JPS6355197A - Production of diamond having high purity - Google Patents

Production of diamond having high purity

Info

Publication number
JPS6355197A
JPS6355197A JP19707286A JP19707286A JPS6355197A JP S6355197 A JPS6355197 A JP S6355197A JP 19707286 A JP19707286 A JP 19707286A JP 19707286 A JP19707286 A JP 19707286A JP S6355197 A JPS6355197 A JP S6355197A
Authority
JP
Japan
Prior art keywords
diamond
substrate
purity
components
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19707286A
Other languages
Japanese (ja)
Inventor
Yoshinori Kuwae
桑江 良昇
Masato Kamata
眞人 鎌田
Takao Sawa
孝雄 沢
Sakae Kimura
木村 栄
Katsuhisa Honma
克久 本間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP19707286A priority Critical patent/JPS6355197A/en
Publication of JPS6355197A publication Critical patent/JPS6355197A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To produce a diamond having high purity and containing reduced amount of components other than diamond, by producing a diamond by vapor growth technique and maintaining the produced diamond at or above a specific temperature. CONSTITUTION:A diamond is grown on a substrate by chemical vapor growth process. The substrate supporting the deposited diamond is maintained at >=170 deg.C, e.g. at 170-700 deg.C in air or at 170-1,500 deg.C in an inert gas atmosphere. Components other than diamond, e.g. C=C component, CidenticalC component, C-H, etc., in diamond can be decreased by this process to give a highly pure diamond having excellent hardness, thermal conductivity, transparency, chemical stability, etc.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は気相成長法を用いた高純度ダイヤモンドの製造
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a method for producing high-purity diamond using a vapor phase growth method.

(従来の技術) ダイヤモンドは、現在知られている物質の中では、硬度
、熱伝導率が最も大きく、また極めて高い弾性率、圧縮
強さ、電気絶縁性を備え、かつ透明で化学的にも安定な
物質である。したがってその優れた特性を生かすべく、
治工具への耐摩耗コーティング、太陽電池の保護膜、光
学レンズ又は半導体の放熱板などへの用途開発が研究さ
れている。しかしながら、天然のダイヤモンドは産出量
も少なく極めて高価であるため、到底工業用素材として
利用するわけにはいかない。
(Prior art) Diamond has the highest hardness and thermal conductivity among currently known substances, and also has extremely high modulus of elasticity, compressive strength, and electrical insulation, and is transparent and chemically resistant. It is a stable substance. Therefore, in order to take advantage of its excellent characteristics,
Research is underway to develop applications for wear-resistant coatings on jigs and tools, protective films for solar cells, optical lenses, and heat sinks for semiconductors. However, since natural diamonds are produced in small quantities and are extremely expensive, they cannot be used as industrial materials.

そのため、人造ダイヤモンドの製造研究が盛んに行なわ
れているが、従来知られている高温・高圧下における方
法で製造された人造ダイヤモンドも高価であって、工業
用素材としての有用性には乏しい。しかも、これら天然
ダイヤモンド、人造ダイヤモンドはいずれもその形状が
一般に塊状若しくは粒状であって膜の製造は困難である
ため、ダイヤモンドが備える有用な特性を充分に活用し
得ていない。
For this reason, research on the production of artificial diamonds is actively being conducted, but artificial diamonds manufactured by conventional methods under high temperature and high pressure are also expensive and have little usefulness as industrial materials. Furthermore, both natural diamonds and artificial diamonds are generally lumpy or granular in shape, making it difficult to manufacture a film, and therefore the useful properties of diamond cannot be fully utilized.

このようなことから最近では、低温・低圧下にあっても
ダイヤモンドを製造する、しかもダイヤモンド膜を製造
する研究が活発に進められている。
For this reason, research has recently been actively conducted to produce diamonds even at low temperatures and low pressures, and moreover, to produce diamond films.

