JPS5988670A - Apparatus for measuring unidirectional distance - Google Patents

Apparatus for measuring unidirectional distance

Info

Publication number
JPS5988670A
JPS5988670A JP19764282A JP19764282A JPS5988670A JP S5988670 A JPS5988670 A JP S5988670A JP 19764282 A JP19764282 A JP 19764282A JP 19764282 A JP19764282 A JP 19764282A JP S5988670 A JPS5988670 A JP S5988670A
Authority
JP
Japan
Prior art keywords
distance
time
measured
difference
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19764282A
Other languages
Japanese (ja)
Other versions
JPS6355033B2 (en
Inventor
Shuichi Tanaka
修一 田中
Shiro Nihei
二瓶 子朗
Norio Yamamoto
山本 憲夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ship Research Institute
Original Assignee
Ship Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ship Research Institute filed Critical Ship Research Institute
Priority to JP19764282A priority Critical patent/JPS5988670A/en
Publication of JPS5988670A publication Critical patent/JPS5988670A/en
Publication of JPS6355033B2 publication Critical patent/JPS6355033B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S11/00Systems for determining distance or velocity not using reflection or reradiation
    • G01S11/02Systems for determining distance or velocity not using reflection or reradiation using radio waves

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

PURPOSE:To calculate a real distance with high accuracy, by a method wherein the change to the time of a distance to be measured generated by the frequency difference of two reference signal sources in a stationary state and the difference of the distance to be measured and an actual distance generated by phase difference are calculated and the distance measured corresponding to the calculated value is corrected. CONSTITUTION:The increment amount L0(m) of a distance to be measured until a time T0(sec) is elapsed from an initial state 0 is measured in a stationary state by a time- distance converter and the constant gradient K=L0/T0 of the increment is calculated to be stored in a distance correction device. The measuring error L1(m) based on the phase difference of a distance measurement start point and a point where T1(sec) is elapsed from the initial state is calculated as the difference of the distance S0(m) between a transmission point and a receiving point and the distance S1(m) measured by the time-distance converter to be stored in the distance correction device. The actual distance M0(m) at the point where (T-T1)(sec) is elapsed from the distance measurement start point T1 is obtained by a method wherein the above mentioned L1(m) is added to the measured distance M1(m) at that time and the measuring error L(m) based on the above mentioned frequency difference is further subtracted from the sum value.

Description

【発明の詳細な説明】 この発明は、電波、光等を用いてそれらが空間中を伝搬
する時間を測って二点間の直線距離を求める方法のうち
、二点のそれぞれに設置した送信機および受信機1組を
使って送信機から受信機に至る一方向の伝搬時間を測り
、二点間の距離を測定するようにした一方向測距装置に
関するものである。
[Detailed Description of the Invention] This invention is a method of determining the straight-line distance between two points by measuring the propagation time in space using radio waves, light, etc., in which a transmitter is installed at each of two points. The present invention also relates to a one-way distance measuring device that measures the propagation time in one direction from a transmitter to a receiver using a set of receivers, and measures the distance between two points.

一方向測距装置の原理を第1図の原理説明のためのブロ
ック図および第2図の要部の波形図によって説明する。
The principle of the one-way distance measuring device will be explained with reference to a block diagram for explaining the principle in FIG. 1 and a waveform diagram of main parts in FIG. 2.

