JPS6355372A - Operation control method for variable speed hydraulic power station - Google Patents

Operation control method for variable speed hydraulic power station

Info

Publication number
JPS6355372A
JPS6355372A JP61198398A JP19839886A JPS6355372A JP S6355372 A JPS6355372 A JP S6355372A JP 61198398 A JP61198398 A JP 61198398A JP 19839886 A JP19839886 A JP 19839886A JP S6355372 A JPS6355372 A JP S6355372A
Authority
JP
Japan
Prior art keywords
output
rotation speed
water
generator
water turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61198398A
Other languages
Japanese (ja)
Other versions
JPH0718406B2 (en
Inventor
Kaneo Sugishita
杉下 懐夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP61198398A priority Critical patent/JPH0718406B2/en
Publication of JPS6355372A publication Critical patent/JPS6355372A/en
Publication of JPH0718406B2 publication Critical patent/JPH0718406B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Landscapes

  • Control Of Water Turbines (AREA)

Abstract

PURPOSE:To prevent a trouble caused in use of an electric power system in advance, by producing a rotating speed increase command or a rotating speed decrease command when outputs from respective generators are greater than a set upper limit output or less than a set lower limit output. CONSTITUTION:A generator output sensor 11 provided with a generator 10 produces a rotating speed increase command or a rotating speed decrease command when an output from the generator 10 is greater than a set upper limit output or less than a set lower limit output. With the arrangement, a turbine is prevented from being in motor operation or in excessively loaded operation when operation of the other generator is changed so that the turbine and facilities provided with it are prevented from being damaged by an abnormal operating condition, whereby a trouble caused in use of an electric power system can be prevented in advance.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は水車またはポンプ水車(以下、単に水車という
)の可変速運転が可能な水力発電装置の運転制御方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Field of Application) The present invention relates to a method for controlling the operation of a hydroelectric power generation device capable of variable speed operation of a water turbine or a pump water turbine (hereinafter simply referred to as a water turbine).

(従来の技術) 水車と、これに直結された発電機または発電電動機(以
下、単に発電機という)−とからなる水力発電装置は、
一部の低落差機の場合を除き、長大な水路に設置される
ことが多い。
(Prior Art) A hydroelectric power generation device consisting of a water turbine and a generator or generator motor (hereinafter simply referred to as a generator) directly connected to the water turbine is as follows:
Except for some low-head machines, they are often installed in long waterways.

このような長大な水路に複数台の水車を設置する場合に
は、水路構築に要する土木工事費を低減させるため、上
池から途中の分岐部までの水路を全水車に共通の一条管
路とし、前記分岐部から各水車を経て下池に至る水路を
複数条の分岐管路で構成することが多い。
When installing multiple water turbines on such a long waterway, in order to reduce the civil engineering costs required for waterway construction, the waterway from the upper pond to the branch point in the middle is made into a single pipe common to all the water turbines. In many cases, the waterway from the branch part to the lower pond via each water turbine is constructed from a plurality of branch pipes.

第6図は2条の分岐管路を備えた水力発電所の概略構成
を示すもので、上池1と下池2の間を結ぶ水路は、上池
1から分岐部3までは一条管路4とされ、分#1部3と
各水車5a、5bの間は分岐管路5a、5bとされてお
り、各水車5a、5bで仕事を終えた水は排水管路7a
、7bを経て下池2に送られる。また、分岐部3の近く
には、管路内の水圧変動を抑制するためサージタンク8
が設置されている。
Figure 6 shows the schematic configuration of a hydroelectric power plant equipped with two branch pipes. Branch pipes 5a and 5b are established between the part #1 section 3 and each of the water turbines 5a and 5b, and the water that has finished its work in each of the water turbines 5a and 5b is drained to a drainage pipe 7a.
, 7b and then sent to Shimoike 2. In addition, a surge tank 8 is installed near the branch 3 to suppress water pressure fluctuations in the pipeline.
is installed.

上述のように構成した水力発電所においては、−台の水
車の運転状態の変化が他の水車に影響を及ぼすという欠
点がある。
The hydroelectric power plant configured as described above has a drawback in that a change in the operating state of one water turbine affects the other water turbines.

すなわち、例えば第6図の水力発電所において、−台の
水車5aが発電運転中で、他方の水車5bが無負荷開度
で¥1機運転中の場合に、電力系統からの要求に基づい
て待機運転中の水車5bを発電運転に移行させるため水
車5bの水口開度を開いていくと、発電運転中の水車5
aの水車出力が急激に減少し、場合によってはモーター
運転となり、系統が電力を要求しているにも拘らず、逆
に系統からの電力を消費し、系統に悪影響を与えること
がある。
That is, for example, in the hydroelectric power plant shown in Fig. 6, when one of the - water turbines 5a is in power generation operation and the other water turbine 5b is in operation with no load opening, based on a request from the power system, When the water mouth opening of the water turbine 5b is opened in order to shift the water turbine 5b that is in standby operation to power generation operation, the water turbine 5 that is in power generation operation changes.
The output of the water turbine a suddenly decreases, and depending on the case, the motor runs, and even though the grid is requesting electricity, it consumes electricity from the grid, which can have a negative impact on the grid.