その主要な方法は以下の4つである。すなわち、第1に
、真空中でダイヤモンド粉末にレーザ光又は電子線を照
射してそれを加熱蒸発せしめ、その蒸気を基体表面に被
着せしめてダイヤモンドを形成する真空蒸着法、第2は
、加熱した基体の表面にメタン、エチレン、アセトンの
ような有機化合物を導入し、基体に近設した熱フィラメ
ントの熱エネルギーで該有機化合物を熱分解して活性種
を生成せしめ、もって基体表面にダイヤモンドを析出さ
せるという化学気相成長方法、第3は、プラズマの中で
有機化合物を分解して活性種を生成せしめ、もって基体
表面にダイヤモンドを析出させるという化学気相成長法
、第4は、炭化水素若しくは黒鉛から炭素を含む正イオ
ンを生成せしめ、これら正イオンを集束して基体表面に
射突せしめ、もって基体表面にダイヤモンドを析出させ
るというイオンビーム法、などである。
There are four main methods: Specifically, the first is a vacuum evaporation method in which diamond powder is heated and evaporated by irradiating it with a laser beam or an electron beam in a vacuum, and the vapor is deposited on the surface of a substrate to form a diamond.The second method is a heating method. An organic compound such as methane, ethylene, or acetone is introduced onto the surface of the substrate, and the thermal energy of a hot filament placed close to the substrate thermally decomposes the organic compound to generate active species, thereby forming diamonds on the surface of the substrate. The third method is chemical vapor deposition method, in which organic compounds are decomposed in plasma to generate active species, thereby depositing diamond on the surface of the substrate, and the fourth method is hydrocarbon deposition method, in which diamond is deposited on the substrate surface. Alternatively, there is an ion beam method in which positive ions containing carbon are generated from graphite, and these positive ions are focused and bombarded onto the surface of the substrate, thereby depositing diamond on the surface of the substrate.

これらの方法はいずれも低温・低圧下で行なわれるので
工業的には有利であるが、しかし、これらの方法により
基体の表面に形成されたダイヤモンド膜はいずれも高品
質のものではなく、C=C成分、CEC成分、C−H成
分などの非ダイヤモンド成分を含んでおり、純度が悪い
ために硬度、熱伝導度、透明度、化学的安定性などにお
いて不充分であるという問題があった。
All of these methods are industrially advantageous because they are carried out at low temperatures and low pressures; however, the diamond films formed on the surface of the substrate by these methods are not of high quality, and C= It contains non-diamond components such as a C component, a CEC component, and a C-H component, and due to its poor purity, there has been a problem that it is insufficient in terms of hardness, thermal conductivity, transparency, chemical stability, etc.

(発明が解決しようとする問題点) 本発明は上記問題点を解消するためになされたものであ
り、気相成長方法で得られるダイヤモンドに含まれるC
=C成分、C=C成分、C−H成分などの非ダイヤモン
ド成分を減少させ、その結果、硬度、熱伝導度、透明度
、化学的安定性などの優れた高純度ダイヤモンドを得る
ことのできる高純度ダイヤモンドの製造方法を提供する
ことを目的とする。
(Problems to be Solved by the Invention) The present invention has been made to solve the above-mentioned problems.
=C component, C=C component, C-H component, and other non-diamond components, resulting in high purity diamond with excellent hardness, thermal conductivity, transparency, and chemical stability. The purpose is to provide a method for producing pure diamond.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段と作用)本発明の高純度
ダイヤモンドは気相成長方法で得られるダイヤモンドを
170℃以上に保持することにより非ダイヤモンド成分
を減少させたことを特徴とするものである。
(Means and effects for solving the problems) The high-purity diamond of the present invention is characterized in that non-diamond components are reduced by maintaining diamond obtained by a vapor phase growth method at 170°C or higher. be.

本発明者らは気相成長法で得られたダイヤモンドの性質
を調べるために、示差走査熱量分析(DSC)、熱重量
分析(TG)、赤外分光分析(IR)、ラマン分光分析
(Raman)、電子エネルギー損失分光分析(ELS
)等の手法を用いて、各温度で起こる現象を追求した。
The present inventors conducted differential scanning calorimetry (DSC), thermogravimetry (TG), infrared spectroscopy (IR), and Raman spectroscopy (Raman) to investigate the properties of diamond obtained by vapor phase growth. , Electron Energy Loss Spectroscopy (ELS)
), etc., to investigate the phenomena that occur at each temperature.

