JPS6355033B2 - - Google Patents

Info

Publication number
JPS6355033B2
JPS6355033B2 JP19764282A JP19764282A JPS6355033B2 JP S6355033 B2 JPS6355033 B2 JP S6355033B2 JP 19764282 A JP19764282 A JP 19764282A JP 19764282 A JP19764282 A JP 19764282A JP S6355033 B2 JPS6355033 B2 JP S6355033B2
Authority
JP
Japan
Prior art keywords
distance
time
reference signal
seconds
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP19764282A
Other languages
Japanese (ja)
Other versions
JPS5988670A (en
Inventor
Shuichi Tanaka
Shiro Nihei
Norio Yamamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ship Research Institute
Original Assignee
Ship Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ship Research Institute filed Critical Ship Research Institute
Priority to JP19764282A priority Critical patent/JPS5988670A/en
Publication of JPS5988670A publication Critical patent/JPS5988670A/en
Publication of JPS6355033B2 publication Critical patent/JPS6355033B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S11/00Systems for determining distance or velocity not using reflection or reradiation
    • G01S11/02Systems for determining distance or velocity not using reflection or reradiation using radio waves

Description

【発明の詳細な説明】 この発明は、電波、光等を用いてそれらが空間
中を伝搬する時間を測つて二点間の直線距離を求
める方法のうち、二点のそれぞれに設置した送信
機および受信機1組を使つて送信機から受信機に
至る一方向の伝搬時間を測り、二点間の距離を測
定するようにした一方向測距装置に関するもので
ある。
[Detailed Description of the Invention] This invention is a method of determining the straight-line distance between two points by measuring the propagation time in space using radio waves, light, etc., in which a transmitter is installed at each of two points. The present invention also relates to a one-way distance measuring device that measures the propagation time in one direction from a transmitter to a receiver using a set of receivers, and measures the distance between two points.

一方向測距装置の原理を第1図の原理説明のた
めのブロツク図および第2図の要部の波形図によ
つて説明する。
The principle of the one-way distance measuring device will be explained with reference to a block diagram for explaining the principle in FIG. 1 and a waveform diagram of main parts in FIG.

第1図において、A、B二点間の距離を求める
場合、A点側とB点側のそれぞれに測距用の送信
機1および受信機4を置くものとする。そして、
A点の送信用アンテナ2からは基準信号源5で得
られた第2図aに示す基準信号8が送信機1を経
由して送信されている。一方、B点の受信用アン
テナ3では、送信用アンテナ2で放射された信号
がA−B二点間の空間中の伝搬時間分だけ遅延し
た第2図bに示す受信信号9が受信される。この
受信信号9は受信機4を経由して時間計測器6に
加えられるが、時間計測器6には同時に基準信号
8が加えられており、両信号8,9の比較によつ
て遅延時間t(秒)が計測される。この遅延時間
t(秒)は時間−距離変換器7で第(1)式に従つて
変換され、A−B二点間の距離が求められる。す
なわち、A−B二点間の距離l(m)は光速c
(m/秒)とするならば、次の第(1)式で求められ
る。
In FIG. 1, when determining the distance between two points A and B, it is assumed that a transmitter 1 and a receiver 4 for distance measurement are placed on the A point side and the B point side, respectively. and,
A reference signal 8 shown in FIG. 2a obtained from a reference signal source 5 is transmitted from the transmitting antenna 2 at point A via the transmitter 1. On the other hand, the reception antenna 3 at point B receives the reception signal 9 shown in FIG. . This received signal 9 is applied to the time measuring device 6 via the receiver 4, but the reference signal 8 is also applied to the time measuring device 6 at the same time, and the delay time t is determined by comparing both signals 8 and 9. (seconds) is measured. This delay time t (seconds) is converted by the time-distance converter 7 according to equation (1), and the distance between the two points A and B is determined. In other words, the distance l (m) between two points A and B is the speed of light c
(m/sec), it can be obtained using the following equation (1).