この時の運転状態の変化の様子を第7図を参照して説明
する。同図において、自号機は第6図の水車5aに、他
号機は第6図の水車5bに相当するものとする。
The manner in which the operating state changes at this time will be explained with reference to FIG. In the figure, the own machine corresponds to the water turbine 5a in FIG. 6, and the other machines correspond to the water turbine 5b in FIG.

他号機を待機運転から発電運転へ移行させるため、時刻
Toで他号機の水口開度a2が開き始めると他号機5b
側の管路6bの流量が急激に増加するためサージタンク
8の水位W、は第7図に示すように初期水位Wsoから
低下する。
In order to shift the other units from standby operation to power generation operation, when the water mouth opening a2 of the other units starts to open at time To, the other units 5b
Since the flow rate of the side pipe 6b increases rapidly, the water level W of the surge tank 8 decreases from the initial water level Wso as shown in FIG.

この場合、発電運転中の1号115aの水口開度a 1
回転速度N1はともに一定であるが、水車の有効落差H
は第6図に示すようにサージタンク8の水位と下池2の
水位の差に近似的に等しいため、サージタンクの水位W
sが低下すると、水車の有効落差Hも低下することにな
り、そのため下池の水車出力は時刻To以降、第7図の
曲線P1のように変化する。すなわち、時刻T1で水車
出力P は零となり、時刻T2で最小出力(この場合は
負の出力)となる。
In this case, the water port opening of No. 1 115a during power generation operation a 1
Both rotational speeds N1 are constant, but the effective head H of the water turbine
As shown in FIG. 6, is approximately equal to the difference between the water level of the surge tank 8 and the water level of the lower pond 2, so the water level W of the surge tank
When s decreases, the effective head H of the water turbine also decreases, and therefore the output of the water turbine in the lower pond changes as shown by the curve P1 in FIG. 7 after time To. That is, the water turbine output P becomes zero at time T1, and becomes the minimum output (negative output in this case) at time T2.

時刻T2からはサージタンクの水位W、に転するため水
車出力P1も増加し、時刻T3で正の出力となり、時刻
T4で当初の出力P1i1.:復帰するが、その後もし
ばらくの間、サージタンク水位W が上界するため水車
出力P1もさらに増加し、時刻T5で屋大となる。以後
、サージタンクの水位撮動に応じて自号機の水車出力P
1も撮動しつつ次第に新しい定常状態に向けて収斂して
行くことになる。
From time T2, the water level of the surge tank changes to W, so the water turbine output P1 also increases, becomes a positive output at time T3, and returns to the initial output P1i1. at time T4. : Although the water returns to normal, the surge tank water level W continues to rise for a while, so the water turbine output P1 also increases further, reaching a high level at time T5. After that, the water turbine output P of the own unit will be adjusted according to the water level photography of the surge tank.
1 will gradually converge toward a new steady state.

上述のように、一条管路に連なる分岐管路に設置されて
発電運転を行っている水車(自号機)は同一の一条管路
に連なる他の分岐管路に設置された水車(他号機)が待
機運転からの発電運転へ移行する際、その水口開度が開
いた影響で自号機の水車出力を減少せしめられ、時刻T
1〜T3の間、モーター運転となって系統からの電力を
消費することになる。
As mentioned above, a water turbine installed in a branch pipe connected to a single pipeline and generating electricity (self-number unit) is a water turbine installed in another branch pipe connected to the same pipeline (other unit). When transitioning from standby operation to power generation operation, the water turbine output of the own unit was reduced due to the influence of the water mouth opening, and at time T.
1 to T3, the motor operates and consumes power from the grid.

こうした現象が発生する原因は、第8図に示す水車のト
ルク特性からも説明することができる。
The cause of this phenomenon can also be explained from the torque characteristics of the water turbine shown in FIG.

第8図の曲線m  、 m  、 m3は、水車の発生
トルクをTo、そのときの有効落差をH1回転速度をN
とするとき、自号機の水口開度a1をパラメータとして
N/m対するT/Hの変化の様子を示したしので、図中
のT  −T6は第7図中のT 〜T6にそれぞれ対応
している。
The curves m, m, and m3 in Fig. 8 represent the generated torque of the water turbine as To, the effective head at that time as H, and the rotational speed as N.
We have shown how T/H changes with respect to N/m using the water mouth opening a1 of the own machine as a parameter, so T - T6 in the figure corresponds to T - T6 in Fig. 7, respectively. ing.

同図において、水口開度a1が一定な下池の運転状態は
曲線m2上を変化することになるが、時刻T。の初期状
態(◎印で示す)からサージタンク水位W が低下する
と、それに伴って水車の有効落差Hも減少するため、運
転点はN / 口ら(大きくなる方向に変化する。この
ため、T / Hの値が小さくなり、時刻T1において
、T/H=Oとなり、水車出力は零となる。
In the same figure, the operating state of the lower pond where the water mouth opening degree a1 is constant changes on the curve m2, but at time T. When the surge tank water level W decreases from the initial state (indicated by ◎), the effective head H of the turbine also decreases, so the operating point changes in the direction of increasing The value of /H becomes small, and at time T1, T/H=O, and the water turbine output becomes zero.