その結果、気相成長法で得られるダイヤモンドを170
℃以上に保持すると、含まれているC=C成分、C=C
成分、C−H成分などの非ダイヤモンド成分が減少した
り、新しくC−C成分が生成してダイヤモンド骨格を形
成するという事実を見い出し、本発明を開発した。
As a result, 170% of the diamond obtained by the vapor phase growth method was
When kept above ℃, the contained C=C component, C=C
The present invention was developed based on the discovery that non-diamond components such as C--H components are reduced and new C--C components are generated to form a diamond skeleton.

本発明には、通常の気相成長法で得られるダイヤモンド
を用いることが可能であるが、特に熱フィラメントを用
いた化学気相成長法やプラズマを用いた化学気相成長法
などの化学気相成長法で得られるダイヤモンドが好適で
ある。この理由として、これら化学気相成長法で得られ
るダイヤモンド中の非ダイヤモンド成分は170℃以上
の温度で容易に軽減されるが、真空蒸着法やイオンビー
21法などで得られるダイヤモンドを170℃以上に保
持しても、ダイヤモンド中の非ダイヤモンド成分を減少
させるのに長時間かかったり、あるいは長時間後も非ダ
イヤモンド成分が比較的多量に残ったりするからである
In the present invention, it is possible to use diamond obtained by ordinary vapor phase growth methods, but in particular chemical vapor growth methods such as chemical vapor growth methods using hot filaments and chemical vapor deposition methods using plasma. Diamonds obtained by growth methods are preferred. The reason for this is that non-diamond components in diamonds obtained by these chemical vapor deposition methods are easily reduced at temperatures above 170°C, but diamonds obtained by vacuum evaporation methods, ion bee 21 methods, etc. are heated to temperatures above 170°C. This is because even if the diamond is held, it takes a long time to reduce the non-diamond components in the diamond, or a relatively large amount of non-diamond components remains even after a long period of time.

また、化学気相成長法でダイヤモンドを作る際には、有
機化合物と水素とを含む反応ガスを用いることが好まし
い、この理由として、該反応ガスを用いると、得られる
ダイヤモンドはたとえ170℃以上に保持しなくても純
度が比較的高い上に、含まれる非ダイヤモンド成分も1
70℃以上では極めて容易に削減できるものが大部分で
あるからである。
Furthermore, when producing diamonds by chemical vapor deposition, it is preferable to use a reactive gas containing an organic compound and hydrogen. Not only is the purity relatively high even without retention, but it also contains 1 non-diamond component.
This is because most of the substances can be reduced extremely easily at temperatures above 70°C.

本発明は、気相成長法で得られる半導体ダイヤモンドの
半導体特性に寄与するドープ元素は残したまま、他の非
ダイヤモンド成分を減少する場合にも適用できる。
The present invention can also be applied to cases where other non-diamond components are reduced while leaving doped elements contributing to the semiconductor properties of semiconductor diamond obtained by vapor phase growth.

本発明において、温度を170℃以上に限定したのは、
170℃未満では、非ダイヤモンド成分の減少が極めて
困難か極めて遅くなるからである。
In the present invention, the temperature is limited to 170°C or higher because
This is because at temperatures below 170°C, the reduction of non-diamond components becomes extremely difficult or extremely slow.

170℃以上への加熱手段は特に限定されず、電気炉、
赤外線炉の他、レーザー、電子ビーム等のエネルギービ
ームが使える。
The means for heating to 170°C or higher is not particularly limited, and may include an electric furnace,
In addition to infrared furnaces, energy beams such as lasers and electron beams can be used.