l=c×t(m) ……(1) ところが、通常一方向測距方式では、計測しよ
うとする距離が遠距離である場合や、送信側、受
信側の一方あるいは双方が航空機、船舶等の移動
体である場合も多く、このため第1図のように同
一の基準信号8を送信側、受信側に同時に供給す
ることができない場合が多い。そこで、このよう
な場合に一方向測距装置を構成しようとすると、
送信側、受信側の双方に互いに周波数とその位相
が一致した基準信号源を設け、第1図と等価な回
路構成とする必要がある。
l=c×t(m)...(1) However, with the one-way distance measurement method, the distance to be measured is usually a long distance, or when one or both of the transmitting and receiving sides are located on an aircraft, ship, etc. In many cases, the reference signal 8 is a moving body, and therefore, it is often impossible to supply the same reference signal 8 to the transmitting side and the receiving side at the same time as shown in FIG. Therefore, if you try to configure a one-way distance measuring device in such a case,
It is necessary to provide reference signal sources whose frequencies and phases match each other on both the transmitting side and the receiving side, and to create a circuit configuration equivalent to that shown in FIG. 1.

しかし、この方法で高い計測精度を得るには、
高い周波数安定度をもつた基準信号源を2組使つ
て距離計測開始前に双方の周波数ならびに位相を
高い確度で一致させる必要がある。このため、通
常このような基準信号源には一次周波数標準器と
して使われているセシウム原子ビームによつて制
御される発振器(以下セシウム発振器という)ま
たは二次周波数標準器として使用されているルビ
ジウムガスセルによつて制御される発振器(以下
ルビジウム発振器という)等の高い周波数安定度
と絶対周波数確度をもつ発振器が使われる。
However, in order to obtain high measurement accuracy with this method,
It is necessary to use two sets of reference signal sources with high frequency stability and match the frequencies and phases of both with high accuracy before starting distance measurement. For this reason, such a reference signal source is usually an oscillator controlled by a cesium atomic beam (hereinafter referred to as a cesium oscillator) used as a primary frequency standard, or a rubidium gas cell used as a secondary frequency standard. An oscillator with high frequency stability and absolute frequency accuracy, such as an oscillator controlled by a rubidium oscillator (hereinafter referred to as a rubidium oscillator), is used.

ところで、従来、上記のように送信側と受信側
にそれぞれ個別の基準信号源を有して、両者の周
波数および位相を正確に一致させようとする場
合、両者の周波数差および位相差を計測して、そ
の値に応じて一方の周波数および位相を微調整す
る等の方法がとられるが、周波数差および位相差
を極めて小さくするには特殊な装置と膨大な調整
作業時間を必要とする。しかも、これは一方向測
距方式の測距精度を決定する上で必要不可欠な作
業であり省略することは不可能であつた。
By the way, conventionally, when the transmitting side and the receiving side each have separate reference signal sources as described above, and it is desired to accurately match the frequency and phase of the two, it is necessary to measure the frequency difference and phase difference between the two. Therefore, methods such as finely adjusting one of the frequencies and phases according to the values are taken, but making the frequency difference and the phase difference extremely small requires special equipment and a huge amount of adjustment work time. Moreover, this is an indispensable task for determining the distance measurement accuracy of the unidirectional distance measurement method, and cannot be omitted.

この発明は、上述の点にかんがみてなされたも
ので、距離計測開始前に前記の送信側および受信
側をそれぞれあらかじめ距離のわかつている二点
に設置し、静止状態において上記の2つの基準信
号源の周波数差によつて生じる計測距離の時間に
対する変化と位相差によつて生じる計測距離と実
際の距離の差を求め、この値に応じて計測した距
離を補正して、真の距離を高い精度で求めること
ができるようにしたもので、上述のような周波数
差および位相差の調整作業が不要となる一方向測
距装置である。以下、この発明を図面に基づいて
詳細に説明する。
This invention was made in view of the above-mentioned points. Before starting distance measurement, the transmitting side and the receiving side are respectively installed at two points whose distances are known in advance, and the above two reference signals are transmitted in a stationary state. Find the difference between the measured distance and the actual distance caused by the change in measured distance over time caused by the source frequency difference and the phase difference, and correct the measured distance according to this value to increase the true distance. This is a one-way distance measuring device that allows accurate measurement and eliminates the need for adjusting the frequency difference and phase difference as described above. Hereinafter, the present invention will be explained in detail based on the drawings.

第3図はこの発明の一実施例の構成を示すブロ
ツク図である。
FIG. 3 is a block diagram showing the configuration of one embodiment of the present invention.