時刻T1以降、水車の有効落差Hがさらに減少するため
、水車のトルクTは負となり、系統からの電力を消費す
ることになる。N /E■r最大となる時刻T2は第7
図の水車出力最低点に相当する。
After time T1, the effective head H of the water turbine further decreases, so the torque T of the water turbine becomes negative, and power from the grid is consumed. The time T2 at which N/E■r is maximum is the seventh
This corresponds to the lowest water turbine output point in the figure.

時刻T2以降は水車の有効落差Hが大きくなるため運転
点はN/J′Ttfi小さくなる方向に移動し、T3.
T4を経て水車出力P1が最大となる点T5に至る。
After time T2, the effective head H of the water turbine increases, so the operating point moves in the direction in which N/J'Ttfi decreases, and at T3.
The water turbine output P1 reaches a maximum point T5 via T4.

上述の様に時刻T1〜T3の間、水車は負トルクで運転
されることになるが、この負トルク領域では振動やキャ
ビテーションが増加し、水車およびその付属機構に損害
を与えるおそれがある上、前述のように系統が電力の供
給を要求しているにも拘らず、逆に電力を消費してしま
うという重大な欠点がある。
As mentioned above, the water turbine is operated with negative torque between times T1 and T3, but in this negative torque region, vibration and cavitation increase, which may cause damage to the water turbine and its attached mechanisms. As mentioned above, there is a serious drawback in that even though the grid requests power supply, it ends up consuming power.

なお、以上の説明では自号機の水口開度は変化せず、他
号機の水口開度が開いた場合について説明したが、自号
機の水口開度が急激に開いた場合にもサージタンクの水
位が変化するため、上記と類似の現象が発生する。
In addition, in the above explanation, we have explained the case where the water mouth opening of the own machine does not change and the water mouth opening of other machines opens, but even if the water mouth opening of the own machine suddenly opens, the water level of the surge tank will change. changes, a phenomenon similar to the above occurs.

次ぎに、自号機と他号機が共に発電運転中に他号機で負
荷遮断が発生し、水口開度を全開とされる場合の現象に
つき、第9図と第10図を参照して説明する。
Next, with reference to FIGS. 9 and 10, a phenomenon will be described in which a load shedding occurs in the other machine while both the own machine and the other machine are in power generation operation, and the water mouth opening is made to be fully opened.

第9図において、時刻Toで他号機で負荷’llX%が
発生し、その水口開度a2が急速に閉鎖すると、第6図
中の°分岐管路6bを流れる水の流伍が減少するため、
サージタンクの水位W、は第9図に示すように急上昇す
る。
In Fig. 9, when a load 'llX% occurs in another machine at time To and its water port opening a2 rapidly closes, the flow of water flowing through the ° branch pipe 6b in Fig. 6 decreases. ,
The water level W in the surge tank rises rapidly as shown in FIG.

そのため、自号機(第6図中の5a)の水車出力P1は
水ロ開度a1.回転速度N1が共に変化していないにも
拘らず増加し、サージタンクの水位W8が初期水位Ws
oよりも大幅に高くなる時刻T1〜T3の間、水車の定
格最大出力を越えて運転されることになる。
Therefore, the water turbine output P1 of the own machine (5a in Fig. 6) is the water turbine opening a1. The rotational speed N1 increases even though it does not change, and the water level W8 of the surge tank becomes the initial water level Ws.
During times T1 to T3, when the output is significantly higher than o, the water turbine is operated at exceeding its rated maximum output.

第10図は第9図のような現象が何枚発生するかを水車
のトルク特性から説明するもので、自号機の水口開度a
1が一定の場合、水車の有効落差Hが増加すると、運転
点は曲線m3上をN/4 H−が小さくなる方向へ移動
してT/Hが大きくなると共に、トルクTの値も有効落
差Hの増加分に対応して大きくなることが分る。
Figure 10 explains how many times the phenomenon shown in Figure 9 occurs from the torque characteristics of the water turbine.
1 is constant, when the effective head H of the water turbine increases, the operating point moves on the curve m3 in the direction where N/4 H- decreases, T/H increases, and the value of torque T also increases as the effective head increases. It can be seen that the value increases as H increases.

ところで近年は、半導体i、Ill素子回路技術の進歩
に伴い、巻線形誘導発電撮をサイクロコンバータ装置で
制御することによって水車の回転速度を広範囲に亘って
任意に変化させることができる可変速水力発電装置が注
目されるようになってきた。
By the way, in recent years, with the advancement of semiconductor I and Ill element circuit technology, variable speed hydropower generation has been developed that allows the rotational speed of the water turbine to be arbitrarily changed over a wide range by controlling the winding induction power generation sensor with a cycloconverter device. The device has started to attract attention.

こうした可変速水力発電装置においては、上池と下池の
水位を測定して水車に作用する有効落差を篩部し、この
有効落差に応じて水車の回転速度を制maすることによ
って水車を常に高い効率で運転する制御方法が提案され
ている(例えば、特開昭48−21045号、同57−
113’971号等)。
In such variable speed hydroelectric power generation equipment, the water levels of the upper and lower reservoirs are measured to determine the effective head that acts on the water wheel, and the rotational speed of the water wheel is controlled according to this effective head to keep the water wheel at a constant high level. Control methods for efficient operation have been proposed (for example, Japanese Patent Application Laid-open Nos. 48-21045 and 57-
No. 113'971, etc.).

