JPS6354915B2 - - Google Patents
Info
- Publication number
- JPS6354915B2 JPS6354915B2 JP3405383A JP3405383A JPS6354915B2 JP S6354915 B2 JPS6354915 B2 JP S6354915B2 JP 3405383 A JP3405383 A JP 3405383A JP 3405383 A JP3405383 A JP 3405383A JP S6354915 B2 JPS6354915 B2 JP S6354915B2
- Authority
- JP
- Japan
- Prior art keywords
- piston
- cam
- cylinder chamber
- drive shaft
- discharge
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 230000006835 compression Effects 0.000 claims description 9
- 238000007906 compression Methods 0.000 claims description 9
- 235000014676 Phragmites communis Nutrition 0.000 description 8
- 238000007789 sealing Methods 0.000 description 2
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 239000011435 rock Substances 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C18/00—Rotary-piston pumps specially adapted for elastic fluids
- F04C18/30—Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
- F04C18/40—Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and having a hinged member
- F04C18/46—Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and having a hinged member with vanes hinged to the outer member
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Applications Or Details Of Rotary Compressors (AREA)
- Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
Description
【発明の詳細な説明】
この発明は新規な構造を有する気体圧縮機に関
する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a gas compressor having a novel structure.
容積可変型の気体圧縮機は主に往復ピストン式
のものと、回転式のものに大別され、それぞれに
短所及び長所を有している。 Variable displacement gas compressors are mainly classified into reciprocating piston type and rotary type, each having its own disadvantages and advantages.
すなわち、往復ピストン式のものは回転運動を
往復直線運動に変換するために、クランク軸、連
接棒等の複雑な機構を要し、またそのための機械
的ロスも多く、容量の割には大形となる。 In other words, the reciprocating piston type requires a complicated mechanism such as a crankshaft and connecting rod in order to convert rotational motion into reciprocating linear motion, and there is also a lot of mechanical loss due to this, and it is large compared to its capacity. becomes.
これに対し回転式のものは、回転運動を直に動
力として用いているので機構が単純で小形化でき
る利点はあるものの、ピストン式に比して、圧縮
部のリーク面積が大きいため、特に低速時に圧縮
行程において、低圧室にガスリークを生じ、再圧
縮による駆動動力の増大を生む。 On the other hand, the rotary type uses rotational motion directly as power, so it has the advantage of having a simple and compact mechanism, but compared to the piston type, the leak area of the compression part is larger, especially at low speeds. Sometimes, gas leaks into the low pressure chamber during the compression stroke, resulting in an increase in driving power due to recompression.
この発明では、前記往復ピストン式のものに比
して機構が簡単で、しかも回転式のものに比して
圧縮モレが少くなく小さな駆動動力で駆動できる
ようにすることを目的とする。 The object of the present invention is to provide a mechanism that is simpler than the reciprocating piston type, has less compression leakage than the rotary type, and can be driven with less driving power.
前記目的を構成するために、本発明は、シリン
ダ室内に揺動可能に横架されたピストンと、シリ
ンダ室を貫通して軸受されるとともに、前記ピス
トンに連繋してその回転により前記ピストンを揺
動させるピストン駆動軸と、前記ピストン外周と
シリンダ室の内壁とによつて構成される圧縮作業
式内に連通する吸気ポート及び吐出ポートと、各
ポートに設けられた吸気及び吐出用の逆止弁とか
らなる新規な揺動型の気体圧縮機を提供するもの
である。 In order to achieve the above object, the present invention includes a piston that is horizontally suspended in a cylinder chamber so as to be swingable, and a piston that is supported by a bearing passing through the cylinder chamber, and that is connected to the piston and swings the piston by its rotation. A piston drive shaft to be moved, an intake port and a discharge port that communicate with a compression working type formed by the outer periphery of the piston and the inner wall of the cylinder chamber, and check valves for intake and discharge provided in each port. The present invention provides a new oscillating type gas compressor comprising:
以下、本発明の実施例を図面を用いて詳細に説
明する。 Embodiments of the present invention will be described in detail below with reference to the drawings.
第1図ないし第4図は本発明の第1の実施例を
示す。 1 to 4 show a first embodiment of the invention.