170℃以上に保持する場合、雰囲気ガスは特に限定さ
れないが、経済性、操作性や効率の観点からは大気中、
不活性ガス雰囲気中、水素ガス雰囲気中、少なくとも有
機化合物を含むガス雰囲気中、および真空中が好ましい
。これらの雰囲気中で行なう場合、雰囲気ガスの安定性
、ダイヤモンドの安定性、非ダイヤモンド成分を減少す
る効率などの点から、上限温度が決まってくる。即ち、
大気中では700℃、不活性ガス雰囲気中では1500
℃、水素ガス雰囲気中では1500℃、少なくとも有機
化合物を含むガス雰囲気中では600℃、真空中では1
500℃が、それぞれの上限温度とすることが好ましい
。なお、雰囲気ガスの一例として少なくとも有機化合物
を含むガス雰囲気を既述したが、これは例えば有機化合
物と水素とを含むガス雰囲気でも良いことを意味する。
When maintaining the temperature at 170°C or higher, the atmospheric gas is not particularly limited, but from the viewpoint of economy, operability, and efficiency, atmospheric gas,
An inert gas atmosphere, a hydrogen gas atmosphere, a gas atmosphere containing at least an organic compound, and a vacuum are preferred. When conducting in these atmospheres, the upper limit temperature is determined from the viewpoints of the stability of the atmospheric gas, the stability of diamond, the efficiency of reducing non-diamond components, etc. That is,
700℃ in air, 1500℃ in inert gas atmosphere
℃, 1500℃ in a hydrogen gas atmosphere, 600℃ in a gas atmosphere containing at least organic compounds, 1 in a vacuum
It is preferable that 500°C is the upper limit temperature for each. Although a gas atmosphere containing at least an organic compound has been described as an example of the atmospheric gas, this means that a gas atmosphere containing, for example, an organic compound and hydrogen may also be used.

従って、有機化合物と水素とを含む反応ガスを用いた化
学気相成長法で得られるダイヤモンドを、該成長操作後
に、同じガス組成のガス雰囲気中で170℃以上600
℃以下に保持することにより、非ダイヤモンド成分を減
少して高純度ダイヤモンドとすることもできる。
Therefore, diamond obtained by chemical vapor deposition using a reactive gas containing an organic compound and hydrogen is grown at 170°C or higher and 600°C in a gas atmosphere with the same gas composition after the growth operation.
By maintaining the temperature below ℃, non-diamond components can be reduced and high purity diamond can be obtained.

なお、気相成長法で得られるダイヤモンドを170℃以
上に保持する場合は、ダイヤモンドを基体から剥離して
から行なってもよく、また基体と共に行なってもよい。
Note that when diamond obtained by vapor phase growth is maintained at a temperature of 170° C. or higher, the diamond may be peeled off from the substrate or may be maintained together with the substrate.

基体の耐熱性や用途などを考慮して適宜選択する。It is selected as appropriate, taking into consideration the heat resistance of the substrate and its intended use.

(実施例) 以下、本発明を実施例を用いて説明する。(Example) The present invention will be explained below using examples.

実施例1 基体としてモリブデン板を用い、熱フィラメントを用い
た化学気相成長法(例えば特公昭59−27753号公
報)により、前記基体上に膜厚5μsのダイヤモンドを
成長させた。該ダイヤモンドを該基体に付着させたまま
、10−’Torrの真空下で800℃に1時間保持し
た。その後、該ダイヤモンドの純度を調べるため、DS
C,TG、 IR,Raman、 ELS。
Example 1 A molybdenum plate was used as a substrate, and diamond with a thickness of 5 μs was grown on the substrate by chemical vapor deposition using a hot filament (for example, Japanese Patent Publication No. 59-27753). The diamond was kept attached to the substrate at 800°C for 1 hour under a vacuum of 10-'Torr. Then, to check the purity of the diamond, DS
C, T.G., I.R., Raman, E.L.S.