このような運転制御方法によれば、水車の回転速度を落
差に応じて変えることにより、どのよう、 な落差にお
いても水車を安定に、しかも高い効率で運転することが
できる。しかしながら第7図や第9図で説明したように
、水路系の過渡的な状態変化によって水車の有効落差が
変化するような場合には、可変速形の水車を用いても、
従来の運転制御方法を用いる限り、一定回転速度の水中
と同僅の機能しか発揮しない。
According to such an operation control method, by changing the rotational speed of the water turbine according to the head, the water turbine can be operated stably and with high efficiency no matter the head. However, as explained in Figures 7 and 9, if the effective head of the turbine changes due to transient changes in the waterway system, even if a variable speed turbine is used,
As long as conventional operation control methods are used, they perform only as poorly as they would in water at a constant rotational speed.

(発明が解決しようとする問題点) 上述の如く、共通の一条管路に連なる分岐管路に設置さ
れ°た水車では、他号機や自号機の運転状態の急激な変
化により水車がモーター運転に陥ったり過負荷で運転さ
れるおそれがあるが、従来の運転制御方法では、可変速
運転が可能な水車においても有効な対策を講することか
できながった。
(Problems to be Solved by the Invention) As mentioned above, in a water turbine installed in a branch pipe connected to a common straight pipe, the water turbine may switch to motor operation due to a sudden change in the operating status of other units or the own unit. Conventional operation control methods have not been able to take effective countermeasures against this problem, even for water turbines that can operate at variable speeds.

また、モーター運転や過負荷運転に対しては自号機の水
口開度を調整する方法も考えられるが、急激な水口開度
の変化はサージングを助長し、水車の運転状態をかえっ
て悪い方向へ移行させる危険性が大きいため、実用に供
されてはいない。
In addition, a method of adjusting the water mouth opening of the own unit in response to motor operation or overload operation may be considered, but sudden changes in the water mouth opening will encourage surging, and the operating condition of the water turbine will instead deteriorate. It has not been put into practical use because of the high risk of

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段) 本発明は背景技術における上述のごとき欠点を除去づべ
くなされたもので、一条管路から分岐する複数条の分岐
管路に可変速水力発電装置を設置した水力発電所におい
て、各5!電機の出力を発電機出力検出器によって検出
し、この検出値が設定上限出力を上回るか、あるいは設
定下限出力を下回った際、回転速度上げ指令または回転
速度下げ指令を出力させて水力発電装置の目標回転速度
を変化させることを特徴とする。
(Means for Solving the Problems) The present invention has been made to eliminate the above-mentioned drawbacks in the background art, and a variable speed hydroelectric power generation device is installed in multiple branch pipes branching from a single pipe pipe. At a hydroelectric power plant, 5 each! The output of the electric machine is detected by a generator output detector, and when this detected value exceeds the set upper limit output or falls below the set lower limit output, a rotation speed increase command or rotation speed decrease command is output to control the hydraulic power generation equipment. It is characterized by changing the target rotation speed.

(作 用) 上述のように構成した本発明の運転制御方法においては
、発電機出力が設定上限出力または設定下限出力を越え
た際には回転速度上げ指令または回転速度下げ指令が優
先的に回転速度制御装置に与えられて発電機の回転速度
を制御するので、他号機や自号機の運転状態が急激に変
化しても水車がモーター運転や過負荷運転に陥ることを
防止できる。
(Function) In the operation control method of the present invention configured as described above, when the generator output exceeds the set upper limit output or the set lower limit output, the rotation speed increase command or the rotation speed decrease command is given priority to the rotation speed. Since the rotational speed of the generator is controlled by the speed control device, it is possible to prevent the water turbine from falling into motor operation or overload operation even if the operating conditions of other units or the own unit suddenly change.

すなわら、第8図や第10図における横軸座標N/fl
上での水車の運転点の変化を少なくすることができ、発
電機出力の上限値や下限値からの逸脱量を低減させて電
力系統運用上のトラブルを防止することができる。
In other words, the horizontal axis coordinate N/fl in Figures 8 and 10
Changes in the operating point of the water turbine can be reduced, and the amount of deviation of the generator output from the upper and lower limits can be reduced, and troubles in power system operation can be prevented.

(実施例) 以下、図面を参照して本発明の詳細な説明する。(Example) Hereinafter, the present invention will be described in detail with reference to the drawings.

第1図において、管路6の上端は第6図にて説明した一
条管路4に接続されており、また、水車5の吐出側゛に
接続した排水管路の下端は下池に通じている。
In Fig. 1, the upper end of the pipe 6 is connected to the single-line pipe 4 explained in Fig. 6, and the lower end of the drainage pipe connected to the discharge side of the water turbine 5 leads to the lower pond. .

水車5の主軸にはカップリング9を介して発電Ifi1
0が直結されている。この発電機とじては通常、可変速
運転が可能な巻線形誘導発電機が使用  ゛され、その
出力はサイクロコンバータ装置(図示せず)などを介し
て電力系統に接続されている。
Power generation Ifi1 is connected to the main shaft of the water turbine 5 via a coupling 9.
0 is directly connected. A wound induction generator capable of variable speed operation is normally used as this generator, and its output is connected to the power system via a cycloconverter device (not shown) or the like.