第1図において、A、B二点間の距離を求める場合、A
点側とB点側のそれぞれに測距用の送信機lおよび受信
機4を置くものとする。そして、A点の送信用アンテナ
2からは基準信号源5で得られた第2図(a)に示す基
準信号8が送信機lを経由して送信されている。一方、
B点の受信用アンテナ3では、送信用アンテナ2で放射
された信号がA−B二点間の空間中の伝搬時間分だけ遅
延した第2図(b)に示す受信信号9が受信される。こ
の受信信号9は受信機4を経由して時間計測器6に加え
られるが、時間計測器6には同時に基準信号8が加えら
れており、両信号8.9の比較によって遅延時間t(秒
)が計測される。この遅延時間t(秒)は時間−距離変
換器7で第(1)式に従って変換され、A−B二点間の
距離が求められる。すなわち、A−B二点間の距RfL
 (m)は光速c (m7秒)とするならば、次の第(
1)式%式% (1) ところが、通常一方向測距方式では、計測しようとする
距離が遠距離である場合や、送信側、受信側の一方ある
いは双方が航空機、船舶等の移動体である場合も多く、
このため第1図のように同一の基準信号8を送信側、受
信側に同時に供給することができない場合が多い。そこ
で、このような場合に一方向測距装置を構成しようとす
ると、送信側、受信側の双方に互いに周波数とその位相
が一致した基準信号源を設け、第1図と等価な回路構成
とする必要がある。
In Figure 1, when finding the distance between two points A and B, A
It is assumed that a transmitter 1 and a receiver 4 for distance measurement are placed on the point side and the point B side, respectively. A reference signal 8 shown in FIG. 2(a) obtained from a reference signal source 5 is transmitted from the transmitting antenna 2 at point A via a transmitter l. on the other hand,
The receiving antenna 3 at point B receives the received signal 9 shown in FIG. 2(b), which is the signal radiated by the transmitting antenna 2 delayed by the propagation time in space between the two points A and B. . This received signal 9 is applied to the time measuring device 6 via the receiver 4, but the reference signal 8 is also applied to the time measuring device 6 at the same time, and the delay time t (seconds) is determined by comparing both signals 8.9. ) is measured. This delay time t (seconds) is converted by the time-distance converter 7 according to equation (1), and the distance between the two points A and B is determined. That is, the distance RfL between two points A-B
If (m) is the speed of light c (m7 seconds), then the following (
1) Formula % Formula % (1) However, with the one-way distance measurement method, the distance to be measured is usually a long distance, or when one or both of the transmitter and receiver is a moving object such as an aircraft or a ship. In many cases,
For this reason, it is often impossible to simultaneously supply the same reference signal 8 to the transmitting side and the receiving side as shown in FIG. Therefore, when attempting to configure a one-way distance measuring device in such a case, a reference signal source with the same frequency and phase is provided on both the transmitting side and the receiving side, and a circuit configuration equivalent to that shown in Fig. 1 is created. There is a need.

しかし、この方法で高い計測精度を得るには、高い周波
数安定度をもった基準信号源を2組使って距離計測開始
前に双方の周波数ならびに位相を高い確度で一致させる
必要がある。このため、通常このような基準信号源には
一次周波数標準器として使われているセシウム原子ビー
ムによって制御される発振器(以下セシウム発振器とい
う)または二次周波数標準器として使用されているルビ
ジウムガスセルによって制御される発振器(以下ルビジ
ウム発振器という)等の高い周波数安定度と絶対周波数
確度をもつ発振器が使われる。
However, in order to obtain high measurement accuracy with this method, it is necessary to use two sets of reference signal sources with high frequency stability and to match the frequencies and phases of both sources with high accuracy before starting distance measurement. For this reason, such reference signal sources usually include an oscillator controlled by a cesium atomic beam (hereinafter referred to as a cesium oscillator) used as a primary frequency standard, or controlled by a rubidium gas cell used as a secondary frequency standard. An oscillator with high frequency stability and absolute frequency accuracy, such as a rubidium oscillator (hereinafter referred to as a rubidium oscillator), is used.

ところで、従来、上記のように送信側と受信側にそれぞ
れ個別の基準信号源を有して、両者の周波数および位相
を正確に一致させようとする場合、両者の周波数差およ
び位相差を計測して、その値に応じて一方の周波数およ
び位相をv1M1M整する等の方法がとられるが、周波
数差および位相差を極めて小さくするには特殊な装置と
膨大な調整作業時間を必要とする。しかも、これは一方
向測距方式の測距精度を決定する上で必要不可欠な作業
であり省略することは不可能であった。
By the way, conventionally, when the transmitting side and the receiving side each have separate reference signal sources as described above, and it is desired to accurately match the frequency and phase of the two, it is necessary to measure the frequency difference and phase difference between the two. Therefore, methods such as adjusting one frequency and phase by v1M1M according to the values are taken, but making the frequency difference and phase difference extremely small requires special equipment and a huge amount of adjustment work time. Moreover, this is an essential task in determining the distance measurement accuracy of the unidirectional distance measurement method, and cannot be omitted.