各図において、気体圧縮機は、一端開口形の円
筒形ケース1と、このケース1内に気密に装填さ
れた圧縮機本体2と、前記ケース1の開口面に装
着されたフロントヘツド3を備える。 In each figure, the gas compressor includes a cylindrical case 1 with one end open, a compressor main body 2 airtightly loaded into the case 1, and a front head 3 attached to the open surface of the case 1. .
前記圧縮機本体2は、内周部がほぼ糸巻形の断
面形状をなす橢円筒状のシリンダ4と、このシリ
ンダの両側部に装着されたフロントヘツドブロツ
ク5、およびリアサイドブロツク6とを備える。
これらシリンダ4及び両サイドブロツク5,6に
よつて形成された糸巻形断面のシリンダ室内部に
はカエル股状の一対の揺動ピストン7,7が上下
に配置されているとともに、シリンダ室の中心に
は前記フロントヘツド3を貫通して各サイドブロ
ツク5,6にその両端を回転自在に軸受されたピ
ストン駆動軸8が設けられている。 The compressor main body 2 includes a rectangular cylindrical cylinder 4 whose inner periphery has a substantially pincushion-shaped cross section, a front head block 5 and a rear side block 6 mounted on both sides of the cylinder.
Inside the cylinder chamber with a pincushion-shaped cross section formed by the cylinder 4 and both side blocks 5 and 6, a pair of frog-like swinging pistons 7 and 7 are arranged above and below, and at the center of the cylinder chamber. A piston drive shaft 8 is provided which passes through the front head 3 and is rotatably supported at both ends of each side block 5, 6.
各揺動ピストン7は、前記フロントサイドブロ
ツク5及びリアサイドブロツク6に両端を軸支さ
れた支軸9を基点に左右揺動可能に構成されてい
るとともに、その揺動先端部両側の中央には一対
のカムフロア10が回転自在に設けられている。 Each swinging piston 7 is configured to be able to swing left and right about a support shaft 9 whose both ends are pivotally supported by the front side block 5 and rear side block 6. A pair of cam floors 10 are rotatably provided.
これに対し、上記ピストン駆動軸8の中央には
前記各カムフロア10に摺接してその回転により
前記各揺動ピストン7を揺動させる略橢円形のカ
ム11が一体化されている。 On the other hand, in the center of the piston drive shaft 8, a substantially oblong cam 11 is integrated, which slides into contact with each of the cam floors 10 and swings each of the swing pistons 7 by its rotation.
したがつて、前記駆動軸8の回転に伴い揺動ピ
ストン7は揺動し、その結果揺動ピストン7の背
面と、シリンダ室内壁とによつて囲われる略三日
月形の圧縮作業室内を夫々左右及び上下対称的に
交互に伸縮する。 Therefore, as the drive shaft 8 rotates, the swinging piston 7 swings, and as a result, the rocking piston 7 moves left and right inside the approximately crescent-shaped compression chamber surrounded by the back surface of the swinging piston 7 and the inner wall of the cylinder. and alternately expand and contract vertically symmetrically.
これに対応してフロントサイドブロツク5には
前記各作業室内に貫通する吸気ポート12,12
……が4箇所形成されているとともに、フロント
サイドブロツク5とシリンダ4の端面間には板状
の逆止弁1,3が介在されている。 Correspondingly, the front side block 5 has intake ports 12, 12 penetrating into each of the working chambers.
... are formed at four locations, and plate-shaped check valves 1 and 3 are interposed between the front side block 5 and the end face of the cylinder 4.
この逆止弁13は、第3図に示すように、前記
シリンダ4の断面形状と等しい形状のバネ材から
なる板13aに打抜成形などによりリードバルブ
13b,13b……を前記吸気ポート12に接し
て形成したものである。 As shown in FIG. 3, this check valve 13 is constructed by stamping and forming reed valves 13b, 13b, . It was formed in contact with the
またこの吸気側に対して吐出側は、前記シリン
ダ4の両側部に、前記各圧縮作業室に連通して穿
設された複数の吐出ポート14,14……と、こ
れら各ポート14に接してシリンダ4の両側部に
取付けられた逆止用のリードバルブ15,15
と、このリードバルブ15の背面に接するバルブ
サポート16からなつている。 In addition, the discharge side with respect to the intake side includes a plurality of discharge ports 14, 14, . Check reed valves 15, 15 installed on both sides of the cylinder 4
and a valve support 16 that is in contact with the back surface of the reed valve 15.