可視・紫外分光分析およびXMA回折等の手法を用いた
所、炭素以外の元素は検出されず、またほぼダイヤモン
ド結晶構造から構成さ汎、透光性も天然ダイヤモンド並
みであツた。さらに硬度、熱伝導度はそれぞれ9500
 !(v、1950Wm−” K−1であり、天然ダイ
ヤモンド並みであった。
When techniques such as visible/ultraviolet spectroscopy and XMA diffraction were used, no elements other than carbon were detected, and the material was found to have an almost diamond crystal structure, and its light transmittance was comparable to that of natural diamond. Furthermore, the hardness and thermal conductivity are each 9500.
! (v, 1950 Wm-"K-1, which was comparable to natural diamond.

一方、10”” Torrの真空下で800℃に1時間
保持する前にも、ダイヤモンドの純度及び性質を調べた
所、若干のC−■!酸成分びC=C成分が存在し、透光
性も比較的悪かった。また、硬度、熱伝導度はそれぞれ
9200Hv、15001f−’ K−1であった。
On the other hand, when the purity and properties of the diamond were examined before being held at 800°C for 1 hour under a vacuum of 10"" Torr, some C-■! An acid component and a C═C component were present, and the light transmittance was relatively poor. Further, the hardness and thermal conductivity were 9200Hv and 15001f-'K-1, respectively.

実施例2 基体としてシリコンウェハーを用い、熱電子照射を併用
した熱フイラメント化学気相成長法(例えば特開昭60
−221395号公報)により、前記基体上に膜厚15
μsのダイヤモンドを成長させた。該ダイヤモンドを該
基体から剥離・回収した後、大気中で420℃に30分
間保持した。その後、該ダイヤモンドの純度を調べたと
ころ、炭素以外の元素は検出されず、はぼダイヤモンド
結晶構造から構成され、透光性硬度および熱伝導度も天
然ダイヤモンド並みであった。
Example 2 Thermal filament chemical vapor deposition method using a silicon wafer as a substrate and combined use of thermionic irradiation (e.g., JP-A-60
-221395), a film thickness of 15
We grew μs diamonds. After the diamond was peeled off and recovered from the substrate, it was held at 420° C. for 30 minutes in the atmosphere. When the purity of the diamond was then examined, no elements other than carbon were detected, and it was found to have a diamond crystal structure, and its translucent hardness and thermal conductivity were comparable to those of natural diamond.

一方、 大気中で420℃に30分間保持する前にもダ
イヤモンドの純度及び性質を調べたところ、非ダイヤモ
ンド成分が存在し、透光性は悪かった。
On the other hand, when the purity and properties of the diamond were examined before being held at 420° C. for 30 minutes in the air, non-diamond components were present and the translucency was poor.

また、硬度、熱伝導度は天然ダイヤモンドに比べて若干
悪かった。
In addition, the hardness and thermal conductivity were slightly worse than natural diamond.

実施例3 基体として石英ガラスを用い、マイクロ波プラズマ化学
気相成長法(例えば特開昭59−3098号公報)によ
り、前記基体上に膜厚3−のダイヤモンドを成長させた
。この際1反応ガスにはメタンと水素との混合ガス(体
積比1:5(1)を用い、圧力40Torr、基体温度
を800℃とした。該成長操作後、該ダイヤモンドを該
基体に付着させたまま、上記組成、上記圧力の混合ガス
の雰囲気中210℃に2時間保持した。その後、該ダイ
ヤモンドの純度を調べたところ、炭素以外の元素は検出
されず、はぼダイヤモンド結晶構造から構成され、透光
性、硬度および熱伝導度も天然ダイヤモンド並みであっ
た。
Example 3 Using quartz glass as a substrate, diamond was grown to a thickness of 3 mm on the substrate by microwave plasma chemical vapor deposition (for example, Japanese Patent Application Laid-Open No. 59-3098). At this time, a mixed gas of methane and hydrogen (volume ratio 1:5 (1) was used as the first reaction gas, the pressure was 40 Torr, and the substrate temperature was 800°C. After the growth operation, the diamond was attached to the substrate. The diamond was then held at 210°C for 2 hours in a mixed gas atmosphere with the above composition and pressure.Afterwards, the purity of the diamond was examined, and no elements other than carbon were detected, indicating that it was composed of a diamond crystal structure. Its translucency, hardness and thermal conductivity were also comparable to those of natural diamond.