第3図において、送信側は受信機11、ルビジ
ウム発振器12および送信アンテナ13で構成さ
れており、受信側は受信アンテナ14、受信機1
5、時間計測器16、時間−距離変換器17、距
離表示器18、ルビジウム発振器19および距離
補正器20で構成されている。
In FIG. 3, the transmitting side consists of a receiver 11, a rubidium oscillator 12 and a transmitting antenna 13, and the receiving side consists of a receiving antenna 14 and a receiver 1.
5, a time measuring device 16, a time-distance converter 17, a distance display 18, a rubidium oscillator 19, and a distance corrector 20.

次に、上記第3図に示す実施例の動作について
説明する。
Next, the operation of the embodiment shown in FIG. 3 will be explained.

送信側および受信側の基準信号源であるルビジ
ウム発振器12およびルビジウム発振器19の周
波数ならびに位相が完全に一致している場合は、
第1図に示した一方向測距装置の原理図と等価な
回路構成となり、その動作については上述したと
おりで、時間−距離変換器17でA−B間の直線
距離が求められる。ところが、通常上記の2個の
ルビジウム発振器12および19の周波数ならび
に位相は一致していないため、この状態でA−B
間の距離を求めることはできない。
If the frequencies and phases of the rubidium oscillator 12 and the rubidium oscillator 19, which are the reference signal sources on the transmitting side and the receiving side, match completely,
The circuit configuration is equivalent to the principle diagram of the one-way distance measuring device shown in FIG. 1, and its operation is as described above, and the time-distance converter 17 determines the linear distance between A and B. However, normally the frequencies and phases of the two rubidium oscillators 12 and 19 do not match, so in this state A-B
It is not possible to find the distance between.

そこで、前記の送信側および受信側ルビジウム
発振器12,19の周波数差ならびに位相差によ
る測距誤差を補性する方法が必要となる。以下、
その補正方法について説明する。
Therefore, a method is required to compensate for the distance measurement error caused by the frequency difference and phase difference between the rubidium oscillators 12 and 19 on the transmitting and receiving sides. below,
The correction method will be explained.

第4図は上記の周波数差ならびに位相差がある
場合の第3図に示す実施例の要部の波形図で、第
5図はその時の測距説明図である。
FIG. 4 is a waveform diagram of the main part of the embodiment shown in FIG. 3 when there is the above-mentioned frequency difference and phase difference, and FIG. 5 is an explanatory diagram of distance measurement in that case.

第4図aの信号31は送信側のルビジウム発振
器12で得られる送信信号で、周波数f12(Hz)、
周期t12=1/f12(秒)の正弦波とする。同図cの
信号34は信号31が伝搬経路分の伝搬時間t
(秒)遅延した受信信号である。bの信号32は
受信側のルビジウム発振器19で発生される基準
信号で、信号31に比べ信号のゼロ交差点で比較
して初期状態では時間遅延(位相遅れ)td(秒)
をもち、しかも周波数f19(Hz)がわずかに高く、
その周期t19(秒)がt19=(1/f12)−Δt(秒)で表
わされる正弦波とする。また、同図bの信号33
は信号32と初期状態で同じ時td(秒)遅延した
その周波数が信号31に等しい正弦波を示す。
The signal 31 in FIG. 4a is a transmission signal obtained by the rubidium oscillator 12 on the transmission side, and has a frequency f 12 (Hz),
A sine wave with a period t 12 =1/f 12 (seconds) is assumed. The signal 34 in c in the same figure has a propagation time t corresponding to the propagation path of the signal 31.
(seconds) delayed received signal. The signal 32 in b is a reference signal generated by the rubidium oscillator 19 on the receiving side, and compared to the signal 31 at the zero crossing point of the signal, there is a time delay (phase delay) t d (seconds) in the initial state.
, and the frequency f 19 (Hz) is slightly higher,
It is assumed that the period t 19 (seconds) is a sine wave whose period is expressed as t 19 =(1/f 12 )−Δt (seconds). In addition, signal 33 in figure b
indicates a sine wave whose frequency is equal to that of the signal 31 and delayed by t d (seconds) at the same time as the signal 32 in the initial state.