更に上記の如く構成された圧縮機本体2におけ
る圧縮作業室のシール機構としては、圧縮作業室
の両端の2点、すなわち揺動ピストン7の両揺動
端と回動基点に設ければよく、本実施例ではシリ
ンダ室の内面に軸方向に沿つて形成されたシール
溝にテフロン等の材質からなるガスケツト17,
17……を装填してある。 Furthermore, the sealing mechanism for the compression work chamber in the compressor main body 2 configured as described above may be provided at two points at both ends of the compression work chamber, that is, at both swing ends of the swing piston 7 and at the pivot point. In this embodiment, a gasket 17 made of a material such as Teflon is installed in a seal groove formed along the axial direction on the inner surface of the cylinder chamber.
17... is loaded.
次に上記のように構成された気体圧縮機の作動
について説明する。 Next, the operation of the gas compressor configured as described above will be explained.
駆動軸8の回転により揺動カム7が揺動すると
一方の作業室が拡大して作業室内が負圧となり、
フロントヘツド3に設けられた吸気口18より矢
印Aに示す如くケース1の先端部に導入されたガ
スはフロントサイドブロツク5の吸気ポート12
を経てリードバルブ13bを開き作業室内に吸引
される。 When the swing cam 7 swings due to the rotation of the drive shaft 8, one of the working chambers expands, creating a negative pressure inside the working chamber.
Gas introduced from the intake port 18 provided in the front head 3 to the tip of the case 1 as shown by arrow A is transferred to the intake port 12 of the front side block 5.
After that, the reed valve 13b is opened and the liquid is sucked into the working chamber.
第1図、第4図Aに示すように、一方の作業室
が最大閉じ込め容積となつた位置で、前記カムは
中心軸部より略45゜変位した状態にあり、これか
ら更に時計廻り方向に駆動軸8が回転すると、第
4図Bに示すように一方の作業室の容積は縮小さ
れつつリードバルブ15を開いて吐出ポート14
から圧縮されたガスが排出される。このガスはシ
リンダ4とケース1の間に形成された空隙からリ
アサイドブロツク6の開口(図示せず)、ケース
1の後部に形成された空隔19を経て吐出口20
より外部に吐出する。 As shown in Figures 1 and 4A, at the position where one of the working chambers has reached its maximum confinement volume, the cam is displaced approximately 45 degrees from the center shaft, and is further driven clockwise. When the shaft 8 rotates, the volume of one of the working chambers is reduced and the reed valve 15 is opened to open the discharge port 14 as shown in FIG. 4B.
Compressed gas is discharged from the This gas flows from the gap formed between the cylinder 4 and the case 1 to the opening of the rear side block 6 (not shown), through the gap 19 formed at the rear of the case 1, and then to the discharge port 20.
Discharge to the outside.
またこれと同時に他方側の作業室の容積は拡大
し、リードバルブ13を開いて前記と同様にガス
を吸い込む。この状態から更に駆動軸8が時計廻
り方向に変位すると、第4図cに示すように、前
記一方の作業室の容積は零、すなわち吐出工程を
完了するとともに、他方の作業室の容積は最大と
なる。この状態から更に駆動軸8が回転すると前
記とは反対位置でガスの吸い込み及び吐出動作が
交互に繰り返され、以下、駆動軸8の回転によ
り、揺動ピストン7が揺動し、次々と交互に吸込
み及び吐出動作を行うのである。 At the same time, the volume of the working chamber on the other side is expanded, and the reed valve 13 is opened to suck in gas in the same manner as described above. When the drive shaft 8 is further displaced clockwise from this state, the volume of the one working chamber becomes zero, that is, the discharge process is completed, and the volume of the other working chamber reaches its maximum, as shown in FIG. 4c. becomes. When the drive shaft 8 further rotates from this state, the suction and discharge operations of gas are repeated alternately at the opposite position to the above, and thereafter, the rotation of the drive shaft 8 causes the rocking piston 7 to rock, one after another alternately. It performs suction and discharge operations.