この発明は、上述の点にかんがみてなされたもので、距
離計測開始前に前記の送信側および受信側をそれぞれあ
らかじめ距離のわかっている二点に設置し、静止状態に
おいて上記の2つの基準信号源の周波数差によって生じ
る計測距離の時間に対する変化と位相差によって生じる
計測距離と実際の距離の差を求め、この値に応じて計測
した距離を補正して、真の距離を高い精度で求めること
ができるようにしたもので、上述のような周波数差およ
び位相差の調整作業が不要となる一方向測距装置である
。以下、この発明を図面に基づいて詳細に説明する。
This invention was made in view of the above-mentioned points. Before starting distance measurement, the transmitting side and the receiving side are respectively installed at two points whose distances are known in advance, and the above two reference signals are transmitted in a stationary state. Find the difference between the measured distance and the actual distance caused by the change in measured distance over time caused by the frequency difference between the sources and the phase difference, and correct the measured distance according to this value to find the true distance with high accuracy. This is a one-way distance measuring device that eliminates the need for adjusting the frequency difference and phase difference as described above. Hereinafter, the present invention will be explained in detail based on the drawings.

第3図はこの発明の一実施例の構成を示すブロック図で
ある。
FIG. 3 is a block diagram showing the configuration of an embodiment of the present invention.

第3図において、送信側は送信#!11、ルビジウム発
振器12および送信アンテナ13で構成されており、受
信側は受信アンテナ14.受信機15、時間計測器16
.時間−距離変換器17゜距離表示器18.ルビジウム
発振器19および距離補正器20で構成されている。
In FIG. 3, the sending side sends #! 11, a rubidium oscillator 12 and a transmitting antenna 13, and a receiving antenna 14 on the receiving side. Receiver 15, time measuring device 16
.. Time-distance converter 17° distance indicator 18. It is composed of a rubidium oscillator 19 and a distance corrector 20.

次に、上記第3図に示す実施例の動作について説明する
Next, the operation of the embodiment shown in FIG. 3 will be explained.

送信側および受信側の基準信号源であるルビジウム発振
器12およびルビジウム発振器19の周波数ならびに位
相が完全に一致している場合は、第1図に示した一方向
測距装置の原理図と等価な回路構成となり、その動作に
ついては上述したとおりで、時間−距離変換器17でA
−B間の直線距離が求められる。ところが、通常上記の
2個のルビジウム発振器12および19の周波数ならび
に位相は一致していないため、この状態でA−B間の距
離を求めることはできない。
If the frequencies and phases of the rubidium oscillator 12 and the rubidium oscillator 19, which are the reference signal sources on the transmitting side and the receiving side, are completely matched, a circuit equivalent to the principle diagram of the one-way ranging device shown in Fig. 1 is created. The operation is as described above, and the time-distance converter 17
The straight line distance between -B is determined. However, since the frequencies and phases of the two rubidium oscillators 12 and 19 do not normally match, it is not possible to determine the distance between A and B in this state.

そこで、前記の送信側および受信側ルビジウム発振器1
2.19の周波数差ならびに位相差による測距誤差を補
正する方法が必要となる。以下、その補正方法について
説明する。
Therefore, the transmitter and receiver rubidium oscillators 1
A method of correcting distance measurement errors due to the frequency difference and phase difference of 2.19 is required. The correction method will be explained below.

第4図は上記の周波数差ならびに位相差がある場合の第
3図に示す実施例の要部の波形図で、第5図はその時の
測距説明図である。
FIG. 4 is a waveform diagram of the main part of the embodiment shown in FIG. 3 when there is the above-mentioned frequency difference and phase difference, and FIG. 5 is an explanatory diagram of distance measurement in that case.

