルセロールミタル Method and apparatus for measuring wear of a refractory lining of a receptacle intended to contain molten metal

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000205847A (en) * 1999-01-18 2000-07-28 Kawasaki Steel Corp Method and device for inspecting surface flaw
JP2017179598A (en) * 2016-03-29 2017-10-05 Jfeスチール株式会社 Furnace bottom tuyere safety evaluation method for bottom blowing converter, furnace bottom tuyere service life extension method and operation method of bottom blowing converter
JP2020501103A (en) * 2016-12-12 2020-01-16 アルセロールミタル Method and apparatus for measuring wear of a refractory lining of a receptacle intended to contain molten metal
US11268766B2 (en) 2016-12-12 2022-03-08 Arcelormittal Process and device for measuring wear of a refractory lining of a receptacle intended to contain molten metal

Similar Documents

Publication Publication Date Title
JPH11148807A (en) Method and instrument for measuring bump height
JP3335826B2 (en) Solder bump measuring device
CN206670551U (en) Automatic Visual Inspection instrument
JPH0914965A (en) Target for surveying
JPS6355444A (en) Observing method and refractory wall surface in furnace
JP2000028332A (en) Three-dimensional measuring device and method therefor
JPH04188014A (en) Apparatus for detecting distance between vehicles
CN117058120A (en) Real-time detection system and method for tapping liquid level of converter based on binocular vision
JPH05231837A (en) Method and device for measuring shape
JP3343445B2 (en) LCD panel image quality inspection system
JP2000121499A (en) Method and apparatus for measuring internal refractive index distribution of optical fiber base material
CN2324538Y (en) Soldering seam melting width real time detector
JPH06118062A (en) Defect recording and regenerating method for nondestructive inspection
JPH01406A (en) Sample shape measuring device
KR100398385B1 (en) Apparatus and method for estimating image of heating-body
JP3183811B2 (en) Inspection support device
JPH045515A (en) Measuring method for internal wall of furnace
JPS6129708A (en) Measuring method of surface profile of fireproof wall
JP3383516B2 (en) Manufacturing method of quenched metal ribbon
JP3462353B2 (en) Groove tracking control method
JPH0483106A (en) Method for measuring furnace inner wall
JPH01130874A (en) Device for observing welding state
JPH0618361A (en) Lens meter
JPS63214642A (en) Cracking progress tracking device for crack testing device
JPH061169B2 (en) Method for detecting running state of strip in furnace