なお、本実施例においては前記カム11の形状
を説明の簡略化のために橢円状に描いてあるが、
実際には、このカムの回転軌跡と揺動ピストンの
両側部背面に加わる圧力差によつて、一方のカム
フロアが必ずカムのカムリード面に摺接し、円滑
な揺動運動を行わせることができるようなカムリ
ード面の形状となつている。 Note that in this embodiment, the shape of the cam 11 is drawn as an oval shape for the sake of simplifying the explanation;
In reality, due to the rotation locus of the cam and the pressure difference applied to the back side of both sides of the swing piston, one of the cam floors always comes into sliding contact with the cam lead surface of the cam, allowing smooth swing movement. The cam lead surface has a unique shape.
第5図はこの発明の第2の実施例を示す。但し
前記実施例と同一箇所には同一符号を用いてその
説明を省略する。 FIG. 5 shows a second embodiment of the invention. However, the same reference numerals are used for the same parts as in the previous embodiment, and the explanation thereof will be omitted.
同図における一対の揺動ピストン30は、その
中央にカム溝31を形成してあるとともに、駆動
軸8の中央にはこれらカム溝31に摺接するカム
フロア32を駆動軸8に対し、前記揺動ピストン
30の揺動角度に相当する偏心量となるように偏
心して設けてある。 A pair of swinging pistons 30 in the same figure have cam grooves 31 formed in their centers, and a cam floor 32 that slides into these cam grooves 31 is provided at the center of the drive shaft 8 so that the swinging pistons 30 can be rotated with respect to the drive shaft 8. It is provided eccentrically so that the amount of eccentricity corresponds to the swing angle of the piston 30.
本実施例においても前記と同様の交互に吸込み
及び吐出動作が行われる。 In this embodiment as well, suction and discharge operations are performed alternately in the same manner as described above.
また本実施例においては、前記第1の実施例に
比して構造が簡易化し、カム形状も単純化する。 Further, in this embodiment, the structure is simplified compared to the first embodiment, and the cam shape is also simplified.
なお、本実施例においては1つのカムフロア3
に対し各揺動ピストン30を連結してあるため、
シリンダ室の一方側で吸込みを行うと同時に、他
方側で排出を行う。しかしながら、前記カムフロ
ア32を180゜対向して一対設け、夫々の揺動ピス
トン30を各カムフロア32に連結するようにす
れば、第1実施例と同様に上下対角線上に吸込み
と吐出を交互に行うことができる。 Note that in this embodiment, one cam floor 3
Since each swing piston 30 is connected to the
Suction is carried out on one side of the cylinder chamber, while discharge is carried out on the other side. However, if a pair of cam floors 32 are provided facing each other at 180 degrees, and each swing piston 30 is connected to each cam floor 32, suction and discharge can be performed alternately on the upper and lower diagonals as in the first embodiment. be able to.
更に、各実施例においては揺動ピストンを一対
設けたが1つの揺動ピストンでもよいし、3ない
しそれ以上設けることも可能であることは云うま
でもない。 Further, in each embodiment, a pair of swinging pistons are provided, but it goes without saying that it is also possible to provide one swinging piston, or three or more swinging pistons.
以上各実施例において詳細に説明したように、
本発明にあつては、前述の如く、駆動軸の回転運
動を揺動運動に変換して吸込まれたガスを交互に
圧縮するようにしてあるために、従来の往復ピス
トン式の気体圧縮機に比して、回転運動を直線運
動に変換するための複雑な機構を要せず、機構が
簡単となり、しかも回転式の気体圧縮機に比して
圧縮モレがなく、またそのためのシール機構も圧
縮作業室の両端に設ければよいため、摺動摩擦抵
抗が小さく、駆動動力も小さくてよいなど各種の
効果がある。 As explained in detail in each embodiment above,
As described above, the present invention converts the rotational motion of the drive shaft into a rocking motion to alternately compress the sucked gas, so it is different from the conventional reciprocating piston type gas compressor. Compared to rotary gas compressors, there is no need for a complicated mechanism to convert rotational motion into linear motion, and the mechanism is simple.Furthermore, there is no compression leakage compared to a rotary gas compressor, and the sealing mechanism for that purpose is also compressible. Since it can be provided at both ends of the working chamber, there are various effects such as low sliding frictional resistance and low driving power.