第4図(a)の信号31は送信側のルビジウム発振器1
2で得られる送信信号で、周波数f12(Hz)、周期
t+ 2 =1/fl 2  (秒)の正弦波とする。
The signal 31 in FIG. 4(a) is the rubidium oscillator 1 on the transmitting side.
2 is a sine wave with a frequency f12 (Hz) and a period t+ 2 =1/fl 2 (seconds).

同図(c)の信号34は信号31が伝搬経路分の伝搬時
間t(秒)遅延した受信信号である。(b)の信号32
は受信側のルビジウム発振器19で発生される基準信号
で、信号31に比べ信号のゼロ交差点で比較して初期状
態では時間遅延(位相遅れ) td、(秒)をもち、し
かも周波数f+9 (H2)がわずかに高く、その周期
t19 (秒)がt+ 9= (1/f+ 2 )−Δ
t(秒)で表わされる正弦波とする。また、同図(b)
の信号33は信号32と初期状態で同じ時間td(秒)
遅延したその周波数が信号31に等しい正弦波を示す。
A signal 34 in FIG. 3(c) is a received signal obtained by delaying the signal 31 by a propagation time t (seconds) corresponding to the propagation path. Signal 32 in (b)
is a reference signal generated by the rubidium oscillator 19 on the receiving side, which has a time delay (phase delay) td, (seconds) in the initial state compared to the signal 31 at the zero crossing point of the signal, and has a frequency f+9 (H2). is slightly higher, and its period t19 (seconds) is t+9=(1/f+2)−Δ
Let it be a sine wave expressed in t (seconds). Also, the same figure (b)
The signal 33 has the same time td (seconds) as the signal 32 in the initial state.
A delayed sine wave whose frequency is equal to signal 31 is shown.

上記の一方向測距装置では、送、受信側双方が静止して
おり、両者間の距離に変化がない場合でも第3図の時間
計測器16で計測される時間は、時間の経過に伴ってt
o  (秒)、t+=to+Δt(秒)、t2=t0+
2Δt(秒)・・・・・・のように変化し、それに対応
する計測距離が増加する。この距離変化の様子は第5図
の直線41に示すとおりで、送、受信側の基準信号源で
あるルビジウム発振器12および19が安定で周波数に
変化がないものとすると、送、受信側の移動あるいは静
止等の状態に関係なく、周波数差に起因する計測誤差は
時間に対して一定勾配にで増加する。
In the one-way distance measuring device described above, both the sending and receiving sides are stationary, and even if there is no change in the distance between them, the time measured by the time measuring device 16 in FIG. 3 changes over time. Tet
o (seconds), t+=to+Δt(seconds), t2=t0+
2Δt (seconds)..., and the corresponding measurement distance increases. This distance change is as shown by the straight line 41 in Figure 5. Assuming that the rubidium oscillators 12 and 19, which are the reference signal sources on the transmitting and receiving sides, are stable and there is no change in frequency, the movement of the transmitting and receiving sides Alternatively, the measurement error due to the frequency difference increases at a constant slope with respect to time, regardless of the state such as stationary.

この一定勾配には送、受信側が静止の状態で第5図にお
いて、時間To  (秒)における計測距離の増加分L
o (m)を測ることにより第(2)式で求められる。
In Fig. 5, when the sending and receiving sides are stationary, this constant slope corresponds to the increase L in the measured distance at time To (seconds).
By measuring o (m), it can be obtained using equation (2).