発電機10にはその出力を検出する発電機出力検出器1
1が取付けられており、この発電機出力検出器から出力
される発電機出力P1は比較器12に導かれ、設定上限
出力PHと比較されて偏差値ΔP、を生じ、また比較器
13に導かれ、設定下限出力P と比較されて偏差値Δ
P、を生じる。 これらの偏差値ΔP および偏差値Δ
P。
The generator 10 includes a generator output detector 1 for detecting its output.
1 is installed, and the generator output P1 output from this generator output detector is led to a comparator 12 and compared with the set upper limit output PH to produce a deviation value ΔP, which is also led to a comparator 13. It is compared with the set lower limit output P and the deviation value Δ
produces P. These deviation values ΔP and deviation values Δ
P.

■ はそれぞれ上限出力検出器14.下限出力検出器15に
導かれる。
■ are upper limit output detectors 14 and 14, respectively. It is led to the lower limit output detector 15.

上限出力検出器14はΔP0が正の時、すなわち発電機
出力信号P1が設定上限出力P、を上まわった時に回転
速度上げ指令N0を出力する。また、下限出力検出器1
5は△PLが負の時ずなわち充電機出力信@P S設定
下限出力PLを下回りた時に回転速度下げ指令NLを出
力する。
The upper limit output detector 14 outputs the rotation speed increase command N0 when ΔP0 is positive, that is, when the generator output signal P1 exceeds the set upper limit output P. In addition, the lower limit output detector 1
5 outputs a rotational speed reduction command NL when △PL is negative, that is, when the charger output signal @PS falls below the set lower limit output PL.

一方、発電機10の平常時の回転速度を設定する回転速
度設定器16には要求出力P1水ロ開度a、および水位
W等が入力され、最適回転速度N  を出力している。
On the other hand, the required output P1, the water opening a, the water level W, etc. are input to the rotation speed setter 16 which sets the normal rotation speed of the generator 10, and outputs the optimum rotation speed N.

pt この最適回転速I!!N OPtと、上述の回転速度上
げ指令N および回転速度下げ指令N、は目標回転速没
設定器17に入力され、目標回転速度NQを出力する。
pt This optimum rotation speed I! ! NOPt, the above-mentioned rotational speed increase command N and rotational speed decrease command N are input to the target rotational speed/slowdown setter 17, which outputs the target rotational speed NQ.

回転速度制御装置18は目標回転速度N。を入力し、発
電機10がその目標回転速度となるよう制御する。
The rotational speed control device 18 has a target rotational speed N. is input, and the generator 10 is controlled to reach its target rotation speed.

上述の目標回転速度設定器17は常時は最適回転速度N
  を目標回転速度N。とじて出力する。pt が、回転速度上げ指令Nlまたは回転速度下げ指令NL
が入力された際には、それらの信号を優先させる機能を
備えている。
The above-mentioned target rotation speed setting device 17 is always set to the optimum rotation speed N.
is the target rotational speed N. Bind and output. pt is the rotation speed increase command Nl or rotation speed decrease command NL
It has a function that prioritizes those signals when they are input.

前記したΔPl+や△P[に対する回転速度上げ指令N
 Hまたは回転速度下げ指令N[の値は一般的にはΔP
□、ΔP、の比例値、微分値および積分値の組み合せで
輝部される。すなわち、 ′ □N)l”A11×Δp
H+B、Xd/dt <Δp、、>+CxfΔp  d
t   −(1) II        )1 〜 =AL×ΔP1 +BL xd/d t (ΔP1
 )+CxfΔp  dt   −(2) L       L とすればよい。これらの式中、A、B、C,、、H AL、B  、C,は水車の特性、回転体の時定数、[ 管路内の水の慣性などの諸因子に応じて設定される定数
である。
Rotation speed increase command N for the above-mentioned ΔPl+ and ΔP[
The value of H or rotational speed reduction command N [is generally ΔP
The bright part is formed by a combination of the proportional value, differential value, and integral value of □ and ΔP. That is, ′ □N)l”A11×Δp
H+B, Xd/dt <Δp,, >+CxfΔp d
t - (1) II ) 1 ~ = AL x ΔP1 + BL xd/d t (ΔP1
)+CxfΔp dt −(2) L L . In these equations, A, B, C, , H AL, B , C are constants set according to various factors such as the characteristics of the water turbine, the time constant of the rotating body, and the inertia of the water in the pipe. It is.

上記(1)、(2)式は理論的ではあるが、実際上は各
定数の値を正確に定めることが難しいことが多い。その
様な場合には実用上、発電機゛10の周波数を変換する
サイクロコンバータ装置などの能力の制約により、実際
に運転できる発電様の回転速度の上限値N  と下限値
N 、 が定まつwax             m
 + nているので、 Δp  >oのとき:N、、=Nlax ・ (3)Δ
P く0のとき:NL=N  ・  ・・・(4)If
           rn + nを上記(1)、(
2)式の替わりに用いるようにしてもよい。
Although the above equations (1) and (2) are theoretical, in practice it is often difficult to accurately determine the value of each constant. In such a case, in practice, the upper limit value N and the lower limit value N of the rotational speed for power generation that can be actually operated are determined due to the limitations of the ability of the cycloconverter device etc. that converts the frequency of the generator 10. m
+ n, so when Δp > o: N,, = Nlax ・ (3) Δ
When P ku0: NL=N (4) If
rn + n as above (1), (
2) may be used instead of Eq.