第1図は本発明の第1実施例による気体圧縮機
の正断面図、第2図は第1図の−線断面図、
第3図は第2図の−線における逆止弁を示す
正面図、第4図A,B,Cは作動を示す説明図、
第5図は本発明の第2実施例による断面図であ
る。
2……圧縮機本体、4……シリンダ、5……フ
ロントサイドブロツク、6……リアサイドブロツ
ク、7,30……揺動ピストン、8……駆動軸、
9……支軸、12……吸気ポート、13……逆止
弁、13b……リードバルブ、14……吐出ポー
ト、15……リードバルブ。
FIG. 1 is a front sectional view of a gas compressor according to a first embodiment of the present invention, FIG. 2 is a sectional view taken along the - line in FIG.
Fig. 3 is a front view showing the check valve along the - line in Fig. 2, Fig. 4 A, B, and C are explanatory diagrams showing the operation;
FIG. 5 is a sectional view according to a second embodiment of the present invention. 2... Compressor body, 4... Cylinder, 5... Front side block, 6... Rear side block, 7, 30... Swinging piston, 8... Drive shaft,
9... Support shaft, 12... Intake port, 13... Check valve, 13b... Reed valve, 14... Discharge port, 15... Reed valve.
Claims (1)
ンと、シリンダ室を貫通して軸受されるととも
に、前記ピストンに連繋してその回転により前記
ピストンを揺動させるピストン駆動軸と、前記ピ
ストンの外周とシリンダ室の内壁とによつて構成
される圧縮作業室内に連通する吸気ポート及び吐
出ポートと、各ポートに設けられた吸気及び吐出
用の逆止弁とからなることを特徴とする気体圧縮
機。1. A piston horizontally suspended in a cylinder chamber so as to be swingable, a piston drive shaft that passes through the cylinder chamber and is supported by a bearing, and is connected to the piston and swings the piston by its rotation, and an outer periphery of the piston. A gas compressor comprising an intake port and a discharge port that communicate with a compression work chamber formed by a cylinder chamber and an inner wall of a cylinder chamber, and a check valve for intake and discharge provided in each port. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3405383A JPS59160086A (en) | 1983-03-01 | 1983-03-01 | Gas compressor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3405383A JPS59160086A (en) | 1983-03-01 | 1983-03-01 | Gas compressor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59160086A JPS59160086A (en) | 1984-09-10 |
JPS6354915B2 true JPS6354915B2 (en) | 1988-10-31 |
Family
ID=12403540
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3405383A Granted JPS59160086A (en) | 1983-03-01 | 1983-03-01 | Gas compressor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59160086A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4966102A (en) * | 1989-02-07 | 1990-10-30 | Mulakken Joy P | Compression/combustion assembly |
-
1983
- 1983-03-01 JP JP3405383A patent/JPS59160086A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS59160086A (en) | 1984-09-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1486677A1 (en) | Rotary compressor | |
JPH06117367A (en) | Reciprocating compressor | |
JPH0672597B2 (en) | Rotating waveform motion type air compressor | |
JPS6354915B2 (en) | ||
JPH0552189A (en) | Scroll fluid machinery | |
JPH10299680A (en) | Gas compressor | |
JPH074487A (en) | Crank driving mechanism | |
JPH11101190A (en) | Compressor | |
JP3518020B2 (en) | Swing piston type compressor | |
CN212454822U (en) | Swing sheet type compressor | |
JP2993299B2 (en) | Rotary compressor | |
JP2587771B2 (en) | Vacuum pump | |
KR100455487B1 (en) | Double acting compressor | |
JPH0219685A (en) | Fluid compressor | |
JPH0219684A (en) | Fluid compressor | |
JP3111693B2 (en) | Reciprocating compressor | |
JPH062652A (en) | Multistage compression unit | |
JPH1047278A (en) | Swing compressor | |
JPS59221481A (en) | Motor compressor | |
KR890002599Y1 (en) | Rotary piston pump | |
KR100324770B1 (en) | Stroke volume magnification structure for enclosed compressor | |
KR20030041578A (en) | Swash plate structure for enclosed compressor | |
JP2898710B2 (en) | Fluid compressor | |
JPH0251074B2 (en) | ||
JP3518019B2 (en) | Swing piston type compressor |