K= L、/To・・・・・・・・・・・・・・・・・
・・・・・・・・・・・・・(2)なお、第5図におい
て曲線42は送、受信側の実際の距離(実距11111
)の変化を示すもので、初期状態Oより時間Tr  (
秒)まで距離s0 (m)で静止しており、その後、送
信側あるいは受信側またはその両者が移動して距離が曲
線42のごとく変化することを表わす。曲線43はこの
時のこの実施例の装置での計測距離の変化を示すもので
、時間T+C秒)までは送、受信側が静止状態であるに
もかかわらず、上記の周波数差に基づく計測誤差によっ
て初期値S≦ (m)より一定勾配で直線41に示すよ
うに計測距離が増加し、T1(秒)経過後は曲線43に
示す距離が第3図の時間−距離変換器17で計測される
ことを表わしている。ここにおいて、実距MSo  (
m)と初期状態の計測距離So(m)との間には第(3
)式の関係があり、第4図に示す信号31と信号32の
初期状態における位相差に起因する計測誤差を表わす。
K= L, /To・・・・・・・・・・・・・・・
(2) In Fig. 5, the curve 42 indicates the actual distance between the sending and receiving sides (actual distance 11111
), which shows the change in time Tr (
The signal remains stationary at a distance s0 (m) until 2 seconds), and then the transmitting side, the receiving side, or both move and the distance changes as shown by a curve 42. Curve 43 shows the change in the measured distance by the device of this embodiment at this time.Even though the transmitting and receiving sides are stationary until time T+C seconds), due to the measurement error based on the frequency difference mentioned above, From the initial value S≦(m), the measured distance increases at a constant slope as shown by the straight line 41, and after T1 (seconds) has elapsed, the distance shown by the curve 43 is measured by the time-distance converter 17 in FIG. It represents that. Here, the actual distance MSo (
m) and the measured distance So(m) in the initial state.
), which represents a measurement error caused by the phase difference between the signals 31 and 32 shown in FIG. 4 in their initial states.

So −So = tdx c (m) ==(3)ま
た、経過時間T+、C秒)における計測距離s1(m)
と実距#So  (m) (1)間には第(4)式の関
係がある。
So −So = tdx c (m) == (3) Also, the measured distance s1 (m) at the elapsed time T+, C seconds)
and the actual distance #So (m) (1) have the relationship shown in equation (4).

S6−3l  =LL =tc+  Xc−KXTI 
 (m)・・・・・・・・・・・・(4) 第(4)式では初期状態0がらの経過時間T。
S6-3l =LL =tc+Xc-KXTI
(m)・・・・・・・・・・・・(4) In equation (4), the elapsed time T from the initial state 0.

(秒)における計測誤差は、初期状態における上記の位
相差に起因する計測誤差tdXc(m)と周波数差に起
因する計測誤差K X T l(m)を含むことを示し
ている。
The measurement error in (seconds) includes the measurement error tdXc(m) caused by the above-mentioned phase difference in the initial state and the measurement error KXTl(m) caused by the frequency difference.

したがって、計測開始時の位相差に基づく計測誤差と経
過時間に対する周波数差に基づく計測誤差を求め、計測
距離をこの値で補正することによって実距離を高い精度
で求めることができる。
Therefore, by determining the measurement error based on the phase difference at the start of measurement and the measurement error based on the frequency difference with respect to the elapsed time, and correcting the measured distance with these values, the actual distance can be determined with high accuracy.

この時の測距の様子を第3図および第5図によって説明
する。
The state of distance measurement at this time will be explained with reference to FIGS. 3 and 5.

上記のように周波数差に基づく計測誤差を求めるため、
静止状態において初期状態Oから時間T0 (秒)まで
の計測距離の増加量Lo(m)を時間−距離変換器17
で測り、第(2)式に従って増加の一定勾配Kを求めて
、距離補正器2oに記憶させる。また一方、測距開始点
を初期状態からT+(秒)経過した点とすると、この点
における上記の位相差に基づく計測誤差L+(m)は第
(4)式に従ってあらかじめ定められた送、受信点間の
距mso  (m)と時間−距離変換器17で計測され
る距離Sx  (m)の差で求められるため、この値L
+(m)を距離補正器2oに記憶させる。続いて、T、
の測距開始点より曲!1142に示す送、受信間の距離
変化があったものとすると、時間−距離変換器17では
上記の周波数差と位相差に基づく計測誤差を含み曲線4
3の変化を示す。そこで、測距開始点T、から(TTI
)(秒)経過の点での実圧MMO(m)は、その時の計
測距離M+  (m)に上記のL+  (m)を加え、
さらに」二記の周波数差に基づく第(5)式に示す計測
誤差L (m)を減じることによって得られ、第(6)
式の関係が成立する。
In order to obtain the measurement error based on the frequency difference as described above,
The time-distance converter 17 calculates the amount of increase Lo (m) in the measured distance from the initial state O to the time T0 (seconds) in a stationary state.
The constant slope of increase K is determined according to equation (2) and stored in the distance corrector 2o. On the other hand, if the distance measurement start point is a point T+ (seconds) has elapsed from the initial state, the measurement error L+ (m) based on the above phase difference at this point is determined by the transmission and reception determined in advance according to equation (4). This value L is determined by the difference between the distance mso (m) between points and the distance Sx (m) measured by the time-distance converter 17.
+(m) is stored in the distance corrector 2o. Next, T.
Song from the starting point of distance measurement! Assuming that there is a change in the distance between transmission and reception as shown in 1142, the time-distance converter 17 converts curve 4 including measurement errors based on the frequency difference and phase difference mentioned above.
3 changes are shown. Therefore, from the distance measurement starting point T, (TTI
) (seconds), the actual pressure MMO (m) at the point in time is calculated by adding the above L+ (m) to the measured distance M+ (m) at that time.
Furthermore, it is obtained by subtracting the measurement error L (m) shown in the equation (5) based on the frequency difference in the above two, and the measurement error L (m) is
The relationship of the formula holds true.