一方、上記混合ガス雰囲気中で210℃に2時間保持す
る前にも、ダイヤモンドの純度及び性質を調べたところ
、非ダイヤモンド成分が存在し、透光性は悪かった。 
また、熱伝導度は1200Wm−1に−1であった。
On the other hand, when the purity and properties of the diamond were examined before being held at 210° C. for 2 hours in the above mixed gas atmosphere, non-diamond components were present and the light transmittance was poor.
Further, the thermal conductivity was -1 at 1200 Wm-1.

〔発明の効果〕〔Effect of the invention〕

以上詳述した如く、本発明の高純度ダイヤモンドは気相
成長法で得られるダイヤモンドに含まれる非ダイヤモン
ド成分を殆ど含まず、その結果。
As detailed above, the high-purity diamond of the present invention contains almost no non-diamond components contained in diamond obtained by vapor phase growth.

透明度、硬度、熱伝導度などの特性が優れており、工業
上極めて有用である。
It has excellent properties such as transparency, hardness, and thermal conductivity, making it extremely useful industrially.

Claims (8)

【特許請求の範囲】[Claims] (1)気相成長法で得られるダイヤモンドを170℃以
上に保持することにより非ダイヤモンド成分を減少させ
た高純度ダイヤモンドの製造方法。
(1) A method for producing high-purity diamond in which non-diamond components are reduced by maintaining diamond obtained by vapor phase growth at 170°C or higher.
(2)気相成長法が化学気相成長法であることを特徴と
する特許請求の範囲第1項記載の高純度ダイヤモンドの
製造方法。
(2) The method for producing high-purity diamond according to claim 1, wherein the vapor phase growth method is a chemical vapor growth method.
(3)有機化合物と水素とを含む反応ガスを用いた化学
気相成長法であることを特徴とする特許請求の範囲第2
項記載の高純度ダイヤモンドの製造方法。
(3) Claim 2, characterized in that it is a chemical vapor deposition method using a reactive gas containing an organic compound and hydrogen.
Method for manufacturing high-purity diamond as described in Section 1.
(4)大気中で170℃以上700℃以下に保持するこ
とを特徴とする特許請求の範囲第1項記載の高純度ダイ
ヤモンドの製造方法。
(4) The method for producing high-purity diamond according to claim 1, wherein the method is maintained at a temperature of 170° C. or higher and 700° C. or lower in the atmosphere.
(5)不活性ガス雰囲気中で170℃以上1500℃以
下に保持することを特徴とする特許請求の範囲第1項記
載の高純度ダイヤモンドの製造方法。
(5) The method for producing high-purity diamond according to claim 1, wherein the temperature is maintained at 170° C. or higher and 1500° C. or lower in an inert gas atmosphere.
(6)水素ガス雰囲気中で170℃以上1500℃以下
に保持することを特徴とする特許請求の範囲第1項記載
の高純度ダイヤモンドの製造方法。
(6) The method for producing high-purity diamond according to claim 1, wherein the temperature is maintained at 170° C. or higher and 1500° C. or lower in a hydrogen gas atmosphere.
(7)少なくとも有機化合物を含むガス雰囲気中で17
0℃以上600℃以下に保持することを特徴とする特許
請求の範囲第1項記載の高純度ダイヤモンドの製造方法
(7) 17 in a gas atmosphere containing at least an organic compound
The method for producing high-purity diamond according to claim 1, characterized in that the temperature is maintained at 0°C or higher and 600°C or lower.
(8)真空中で170℃以上1500℃以下に保持する
ことを特徴とする特許請求の範囲第1項記載の高純度ダ
イヤモンドの製造方法。
(8) The method for producing high-purity diamond according to claim 1, wherein the method is maintained at a temperature of 170° C. or more and 1500° C. or less in vacuum.
JP19707286A 1986-08-25 1986-08-25 Production of diamond having high purity Pending JPS6355197A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19707286A JPS6355197A (en) 1986-08-25 1986-08-25 Production of diamond having high purity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19707286A JPS6355197A (en) 1986-08-25 1986-08-25 Production of diamond having high purity