上記の一方向測距装置では、送、受信側双方が
静止しており、両者間の距離に変化がない場合で
も第3図の時間計測器16で計測される時間は、
時間の経過に伴つてt0(秒)、t1=t0+Δt(秒)、t2
=t0+2Δt(秒)…のように変化し、それに対応す
る計測距離が増加する。この距離変化の様子は第
5図の直線41に示すとおりで、送、受信側の基
準信号源であるルビジウム発振器12および19
が安定で周波数に変化がないものとすると、送、
受信側の移動あるいは静止等の状態に関係なく、
周波数差に起因する計測誤差は時間に対して一定
勾配Kで増加する。この一定勾配Kは送、受信側
が静止の状態で第5図において、時間T0(秒)に
おける計測距離の増加分L0(m)を測ることによ
り第(2)式で求められる。
In the one-way distance measuring device described above, even when both the transmitting and receiving sides are stationary and there is no change in the distance between them, the time measured by the time measuring device 16 in FIG.
As time passes, t 0 (seconds), t 1 = t 0 + Δt (seconds), t 2
=t 0 +2Δt (seconds)... and the corresponding measurement distance increases. The state of this distance change is as shown by the straight line 41 in FIG.
Assuming that is stable and there is no change in frequency, the transmission,
Regardless of whether the receiver is moving or stationary,
The measurement error due to the frequency difference increases with a constant slope K over time. This constant slope K can be obtained from equation (2) by measuring the increase in measured distance L 0 (m) at time T 0 (seconds) in FIG. 5 while the transmitting and receiving sides are stationary.

K=L0/T0 ……(2) なお、第5図において曲線42は送、受信側の
実際の距離(実距離)の変化を示すもので、初期
状態0より時間T1(秒)まで距離S0(m)で静止
しており、その後、送信側あるいは受信側または
その両者が移動して距離が曲線42のごとく変化
することを表わす。曲線43はこの時のこの実施
例の装置での計測距離の変化を示すもので、時間
T1(秒)までは送、受信側が静止状態であるにも
かかわらず、上記の周波数差に基づく計測誤差に
よつて初期値S0′(m)より一定勾配で直線41に
示すように計測距離が増加し、T1(秒)経過後は
曲線43に示す距離が第3図の時間−距離変換器
17で計測されることを表わしている。ここにお
いて、実距離S0(m)と初期状態の計測距離
S0′(m)との間には第(3)式の関係があり、第4図
に示す信号31と信号32の初期状態における位
相差に起因する計測誤差を表わす。
K=L 0 /T 0 ...(2) In Fig. 5, the curve 42 shows the change in the actual distance (actual distance) between the sending and receiving sides, and the time T 1 (seconds) from the initial state 0. The signal remains stationary at a distance S 0 (m) up to the point S 0 (m), and then the transmitting side, the receiving side, or both move and the distance changes as shown by a curve 42. Curve 43 shows the change in measured distance using the device of this embodiment at this time, and
Even though the transmitting and receiving sides are stationary up to T 1 (seconds), due to the measurement error based on the frequency difference mentioned above, the measurement is made at a constant slope from the initial value S 0 ′ (m) as shown in straight line 41. This indicates that the distance increases and after T 1 (seconds) has elapsed, the distance shown by the curve 43 is measured by the time-distance converter 17 in FIG. Here, the actual distance S 0 (m) and the measured distance in the initial state
There is a relationship between S 0 '(m) and Equation (3), which represents a measurement error caused by the phase difference between the signals 31 and 32 shown in FIG. 4 in their initial states.

S0−S0′=td×c(m) ……(3) また、経過時間T1(秒)における計測距離S1
(m)と実距離S0(m)の間には第(4)式の関係があ
る。
S 0 −S 0 ′=t d ×c (m) ...(3) Also, the measured distance S 1 at the elapsed time T 1 (seconds)
(m) and the actual distance S 0 (m) have the relationship shown in equation (4).

S0−S1=L1=td×c−K×T1(m) ……(4) 第(4)式では初期状態0からの経過時間T1(秒)
における計測誤差は、初期状態における上記の位
相差に起因する計測誤差td×c(m)と周波数差
に起因する計測誤差K×T1(m)を含むことを示
している。
S 0 −S 1 =L 1 =t d ×c−K×T 1 (m) ……(4) In equation (4), the elapsed time from the initial state 0 is T 1 (seconds)
The measurement error in includes a measurement error t d ×c (m) due to the above-mentioned phase difference in the initial state and a measurement error K×T 1 (m) due to the frequency difference.

したがつて、計測開始時の位相差に基づく計測
誤差と経過時間に対する周波数差に基づく計測誤
差を求め、計測距離をこの値で補正することによ
つて実距離を高い精度で求めることができる。
Therefore, by determining the measurement error based on the phase difference at the start of measurement and the measurement error based on the frequency difference with respect to the elapsed time, and correcting the measured distance using these values, the actual distance can be determined with high accuracy.