t=KX (T−T+ )(m) ・旧旧旧−・・(5
)Mo=M、+L、−L=M、+ (So−3,)(K
X (T−T+ ) )・・・・旧・団・(6)なお、
上記の距離補正機能は距離補正器20に記憶させたL+
  (m)+ Kと第(5)式のy!、算で求められる
L (m)に従って、時間−距離変換器17の計測距離
に距離表示器18においてLl(m)、L (m)を加
・減算することによって行なわれる。第5図において、
曲線44は実距離の曲線42に上記の周波数差に基づく
計測誤差を含む場合で、曲線45は計測距離を位相差に
基づく計測誤差の補正と共に、周波数差に基づく計測誤
差を時間ΔT(秒)間隔で補正した場合の距離表示器1
8の出力の変化を示すもので、ΔT(秒)を短くするほ
ど曲線45は実距離の変化を示す曲線42に近づくこと
を示している。
t=KX (T-T+)(m) Old, old and old--(5
)Mo=M,+L,-L=M,+(So-3,)(K
X (T-T+) )...Old・dan・(6)In addition,
The above distance correction function is L+ stored in the distance corrector 20.
(m) + K and y of equation (5)! , by adding and subtracting Ll(m) and L(m) on the distance display 18 to the distance measured by the time-distance converter 17, according to L(m) obtained by calculation. In Figure 5,
A curve 44 shows a case where the actual distance curve 42 includes a measurement error based on the above-mentioned frequency difference, and a curve 45 shows a case in which the measured distance is corrected for the measurement error based on the phase difference, and the measurement error based on the frequency difference is corrected over time ΔT (seconds). Distance indicator 1 when corrected by interval
8, and shows that the shorter ΔT (seconds) is, the closer the curve 45 becomes to the curve 42 showing the change in actual distance.

なお、上記の信号31の周期t12 (秒)とΔt 、
 K 、 To 、 Lo等との間には第(7)式の関
係が成立する。
Note that the period t12 (seconds) of the above signal 31 and Δt,
The relationship of Equation (7) holds true between K, To, Lo, etc.

K=(Δt/l+ 2 )Xc=Lo /T。K=(Δt/l+2)Xc=Lo/T.

=L/(TTI)・・団・(7) ここにおいて、ΔE / t I 2は周波数fl 2
(Hz)とf+9 (Hz)の差の程度を表ゎ゛す値で
、普通のルビジウム発振器を使用した場合でもΔt/l
 、 2<16−”とすることは比較的容易で、このこ
とは画周波数に差がある場合でもその差を非常に小さく
できることを示している。
=L/(TTI)...Group(7) Here, ΔE/t I 2 is the frequency fl 2
(Hz) and f+9 (Hz), and even when using an ordinary rubidium oscillator, Δt/l
, 2<16-'' is relatively easy, and this shows that even if there is a difference in image frequency, the difference can be made very small.

また、上記実施例では周波数差および位相差の補正機能
の説明で、ルビジウム発振器12の信号に対してルビジ
ウム発振器19の信号の周波数が高い場合あるいは位相
が遅れている場合について説明したが、その逆に周波数
が低い場合あるいは位相が進んでいる場合についても上
記と同様に補正が可能である。
In addition, in the above embodiment, when explaining the frequency difference and phase difference correction function, the case where the frequency of the signal from the rubidium oscillator 19 is higher than the signal from the rubidium oscillator 12 or the signal from the rubidium oscillator 19 is delayed is explained. Correction can be made in the same manner as above even when the frequency is low or the phase is advanced.

以上詳細に説明したように、この発明に係る一方向測距
装置は、送信側および受信側にそれぞれ高い周波数安定
度をもつ高安定信号源を設け、送信側の高安定信号源を
測距の基準信号を作るための基準信号源とし、他方、受
信側の高安定信号源を測距の基準信号が伝搬する遅延時
間を測るだめの基準信号とし、送信側および受信側に設
けた高安定信号源の相互の周波数差および位相差による
計測誤差を、あらかじめ測定した送信側および受信側が
静止した状態での周波数差によって生じる時間に対する
計測距離の変化率、および位相差によって生じる送信側
と受信側の実際の距離と計測距離の差に基づいて補正す
る手段を設けたので、送信側と受信側の相対距離が変わ
ったとしても、常に周波数安定度の高い基準信号により
確度の高い測距を行ないうるという極めてすぐれた効果
を有する。
As explained in detail above, the one-way ranging device according to the present invention includes highly stable signal sources with high frequency stability on the transmitting side and the receiving side, and uses the highly stable signal source on the transmitting side for distance measurement. The high stability signal source provided on the transmitting side and the receiving side is used as a reference signal source for creating a reference signal, and on the other hand, the highly stable signal source on the receiving side is used as a reference signal for measuring the delay time in which the reference signal for distance measurement propagates. Measurement errors due to mutual frequency and phase differences between sources are calculated by calculating the rate of change in measured distance over time caused by the frequency difference when the transmitter and receiver are stationary, and the rate of change in measurement distance over time caused by the phase difference between the transmitter and receiver. Since we have provided a means of correction based on the difference between the actual distance and the measured distance, even if the relative distance between the transmitting side and the receiving side changes, highly accurate distance measurement can always be performed using a reference signal with high frequency stability. It has an extremely excellent effect.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は一方向測距装置の原理を説明するためのブロッ
ク図、第2図は第1図の動作の説明をするための要部の
波形図、第3図はこの発明の一実施例を示すブロック図
、第4図は第3図の実施例の動作を説明するための要部
の波形図、第5図は第3図の実施例の測距および距離補
正の機能説明図である。 図中、11は送信機、12.19はルビジウム発振器、
13は送信アンテナ、14は受信アンテナ、15は受信
機、16は時間計測器、17は時間−距離変換器、18
は距離表示器、20は距離補正器である。
Fig. 1 is a block diagram for explaining the principle of a one-way distance measuring device, Fig. 2 is a waveform diagram of main parts for explaining the operation of Fig. 1, and Fig. 3 is an embodiment of the present invention. FIG. 4 is a waveform diagram of the main part for explaining the operation of the embodiment of FIG. 3, and FIG. 5 is a functional explanatory diagram of distance measurement and distance correction of the embodiment of FIG. 3. . In the figure, 11 is a transmitter, 12.19 is a rubidium oscillator,
13 is a transmitting antenna, 14 is a receiving antenna, 15 is a receiver, 16 is a time measuring device, 17 is a time-distance converter, 18
2 is a distance indicator, and 20 is a distance corrector.