上述のように構成した可変速水力発電装置の運転、制御
装置において、発電機10の出力P、が設定上限出力Δ
PHと設定下限出力ΔP[の間の値であるときは上限出
力検出器14と下限出力検出器15は出力N、N、を生
じないので、目標回■ 転速置設定器17は回転速度設定器16からの信号N 
 と同一の目標回転速度N。を回転速度制pt 御装置18に向けて出力し、発電機10を目標回転速度
となるよう制御する。
In the operation and control device for the variable speed hydroelectric power generation device configured as described above, the output P of the generator 10 is set to the upper limit output Δ.
When the value is between PH and the set lower limit output ΔP[, the upper limit output detector 14 and the lower limit output detector 15 do not produce outputs N, N, so the target rotation speed position setting device 17 sets the rotation speed. signal N from device 16
The same target rotational speed N. is outputted to the rotational speed control device 18, and the generator 10 is controlled to reach the target rotational speed.

このような状態において、例えば、待機運転中の他号機
の水口開度が系統からの指令によって急に開き、そのた
め自号機の発電機出力P1が設定下値出力P、を下回っ
た場合の作動を第2図に示す。
In such a situation, for example, if the water inlet opening of another unit in standby operation suddenly opens due to a command from the grid, and the generator output P1 of the own unit falls below the set lower value output P, the operation will be activated. Shown in Figure 2.

同図において時刻Toで他号機の水口開度a2が開口を
開始すると、第2図につき説明したと同様の理由によっ
てサージタンクの水位W3と自号機の水車出力(−発電
機出力)Plが減少し始める。
In the figure, when the water port opening a2 of the other unit starts to open at time To, the water level W3 of the surge tank and the water turbine output (-generator output) Pl of the own unit decrease for the same reason as explained with reference to Figure 2. Begin to.

時刻T1において、自号機の水車出力P1が設定下限出
力PLよりも下回ると、下限出力検出器15が作動して
回転速度下げ指令N、が出力され、これにより目標回転
速度設定器17の出力は時刻T で最低回転速度M ・
 となる(前述の(4)1         man 式による場合)。
At time T1, when the water turbine output P1 of the own unit falls below the set lower limit output PL, the lower limit output detector 15 is activated and a rotation speed reduction command N is output, whereby the output of the target rotation speed setting device 17 is Minimum rotational speed M at time T
(When using the above-mentioned (4) 1 man formula).

これにより、回転速度制御装置18は水車の回転速度が
N ・ となるように制御を開始するが、1n 実際の回転31度は回転体の時定数の影響で曲線N、の
ように徐々に低下する。
As a result, the rotational speed control device 18 starts controlling the rotational speed of the water turbine to become N. However, the actual rotational speed of 1n gradually decreases as shown by the curve N due to the influence of the time constant of the rotating body. do.

この場合、回転速度が下回るため、自号機の水車出力は
、回転速度が一定の第7図の場合に比較してゆっくりし
たものとなり、水車出力P1の最低値は負出力にはなら
ない。
In this case, since the rotation speed is lower, the water turbine output of the own machine becomes slower than in the case of FIG. 7 where the rotation speed is constant, and the lowest value of the water turbine output P1 does not become a negative output.

その理由を第3図のトルク特性に基づいて説明すると、
時刻Toでサージタンク水位が低下した場合、水車の有
効落差Hも低下するため、水車の運転点は曲線m2上を
N/n増大する方向へ移動する。
The reason for this is explained based on the torque characteristics shown in Figure 3.
When the surge tank water level decreases at time To, the effective head H of the water turbine also decreases, so the operating point of the water turbine moves in the direction of increasing N/n on the curve m2.

しかしながら、時刻T1以降は下限出力検出器15が作
動し、水車の回転速度Nが低下するため、有効溝ffH
が大きく低下しても時刻T までのN/VmT7)低下
は僅かであり、最低出力点(T  )tよトルクT/H
が正の領域に保たれることになる。
However, after time T1, the lower limit output detector 15 operates and the rotational speed N of the water turbine decreases, so the effective groove ffH
Even if N/VmT7) decreases greatly, the decrease is slight until time T, and the torque T/H decreases from the lowest output point (T)t to
will be kept in the positive region.

次ぎに、本発明の運転制御方法において、他号機の水口
開度が急激に減少し、下池の発電機出力が設定下限出力
PHを上回った時の作動を第4図および第5図を参照し
て説明する。
Next, in the operation control method of the present invention, the operation when the water mouth opening of other units suddenly decreases and the generator output of the lower pond exceeds the set lower limit output PH is shown in Figs. 4 and 5. I will explain.