この時の測距の様子を第3図および第5図によ
つて説明する。
The state of distance measurement at this time will be explained with reference to FIGS. 3 and 5.

上記のように周波数差に基づく計測誤差を求め
るため、静止状態において初期状態0から時間
T0(秒)までの計測距離の増加量L0(m)を時間
−距離変換器17で測り、第(2)式に従つて増加の
一定勾配Kを求めて、距離補正器20に記憶させ
る。また一方、測距開始点と初期状態からT1
(秒)経過した点とすると、この点における上記
の位相差に基づく計測誤差L1(m)は第(4)式に従
つてあらかじめ定められた送、受信点間の距離S0
(m)と時間−距離変換器17で計測される距離
S1(m)の差で求められるため、この値L1(m)
を距離補正器20に記憶させる。続いて、T1
測距開始点より曲線42に示す送、受信間の距離
変化があつたものとすると、時間−距離変換器1
7では上記の周波数差と位相差に基づく計測誤差
を含み曲線43の変化を示す。そこで、測距開始
点T1から(T−T1)(秒)経過の点での実距離
M0(m)は、その時の計測距離M1(m)に上記の
L1(m)を加え、さらに上記の周波数差に基づく
第(5)式に示す計測誤差L(m)を減じることによ
つて得られ、第(6)式の関係が成立する。
As mentioned above, in order to obtain the measurement error based on the frequency difference, time is calculated from the initial state 0 in a stationary state.
The amount of increase L 0 (m) in the measured distance up to T 0 (seconds) is measured by the time-distance converter 17, and a constant slope K of increase is determined according to equation (2) and stored in the distance corrector 20. let On the other hand, T 1 from the distance measurement starting point and the initial state
(seconds) has elapsed, the measurement error L 1 (m) at this point based on the above phase difference is the distance S 0 between the transmitting and receiving points determined in advance according to equation (4).
(m) and the distance measured by the time-distance converter 17
Since it is determined by the difference between S 1 (m), this value L 1 (m)
is stored in the distance corrector 20. Next, assuming that there is a change in distance between transmission and reception as shown by curve 42 from the starting point of distance measurement at T1 , time-distance converter 1
7 shows a change in the curve 43 including measurement errors based on the frequency difference and phase difference described above. Therefore, the actual distance at the point (T - T 1 ) (seconds) elapsed from the distance measurement starting point T 1
M 0 (m) is the measured distance M 1 (m) above.
It is obtained by adding L 1 (m) and further subtracting the measurement error L(m) shown in equation (5) based on the frequency difference, and the relationship in equation (6) is established.

L=K×(T−T1)(m) ……(5) M0=M1+L1−L=M1+(S0−S1)−{K×(T−
T1)} ……(6) なお、上記の距離補正機能は距離補正器20に
記憶させたL1(m)、Kと第(5)式の演算で求めら
れるL(m)に従つて、時間−距離変換器17の
計測距離に距離表示器18においてL1(m)、L
(m)を加・減算することによつて行なわれる。
第5図において、曲線44は実距離の曲線42に
上記の周波数差に基づく計測誤差を含む場合で、
曲線45は計測距離を位相差に基づく計測誤差の
補正と共に、周波数差に基づく計測誤差を時間
ΔT(秒)間隔で補正した場合の距離表示器18
の出力の変化を示すもので、ΔT(秒)を短くす
るほど曲線45は実距離の変化を示す曲線42に
近づくことを示している。
L=K×(T- T1 )(m)...(5) M0 = M1 + L1 -L= M1 +( S0 - S1 )-{K×(T-
T 1 )} ...(6) The above distance correction function is performed according to L 1 (m) and K stored in the distance corrector 20, and L (m) obtained by calculating equation (5). , L 1 (m), L on the distance display 18 to the measured distance of the time-distance converter 17
This is done by adding and subtracting (m).
In FIG. 5, a curve 44 is a case where the actual distance curve 42 includes a measurement error based on the frequency difference,
A curve 45 shows the distance indicator 18 when the measured distance is corrected for the measurement error based on the phase difference and the measurement error based on the frequency difference is corrected at time intervals of ΔT (seconds).
It shows that the shorter ΔT (seconds) is, the closer the curve 45 is to the curve 42 that shows the change in actual distance.