Publications (1)

Publication Number Publication Date
JPS6355197A true JPS6355197A (en) 1988-03-09

Family

ID=16368248

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19707286A Pending JPS6355197A (en) 1986-08-25 1986-08-25 Production of diamond having high purity

Country Status (1)

Country Link
JP (1) JPS6355197A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01239091A (en) * 1988-03-18 1989-09-25 Sumitomo Electric Ind Ltd Modification of diamond
JPH02232106A (en) * 1989-03-03 1990-09-14 Sumitomo Electric Ind Ltd Polycrystal diamond for tool
WO2007000919A1 (en) * 2005-06-28 2007-01-04 National Institute Of Advanced Industrial Science And Technology Diamond electron source with carbon termination structure and production method thereof
JP2008144273A (en) * 2007-11-30 2008-06-26 Nippon Itf Kk Method for producing hard carbon-coated member
JP2011122226A (en) * 2009-12-14 2011-06-23 Tocalo Co Ltd Thick dlc film coated member and method of preparing the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01239091A (en) * 1988-03-18 1989-09-25 Sumitomo Electric Ind Ltd Modification of diamond
JPH02232106A (en) * 1989-03-03 1990-09-14 Sumitomo Electric Ind Ltd Polycrystal diamond for tool
WO2007000919A1 (en) * 2005-06-28 2007-01-04 National Institute Of Advanced Industrial Science And Technology Diamond electron source with carbon termination structure and production method thereof
US7960905B2 (en) 2005-06-28 2011-06-14 National Institute Of Advanced Industrial Science And Technology Diamond electron source having carbon-terminated structure
JP2008144273A (en) * 2007-11-30 2008-06-26 Nippon Itf Kk Method for producing hard carbon-coated member
JP2011122226A (en) * 2009-12-14 2011-06-23 Tocalo Co Ltd Thick dlc film coated member and method of preparing the same

Similar Documents

Publication Publication Date Title
US5328676A (en) Conversion of fullerenes to diamond
Deshpandey et al. Diamond and diamondlike films: Deposition processes and properties
CN109437124A (en) A method of synthesis single layer Transition-metal dichalcogenide
JPS62202897A (en) Production of diamond
JPS6355197A (en) Production of diamond having high purity
US5201986A (en) Diamond synthesizing method
JPS62502043A (en) Wafer base for silicon carbide semiconductor devices
US5380516A (en) Process for synthesizing diamond in a vapor phase
Mihama et al. Electron microscope study on the structure of gold films evaporated on sodium chloride, I. Influences of deposition rate and residual gas
JPS6283306A (en) Transparent bn type ceramic material
JPS62171993A (en) Production of diamond semiconductor
JPH02107596A (en) Synthesizing method for diamond
JPH0421638B2 (en)
JPH04234001A (en) Radiation resisting optical product comprising single crystal diamond having high isotope purity
JPS63162597A (en) Production of high-purity diamond
JPS61151096A (en) Formation of diamond film or diamond-like carbon film
Pernot et al. Photo‐assisted chemical vapor deposition of gallium sulfide thin films
JPS63282198A (en) Production of high-purity diamond at high rate
JP3932017B2 (en) Method for producing iron silicide crystal
JPH0891818A (en) Production of carbon cluster-containing hard film
JPS6355196A (en) Production of diamond having high heat-conductivity
JP2582765B2 (en) Diamond production equipment
JP2579926B2 (en) Diamond manufacturing method
CN115323325A (en) Method for adjusting band gap width of hydrogen-containing amorphous carbon film
JP2002167206A (en) Nitrogen, carbon, silicon type hard material, its manufacturing method, and its application