負荷遮断などにより、時刻T において他号機の水口開
度a2が急激に低下し始めると、サージタンクの水位W
 が上昇し、自号機の発電機出力P も増加する。時刻
T1において発電機出力P1が設定上限値出力P□を超
過すると、上限出力検出器14が作動し、回転速度上げ
指令N)lが発せられる。これにより目標回転速度設定
器17の出力N は時刻T にて最高回転速度N   
(=N )に切換えられるが、実際の水車回転速度N1
は回転体の時定数の影響で、第4図中の曲線N で示す
ように時刻■1以降ゆっくりと上昇すす ることになる。
When the water port opening a2 of other units begins to decrease rapidly at time T due to load shedding, etc., the surge tank water level W
increases, and the generator output P of the own unit also increases. When the generator output P1 exceeds the set upper limit output P□ at time T1, the upper limit output detector 14 is activated and a rotational speed increase command N)l is issued. As a result, the output N of the target rotation speed setter 17 becomes the maximum rotation speed N at time T.
(=N), but the actual water turbine rotation speed N1
Due to the influence of the time constant of the rotating body, as shown by curve N in FIG. 4, it rises slowly after time 1.

このように、本発明においては自号機の回′・転速度が
上昇するため、その水車の出力は回転速度が一定の第9
図の場合に比較してゆっくりしたものとなり、その最大
□出力値も低く押えられる。
In this way, in the present invention, the rotation speed of the own water turbine increases, so the output of the water turbine is equal to that of the 9th turbine whose rotation speed is constant.
It is slower than the case shown in the figure, and its maximum □ output value is also kept low.

その理由を第5−を参照して説明すると、時刻To−T
1の間は回転速度が一定のため、サージタンクの水位W
8の上界に伴う有効落差Hの増加分だけ水車の運転点は
N / (’Tnfi小”さくなる方向へ移動する。し
かしながら、時刻T1以降は前述のように上限出力検出
器14が作動して水車の目標回転速度を上昇させるため
、有効落差Hが増加しても運転点のN/ E■1回転速
度が一定の場合と比較すると余り低下せず、その結果水
車のトルクもさほど増大せず、水車出力の増加は抑制さ
れることになる。
To explain the reason with reference to No. 5-, the time To-T
Since the rotation speed is constant during 1, the water level of the surge tank W
The operating point of the water turbine moves in the direction of N/('Tnfi small) by the increase in the effective head H due to the upper limit of 8. However, after time T1, the upper limit output detector 14 is activated as described above. Therefore, even if the effective head H increases, the operating point N/E■1 does not decrease much compared to the case where the rotation speed is constant, and as a result, the torque of the water turbine does not increase much. First, the increase in water turbine output will be suppressed.

上記した説明からも明らかなように、本発明の運転制御
方法においては、発電殿出力P を検出し、これが設定
上限出力PHを上まわるか、設定下限出力P、を下まわ
った際には、回転速度上げ指令Ni1または回転速度下
げ指令N、を出力させて目標回転速度N。を変化させる
ようにしたので、水車ひいては発電機の出力を小幅な変
動範囲内に保持することができ、水車が系統の電力を消
費するモーター運転状態や、最大定格出力を越える過負
荷運転状態に陥るのを回避できる。
As is clear from the above explanation, in the operation control method of the present invention, the power generation output P is detected, and when it exceeds the set upper limit output PH or falls below the set lower limit output P, The target rotation speed N is achieved by outputting the rotation speed increase command Ni1 or the rotation speed decrease command N. This makes it possible to maintain the output of the water turbine and, in turn, the generator, within a small range of fluctuation, and prevents the water turbine from operating under motor conditions that consume power from the grid, or under overload conditions that exceed the maximum rated output. You can avoid falling into it.

〔発明の効果〕〔Effect of the invention〕

上述の如く、本発明の運転制御方法によれば、信号はの
作動変更時に水車がモーター運転や過負荷運転状態に陥
るのを回避できるので、異常な運転状態による水車自身
やその付属設備の損傷を防止することができ、また、電
力系統運用上のトラブルの発生を防止することができる
As described above, according to the operation control method of the present invention, it is possible to prevent the water turbine from falling into motor operation or overload operation when the operation of the signal is changed, thereby preventing damage to the water turbine itself or its auxiliary equipment due to abnormal operating conditions. It is also possible to prevent troubles in power system operation from occurring.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の可変速水力発電装置の運転制御方法の
実施例を示す説明図、第2図ないし第5図はその作動を
示す作動説明図とトルク特性図、第6図は一条管路に2
条の分岐管・路が接続された水力発電所の概略構成を示
す概略図、第7図ないし第10図は従来の水力発電装訝
の作動を示す作動説明図とトルク特性図である。 1・・・上池、2・・・下池、3・・・分岐部、4・・
・一条管路、5.5a・・・水車、6.6a、6b・・
・管路、7.7a、7b・・・排水管路、8・・・サー
ジタンク。 出願人代理人  佐  藤  −雄 第1図 第2図 第5図 時刻T 第7図 □ 第8図 時刻T 第9図
FIG. 1 is an explanatory diagram showing an embodiment of the operation control method of a variable speed hydroelectric power generation device of the present invention, FIGS. 2 to 5 are operation explanatory diagrams and torque characteristic diagrams showing the operation, and FIG. 2 on the road
FIGS. 7 to 10 are operation explanatory diagrams and torque characteristic diagrams showing the operation of a conventional hydraulic power generation system. 1... Upper pond, 2... Lower pond, 3... Branch, 4...
・Single pipeline, 5.5a...Waterwheel, 6.6a, 6b...
- Pipes, 7.7a, 7b...Drainage pipes, 8...Surge tank. Applicant's agent Mr. Sato Figure 1 Figure 2 Figure 5 Time T Figure 7 □ Figure 8 Time T Figure 9