なお、上記の信号31の周期t12(秒)とΔt、
k、T0、L0等の間には第(7)式の関係が成立する。
In addition, the period t 12 (seconds) of the above signal 31 and Δt,
The relationship of equation (7) holds between k, T 0 , L 0 , etc.

K=(Δt/t12)×c=L0/T0=L/(T−T1
……(7) ここにおいて、Δt/t12は周波数f12(Hz)とf19
(Hz)の差の程度を表わす値で、普通のルビジウ
ム発振器を使用した場合でもΔt/t12<10-10とす
ることは比較的容易で、このことは両周波数に差
がある場合でもその差を非常に小さくできること
を示している。
K=(Δt/ t12 )×c= L0 / T0 =L/(T- T1 )
...(7) Here, Δt/t 12 is the frequency f 12 (Hz) and f 19
(Hz), and it is relatively easy to set Δt/t 12 < 10 -10 even when using an ordinary rubidium oscillator, which means that even if there is a difference between the two frequencies, This shows that the difference can be made very small.

また、上記実施例では周波数差および位相差の
補正機能の説明で、ルビジウム発振器12の信号
に対してルビジウム発振器19の信号の周波数が
高い場合あるいは位相が遅れている場合について
説明したが、その逆に周波数が低い場合あるいは
位相が進んでいる場合についても上記と同様に補
正が可能である。
In addition, in the above embodiment, when explaining the frequency difference and phase difference correction function, the case where the frequency of the signal from the rubidium oscillator 19 is higher than the signal from the rubidium oscillator 12 or the signal from the rubidium oscillator 19 is delayed is explained. Correction can be made in the same manner as above even when the frequency is low or the phase is advanced.

以上詳細に説明したように、この発明に係る一
方向測距装置は、送信側および受信側にそれぞれ
高い周波数安定度をもつ高安定信号源を設け、送
信側の高安定信号源を測距の基準信号を作るため
の基準信号源とし、他方、受信側の高安定信号源
の測距の基準信号が伝搬する遅延時間を測るため
の基準信号とし、送信側および受信側に設けた高
安定信号源の相互の周波数差および位相差による
計測誤差を、あらかじめ測定した送信側および受
信側が静止した状態での周波数差によつて生じる
時間に対する計測距離の変化率、および位相差に
よつて生じる送信側と受信側の実際の距離と計測
距離の差に基づいて補正する手段を設けたので、
送信側と受信側の相対距離が変わつたとしても、
常に周波数安定度の高い基準信号により確度の高
い測距を行ないうるという極めてすぐれた効果を
有する。
As explained in detail above, the one-way ranging device according to the present invention includes highly stable signal sources with high frequency stability on the transmitting side and the receiving side, and uses the highly stable signal source on the transmitting side for distance measurement. A highly stable signal provided on the transmitting side and the receiving side, which serves as a reference signal source for creating a reference signal, and on the other hand, as a reference signal for measuring the propagation delay time of the ranging reference signal of the highly stable signal source on the receiving side. The measurement error due to the mutual frequency difference and phase difference between the sources was measured in advance, and the rate of change in the measured distance with respect to time caused by the frequency difference when the transmitting and receiving sides were stationary, and the transmitting side caused by the phase difference. Since we have provided a means of correction based on the difference between the actual distance on the receiving side and the measured distance,
Even if the relative distance between the sender and receiver changes,
This has an extremely excellent effect in that highly accurate distance measurement can always be performed using a reference signal with high frequency stability.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は一方向測距装置の原理を説明するため
のブロツク図、第2図は第1図の動作の説明をす
るための要部の波形図、第3図はこの発明の一実
施例を示すブロツク図、第4図は第3図の実施例
の動作を説明するための要部の波形図、第5図は
第3図の実施例の測距および距離補正の機能説明
図である。 図中、11は送信機、12,19はルビジウム
発振器、13は送信アンテナ、14は受信アンテ
ナ、15は受信機、16は時間計測器、17は時
間−距離変換器、18は距離表示器、20は距離
補正器である。
Fig. 1 is a block diagram for explaining the principle of a one-way distance measuring device, Fig. 2 is a waveform diagram of the main part for explaining the operation of Fig. 1, and Fig. 3 is an embodiment of the present invention. FIG. 4 is a waveform diagram of the main part for explaining the operation of the embodiment of FIG. 3, and FIG. 5 is a functional explanatory diagram of distance measurement and distance correction of the embodiment of FIG. 3. . In the figure, 11 is a transmitter, 12 and 19 are rubidium oscillators, 13 is a transmitting antenna, 14 is a receiving antenna, 15 is a receiver, 16 is a time measuring device, 17 is a time-distance converter, 18 is a distance indicator, 20 is a distance corrector.

Claims (1)

【特許請求の範囲】[Claims] 1 送信側から受信側に向けて信号を送り、両者
間を前記信号が伝送する時間から前記送信側と受
信側間の距離を計測する一方向測距装置におい
て、前記送信側および受信側にそれぞれ高い周波
数安定度をもつ高安定信号源を設け、送信側の高
安定信号源を測距の基準信号を作るための基準信
号源とし、前記受信側の高安定信号源を前記測距
の基準信号が伝搬する遅延時間を測るための基準
信号源とし、前記送信側および受信側に設けた高
安定信号源の相互の周波数差および位相差による
測定誤差を、あらかじめ測定した前記送信側およ
び受信側が静止した状態での周波数差によつて生
じる時間に対する計測距離の変化率、および位相
差によつて生じる前記送信側と受信側の実際の距
離と計測距離の差に基づいて補正する手段を有す
ることを特徴とする一方向測距装置。
1. In a one-way distance measuring device that sends a signal from a transmitting side to a receiving side and measures the distance between the transmitting side and the receiving side based on the time that the signal is transmitted between the two, A highly stable signal source with high frequency stability is provided, the highly stable signal source on the transmitting side is used as a reference signal source for creating a reference signal for distance measurement, and the highly stable signal source on the receiving side is used as the reference signal for distance measurement. As a reference signal source for measuring the propagation delay time of and means for correcting based on the rate of change of the measured distance with respect to time caused by the frequency difference in the state of Unidirectional distance measuring device.
JP19764282A 1982-11-12 1982-11-12 Apparatus for measuring unidirectional distance Granted JPS5988670A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19764282A JPS5988670A (en) 1982-11-12 1982-11-12 Apparatus for measuring unidirectional distance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19764282A JPS5988670A (en) 1982-11-12 1982-11-12 Apparatus for measuring unidirectional distance

Publications (2)

Publication Number Publication Date
JPS5988670A JPS5988670A (en) 1984-05-22
JPS6355033B2 true JPS6355033B2 (en) 1988-11-01

Family

ID=16377880

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19764282A Granted JPS5988670A (en) 1982-11-12 1982-11-12 Apparatus for measuring unidirectional distance

Country Status (1)

Country Link
JP (1) JPS5988670A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7616155B2 (en) * 2006-12-27 2009-11-10 Bull Jeffrey F Portable, iterative geolocation of RF emitters

Also Published As

Publication number Publication date
JPS5988670A (en) 1984-05-22

Similar Documents

Publication Publication Date Title
US2268587A (en) Distance determining system
US3128465A (en) Timing synchronization by radio frequency communication
JPH0441286B2 (en)
US20020135509A1 (en) Self-calibrating electronic distance measurement instrument
US5173690A (en) Passive ranging system utilizing range tone signals
US20120146838A1 (en) Method &amp; Device for Measuring a Change in Distance
US3397400A (en) Method and apparatus for radio navigation
CN110579770A (en) dual beam FMCW distance measurement method to compensate for velocity dependent distance measurement errors
US3438032A (en) Apparatus for and method of measuring length
US2611127A (en) Continuous wave navigation system
JPS6355033B2 (en)
JPS60192280A (en) Two path type distance measuring system
US3790940A (en) Communication apparatus having a ranging capability
Shaull Adjustment of high-precision frequency and time standards
JPH0130435B2 (en)
US3755817A (en) Radio navigation system
GB937491A (en) Improvements in or relating to a device for determining the direction of the ground speed of a moving body
US2699544A (en) Distance measuring system
US2440248A (en) Object locating apparatus
US3201792A (en) Timing signal synchronizing system
US4739333A (en) Single channel distance measuring receiver system and method
Nakajima et al. Construction and measurement examples of a wireless sampling-synchronized measurement system
JP2976286B2 (en) Azimuth measurement circuit
JPH06235761A (en) Estimating method for frequency error
US2932022A (en) Hyperbolic navigation receiver