Claims (1)

【特許請求の範囲】[Claims] 送信側から受信側に向けて信号を送り、両者間を前記信
号が伝送する時間から前記送信側と受信側間の距離を計
測する一方向測距装置において、前記送信側および受信
側にそれぞれ高い周波数安定度をもつ高安定信号源を設
け、送信側の高安定信号源を測距の基準信号を作るため
の基準信号源とし、前記受信側の高安定信号源を前記測
距の基準信号が伝搬する遅延時間を測るだめの基準信号
源とし、前記送信側および受信側に設けた高安定信号源
の相互の周波数差および位相差による測定誤差を、あら
かじめ測定した前記送信側および受信側が静止した状態
での周波数差によって生じる時間に対する計測距離の変
化率、および位相差によって生じる前記送信側と受信側
の実際の距離と計測距離の差に基づいて補正する手段を
有することを特徴とする一方向測距装置。
In a one-way distance measuring device that sends a signal from a transmitting side to a receiving side and measures the distance between the transmitting side and the receiving side based on the time the signal is transmitted between the two, each of the transmitting side and the receiving side has a high A highly stable signal source with frequency stability is provided, the highly stable signal source on the transmitting side is used as a reference signal source for creating a reference signal for distance measurement, and the highly stable signal source on the receiving side is used as the reference signal source for distance measurement. As a reference signal source for measuring the propagation delay time, measurement errors due to mutual frequency differences and phase differences between the highly stable signal sources provided on the transmitting side and the receiving side were measured in advance when the transmitting side and the receiving side were stationary. A one-way device characterized by having means for correcting based on the rate of change of the measured distance with respect to time caused by a frequency difference in the state, and the difference between the actual distance and the measured distance between the transmitting side and the receiving side caused by a phase difference. Ranging device.
JP19764282A 1982-11-12 1982-11-12 Apparatus for measuring unidirectional distance Granted JPS5988670A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19764282A JPS5988670A (en) 1982-11-12 1982-11-12 Apparatus for measuring unidirectional distance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19764282A JPS5988670A (en) 1982-11-12 1982-11-12 Apparatus for measuring unidirectional distance

Publications (2)

Publication Number Publication Date
JPS5988670A true JPS5988670A (en) 1984-05-22
JPS6355033B2 JPS6355033B2 (en) 1988-11-01

Family

ID=16377880

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19764282A Granted JPS5988670A (en) 1982-11-12 1982-11-12 Apparatus for measuring unidirectional distance

Country Status (1)

Country Link
JP (1) JPS5988670A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010515052A (en) * 2006-12-27 2010-05-06 トゥルーポジション・インコーポレーテッド Portable repeatable geolocation of RF emitters

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010515052A (en) * 2006-12-27 2010-05-06 トゥルーポジション・インコーポレーテッド Portable repeatable geolocation of RF emitters

Also Published As

Publication number Publication date
JPS6355033B2 (en) 1988-11-01

Similar Documents

Publication Publication Date Title
US3128465A (en) Timing synchronization by radio frequency communication
CN110579770B (en) Distance measuring method and distance measuring instrument
KR950013060A (en) Broadcast frequency synchronization device and method
US2611127A (en) Continuous wave navigation system
US3438032A (en) Apparatus for and method of measuring length
JPS5988670A (en) Apparatus for measuring unidirectional distance
US3472019A (en) Time synchronization system utilizing moon reflected coded signals
US3790940A (en) Communication apparatus having a ranging capability
Shaull Adjustment of high-precision frequency and time standards
KR102041470B1 (en) METHOD AND APPARATUS FOR eLoran-BASED TIME SYNCHRONIZATION
JPH0130435B2 (en)
US2699544A (en) Distance measuring system
US3337872A (en) Radio navigation system
Aanen et al. Evaluation of GNSS-based Time Synchronisation for ToF Localisation with Software-Defined Radio
KR100558115B1 (en) Apparatus and method of satellite range measurement using a equi-phase method
KR101372962B1 (en) Apparatus and method for measuring transmitting delay of transmitting station, system and method for generating standard time pulsesecond using loran??c signal
JPS62272172A (en) Arithmetic unit for gps position measurement
JPH06235761A (en) Estimating method for frequency error
JPH11183585A (en) Satellite navigation receiver
JP2976286B2 (en) Azimuth measurement circuit
US2932022A (en) Hyperbolic navigation receiver
RU2109315C1 (en) Method of quick synchronization of time and frequency standards positioned on moving objects
JPH05203732A (en) Range finder
US4739333A (en) Single channel distance measuring receiver system and method
JPS58225374A (en) Circuit for automatically controlling delay time