Claims (1)

【特許請求の範囲】 1、一条管路から分岐する複数状の分岐管路に可変速水
力発電装置を設置した水力発電所において、各発電機の
出力を発電機出力検出器によって検出し、この検出値が
設定上限出力を上回るか、あるいは設定下限出力を下回
った際、回転速度上げ指令または回転速度下げ指令を出
力させて水力発電装置の目標回転速度を変化させること
を特徴とする可変速水力発電装置の運転制御方法。 2、発電機出力と設定上限出力とを比較器に入力して比
較し、それらの偏差値を上限出力検出器に導いて回転速
度上げ指令を出力させ、また前記発電機出力と設定下限
出力とを比較器に入力して比較し、それらの偏差値を下
限出力検出器に導いて回転速度下げ指令を出力させ、こ
れらの指令により水力発電装置の目標回転速度を変化さ
せることを特徴とする特許請求の範囲第1項記載の可変
速水力発電装置の運転制御方法。
[Scope of Claims] 1. In a hydroelectric power plant in which a variable speed hydroelectric power generation device is installed in a plurality of branch pipes branching from a single pipe, the output of each generator is detected by a generator output detector; Variable speed hydraulic power, characterized in that when a detected value exceeds a set upper limit output or falls below a set lower limit output, a rotation speed increase command or a rotation speed decrease command is output to change the target rotation speed of the hydroelectric power generation device. Operation control method for power generation equipment. 2. Input the generator output and the set upper limit output to a comparator and compare them, guide their deviation value to the upper limit output detector to output a rotation speed increase command, and also input the generator output and the set lower limit output. are input into a comparator and compared, their deviation values are led to a lower limit output detector to output rotation speed reduction commands, and these commands are used to change the target rotation speed of a hydroelectric power generation device. A method for controlling the operation of a variable speed hydroelectric power generation device according to claim 1.
JP61198398A 1986-08-25 1986-08-25 Variable speed hydroelectric generator operation control method Expired - Fee Related JPH0718406B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61198398A JPH0718406B2 (en) 1986-08-25 1986-08-25 Variable speed hydroelectric generator operation control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61198398A JPH0718406B2 (en) 1986-08-25 1986-08-25 Variable speed hydroelectric generator operation control method

Publications (2)

Publication Number Publication Date
JPS6355372A true JPS6355372A (en) 1988-03-09
JPH0718406B2 JPH0718406B2 (en) 1995-03-06

Family

ID=16390467

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61198398A Expired - Fee Related JPH0718406B2 (en) 1986-08-25 1986-08-25 Variable speed hydroelectric generator operation control method

Country Status (1)

Country Link
JP (1) JPH0718406B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105604993A (en) * 2016-03-02 2016-05-25 湖州优创科技有限公司 Hydraulic station for boring machines

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4878905U (en) * 1971-12-28 1973-09-28
JPS4928814A (en) * 1972-07-12 1974-03-14

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4878905U (en) * 1971-12-28 1973-09-28
JPS4928814A (en) * 1972-07-12 1974-03-14

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105604993A (en) * 2016-03-02 2016-05-25 湖州优创科技有限公司 Hydraulic station for boring machines

Also Published As

Publication number Publication date
JPH0718406B2 (en) 1995-03-06

Similar Documents

Publication Publication Date Title
EP0320718B1 (en) Variable speed pumping-up system
CN106499005B (en) A kind of water supply pump station feedback control system
KR20110055354A (en) Stairs system small hydraulic generating equipment for golf courses and generating method
JPS6355372A (en) Operation control method for variable speed hydraulic power station
JP2002242813A (en) Power generation system
CN202747330U (en) Boiler automatic-adjusting and variable-frequency water supplementing system
JP6841738B2 (en) Hydropower system
JP2002115643A (en) Small hydraulic power generating facility
JP7351195B2 (en) Operation support equipment for hydropower plants
JP6841739B2 (en) Hydropower system
JP3493048B2 (en) Operation control method of variable speed hydraulic machine in branch water system power plant.
JP2647116B2 (en) How to operate a variable speed hydraulic machine
JPS6375363A (en) Pump stationary operation controlling method for branching conduit pumped storage power plant
JPH0830462B2 (en) How to start pumping a variable speed pump turbine or pump
JPS6158903A (en) Turbine controller for nuclear reactor
JPH0763153A (en) Water turbine equipment
JPH06241158A (en) Variable velocity power generator, variable velocity pumped storage power generator and drive control of them
JP2619094B2 (en) Operation control method of hydroelectric power plant
JPS62279278A (en) Operation of pumping-up electric power station having branched water passages
JPH04278608A (en) Control method for hydraulic power plant facilities having discharge valve
JPS63124870A (en) Power system input control method for pumped storage power plant
JP2752075B2 (en) Control devices for hydraulic machines
JPS63147974A (en) Control method for branch channel pumping type power plant
JPS5834672B2 (en) Fukusuuno Suishiya Pump
JPS63113181A (en) Operation control method at pumped storage power station shutdown

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees