JPS59160086A - Gas compressor - Google Patents

Gas compressor

Info

Publication number
JPS59160086A
JPS59160086A JP3405383A JP3405383A JPS59160086A JP S59160086 A JPS59160086 A JP S59160086A JP 3405383 A JP3405383 A JP 3405383A JP 3405383 A JP3405383 A JP 3405383A JP S59160086 A JPS59160086 A JP S59160086A
Authority
JP
Japan
Prior art keywords
piston
gas
volume
driving shaft
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3405383A
Other languages
Japanese (ja)
Other versions
JPS6354915B2 (en
Inventor
Fumihiro Ozawa
小沢 文裕
Takeshi Kobayashi
猛 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Seiki KK
Original Assignee
Seiko Seiki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Seiki KK filed Critical Seiko Seiki KK
Priority to JP3405383A priority Critical patent/JPS59160086A/en
Publication of JPS59160086A publication Critical patent/JPS59160086A/en
Publication of JPS6354915B2 publication Critical patent/JPS6354915B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/40Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and having a hinged member
    • F04C18/46Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and having a hinged member with vanes hinged to the outer member

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Abstract

PURPOSE:To simplify the mechanism, reduce the leakage of compression and permit to drive the compressor with a small driving power by converting the rotary motion of a driving shaft into the oscillating motion of a piston and compressing the suction gas alternately. CONSTITUTION:When the driving shaft 8 is rotated and an oscillating cam 7 is oscillated, one of operating chambers is expanded and the operating chamber becomes vacuum, therefore, the gas is sucked into the operating chamber through a suction port 12 under opening a reed valve. When the driving shaft 8 is rotated further from a position, whereat the volume of one of the operating chambers become the maximum confining volume, into clockwise direction, the volume of one of the operating chamber is compressed and the compressed gas opens the reed valve and is discharged out of a delivery port 14. At this time, the operation chamber at the other side is expanded in the volume thereof and sucks the gas. Thus, the oscillating piston 7 is oscillated by the rotation of the driving shaft 8 and the suction and delivery motions may be effected sequentially and alternately.

Description

【発明の詳細な説明】 この発明は新規な構造を有する気体圧縮機に関する。[Detailed description of the invention] The present invention relates to a gas compressor having a novel structure.

容積可変型の気体圧縮機は主に往復ピストン式のものと
、回転式のものに大別さnlそ扛ぞrに短所及び長所を
有している。
Variable displacement gas compressors are mainly divided into reciprocating piston type and rotary type, each having their own disadvantages and advantages.

すなわち、往復ピストン式のものは回転運動を往復直線
運動に変換するために、クランク軸、連接棒等の複雑な
機構を要し、またその几めの機械的ロスも多く、容量の
割には大形となる。
In other words, the reciprocating piston type requires a complicated mechanism such as a crankshaft and a connecting rod in order to convert rotational motion into reciprocating linear motion, and there is also a lot of mechanical loss due to this, and it is not suitable for its capacity. Becomes large.

こしに対し回転式のものは、回転運動1c亘に動力とし
て用いているので機構が単純で小形化できるオリ点はあ
るものの、ピストン式に比して、圧縮部のリーク面積が
大きいため、特に低速時に圧縮行程において、低圧室に
ガスリークを生じ、再圧縮による駆動動力の増大を生む
In contrast, the rotary type uses the rotational movement 1c as power, so the mechanism is simple and can be made smaller, but compared to the piston type, the leak area of the compression part is larger, so it is particularly difficult to use. During the compression stroke at low speeds, gas leaks into the low pressure chamber, resulting in an increase in driving power due to recompression.

この発明では、前記往復ピストン式のものに比して機構
が簡単で、しかも回転式のものに比して圧縮モレが少く
なく小さな駆動動力で駆動できるようにすることを目的
とする。
The object of the present invention is to provide a mechanism that is simpler than the reciprocating piston type, has less compression leakage than the rotary type, and can be driven with less driving power.

前記目的を達成するために、本発明は、シリンダ室内に
揺動可[K横架さnたピストンと、シリンダ室2貫通し
て軸受さnるとともに、前記ピストンに連繋してその回
転により前記ピストンを揺動させるピストン駆動軸と、
前記ピストン外周とシリンダ室の内壁とによって構成さ
nる圧縮作業式内に連通ずる吸気ボート及び吐出ポート
と、各ポートに設けらn’rc吸気及び吐出用の逆止弁
とからなる新規な揺動型の気体圧縮機を提供するもので
ちる。
In order to achieve the above-mentioned object, the present invention includes a piston that is swingable and horizontally mounted in a cylinder chamber, a bearing passing through the cylinder chamber 2, and connected to the piston to cause the rotation of the piston. a piston drive shaft that swings the piston;
A novel rocker comprising an intake boat and a discharge port that communicate with the compression working type formed by the outer periphery of the piston and the inner wall of the cylinder chamber, and check valves for intake and discharge provided at each port. We provide dynamic gas compressors.

以下、本発明の実施例を図面を用いて詳細に説明する。Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図ないし第4図は本発明の第1の実施例を示す。1 to 4 show a first embodiment of the invention.

各図において、気体圧縮機は、一端開口形の円筒形ケー
ス1と、このケース1内に気密に装填さした圧縮機本体
2と、前記ケース1の開口面に装着さしたフロントヘッ
ド3を備える。
In each figure, the gas compressor includes a cylindrical case 1 with one end open, a compressor main body 2 airtightly loaded into the case 1, and a front head 3 attached to the open surface of the case 1. .

前記圧縮機本体2は、内゛周部がほぼ糸巻形の断面形状
をなす種口筒状のシリンダ4と、このシリンダの両側部
に装着さ几たフロントサイドブロック5、およびリアサ
イドブロック6とを備える。
The compressor main body 2 includes a cylinder-shaped cylinder 4 whose inner periphery has a substantially pincushion-shaped cross section, and a front side block 5 and a rear side block 6 mounted on both sides of the cylinder. Be prepared.

こRらシリンダ4及び両サイドブロック5,6によって
形成さ几た糸巻形断面のシリンダ室内部に、はカエル股
状の一対の揺動ピストン7.7が上下に配置4さtてい
るとともに、シリンダ室の中心には前記フロントヘッド
3を貫通して各サイドブロック5,6にその両端を回転
自在に軸受さ几たピストン、駆動軸8が設けらnている
Inside a cylinder chamber with a pincushion-shaped cross section formed by the cylinder 4 and both side blocks 5 and 6, a pair of frog-like swinging pistons 7.7 are arranged one above the other. At the center of the cylinder chamber, a piston and a drive shaft 8 are provided which extend through the front head 3 and are rotatably supported at both ends by respective side blocks 5 and 6.

各揺動ピストン7は、前記フロントサイドブロック5及
びリアサイドブロック6に両端を軸支さnた支軸9を基
点に左右揺動可能に構成さjしているとともに、その揺
動先端部両側の中央には一対のカムフロア10が回転自
在に設けらしている。
Each swing piston 7 is configured to be able to swing left and right about a support shaft 9 whose both ends are supported by the front side block 5 and rear side block 6, and the swing piston 7 is configured to be able to swing left and right around a support shaft 9 which has both ends supported by the front side block 5 and rear side block 6. A pair of cam floors 10 are rotatably provided in the center.

こねに対し、上記ピストンwl@軸8の中央には上記各
カムフロア10に摺接してその回転により前記各揺動ピ
ストン7を揺動させる路程円形のカム11が一体化さし
ている。
In contrast, a cam 11 having a circular path is integrated into the center of the piston wl@shaft 8, which slides into contact with each of the cam floors 10 and swings each of the swinging pistons 7 by its rotation.

したがって、前記駆動軸80回転に伴い揺動ピストン7
は揺動し、その結果揺動ピストン7の背面と、シリンダ
室内壁とによって囲わnる略三日月形の圧縮作業室内を
夫々左右及び上下対称的に交互に伸縮する。
Therefore, as the drive shaft 80 rotates, the swing piston 7
oscillates, and as a result, it alternately expands and contracts laterally and vertically symmetrically within a generally crescent-shaped compression work chamber surrounded by the back surface of the oscillating piston 7 and the cylinder interior wall.

こnに対応してフロントサイドブロック5には前記各作
業室内に連通ずる吸気ボー) 12 、12 、、。
Correspondingly, the front side block 5 has intake bows (12, 12, . . .) communicating with each of the working chambers.

が4箇所形成さnているとともに、フロントサイドブロ
ック5とシリンダ4の端面間には板状の逆止弁1,3が
介在さnている。
are formed at four locations, and plate-shaped check valves 1 and 3 are interposed between the end faces of the front side block 5 and the cylinder 4.

この逆止弁13は、第3図に示すように、前記シリンダ
4の断面形状と等しい形状のバネ材からなる板13αに
打抜成形などにょクリートバルブ13 b、13b、。
As shown in FIG. 3, the check valve 13 is formed by stamping a plate 13α made of a spring material and having the same cross-sectional shape as the cylinder 4.

を前記吸気ボート[2に接して形成したものである。is formed in contact with the intake boat [2].

またこの吸気側に対して吐出側は、前記シリンダ4の両
側部に、前記各圧縮作業室に連通して穿設さnた複数の
吐出ポー) 14 、14 、。と、こ肚ら各ポート1
4に接してシリンダ4の両側部に取付けらcた逆止用の
リードバルブ15 、15と、このリードバルブ15の
背面に接する一バルブサポート16かうなっている。
Further, on the discharge side with respect to the intake side, there are a plurality of discharge ports 14, 14, which are bored on both sides of the cylinder 4 so as to communicate with each of the compression work chambers. And each port 1
Reed valves 15, 15 for non-returning are attached to both sides of the cylinder 4 in contact with the reed valve 15, and a valve support 16 in contact with the back surface of the reed valve 15 is provided.

更に上記の如く構成さnfc圧縮機本体2における圧縮
作業室のシール機構としては、圧縮作業室の両端の2点
、すなわち揺動ピストン7の両揺動端と回動基点に設け
nばよ(、本実施例ではシリンダ室の内面に軸方間に沿
って形成さnたシール溝にテフロン等の材質からなるガ
スケツ) 17 、170.を装填しである。
Furthermore, the sealing mechanism for the compression chamber in the NFC compressor main body 2 configured as described above is provided at two points at both ends of the compression chamber, that is, at both swing ends of the swing piston 7 and at the pivot point. In this embodiment, a gasket made of a material such as Teflon is placed in a seal groove formed along the axial direction on the inner surface of the cylinder chamber) 17 , 170 . It is loaded with.

次に上記のように構成さnた気体圧縮機の作動について
説明する。
Next, the operation of the gas compressor configured as described above will be explained.

駆動軸80回転により揺動カム7が揺動すると一方の作
業室が拡大して作業室内が負圧となり、フロントヘッド
3に設けらnfc吸気口18より矢印Aに示す如くケー
スlの先端部に導入さnたガスはフロントサイドブロッ
ク5の吸気ボート12を経てリードパルプ13 b f
開き作業室内に吸引さ扛る第1図、第4図(ハ))に示
すように、一方の作業室が最大閉じ込め容積となった位
置で、前記カムは中心軸部より略45°変位した状態に
あり、こnから更に時計廻り1同に駆動軸8が回転する
と、第4図CB)に示すように一方の作業室の容積は縮
小さnつつリードパルプ15ヲ開いて吐出ボート14が
ら圧縮さnたガスが排出さnる。このガスはシリンダ4
とケース1の間に形成さ!シタ空隙からリアサイドブロ
ック6の開口(図示せず〕、ケース1の後部に形成さ−
nfc空隔19全経て吐出口20より外部に吐出する。
When the swing cam 7 swings due to 80 rotations of the drive shaft, one of the working chambers expands, creating negative pressure inside the working chamber, and the NFC intake port 18 provided in the front head 3 flows into the tip of the case l as shown by arrow A. The introduced gas passes through the intake boat 12 of the front side block 5 and reaches the lead pulp 13 b f
As shown in Figures 1 and 4 (c), the cam was displaced approximately 45° from the center shaft at the position where one of the working chambers had the maximum confinement volume. When the drive shaft 8 is further rotated clockwise from this point, the volume of one of the working chambers is reduced and the reed pulp 15 is opened and the discharge boat 14 is opened as shown in FIG. The compressed gas is exhausted. This gas is in cylinder 4
Formed between and case 1! An opening (not shown) in the rear side block 6 is formed at the rear of the case 1 from the bottom gap.
It is discharged to the outside from the discharge port 20 through the entire NFC space 19.

またこしと同時に他方側の作業室の容積は拡大し2、ナ
ートパルプ13ヲ開いて前記と同様にガス金吸い込む。
Simultaneously with straining, the volume of the working chamber on the other side expands 2, and the Nato pulp 13 is opened to suck in gas gold in the same manner as described above.

この状態から更に駆動軸8が時計廻り方向に変位すると
、第4図(c)に示すように、前記一方の作業室の容積
は零、すなわち吐出工程を完了するとともに、他方の作
業室の容積は最大となる。この状態から更に駆動軸8が
回転すると前記とは反対位置でガスの吸い込み及び吐出
動作が交互に繰り返さn1以下、駆動軸8の回転により
、揺動ピストン7が揺動し、次々と交互に吸込み及び吐
出動作を行うのである。
When the drive shaft 8 is further displaced clockwise from this state, the volume of the one working chamber becomes zero, that is, the discharge process is completed, and the volume of the other working chamber becomes zero, as shown in FIG. 4(c). is maximum. When the drive shaft 8 further rotates from this state, the suction and discharge operations of gas are repeated alternately at the opposite position to the above. and discharge operation.

なお、本実施例においては前記カム11の形状を説明の
簡略化のために種口状に描いであるが、実際には、この
カムの回転軌跡と揺動ピストンの両π(1部背面に加わ
る圧力差によって、一方のカムフロアが必ずカムのカム
リード面に摺接し、円滑な揺動運動を行わせることがで
きるようなカムリード面の形状となっている。
In this embodiment, the shape of the cam 11 is drawn in a seed-like shape to simplify the explanation, but in reality, the rotation locus of this cam and the swing piston are both π (partly on the back side). The shape of the cam lead surface is such that one of the cam floors always comes into sliding contact with the cam lead surface of the cam due to the applied pressure difference, allowing smooth rocking motion.

第5図はこの発明の第2の実施例を示す。但し前記実施
例と閘−箇所には同一符号を用いてその説明を省略する
FIG. 5 shows a second embodiment of the invention. However, the same reference numerals are used for the lock parts as in the previous embodiment, and the explanation thereof will be omitted.

同図における一対の揺動ピストン30は、その中央にカ
ム溝31t−形成しであるとともに、駆動軸8の中央に
はと几らカム溝31に摺接するカムフロア32を駆動軸
8に対し、前記揺動ピストン加の揺動角度に相当する偏
心量となるように偏心して設けである。
A pair of rocking pistons 30 in the figure have a cam groove 31t formed in their center, and a cam floor 32 in the center of the drive shaft 8 that slides into the cam groove 31. It is provided eccentrically so that the amount of eccentricity corresponds to the swing angle of the swing piston.

本実施例においても前記と同様の交互に吸込み及び吐出
動作が行わnる。
In this embodiment as well, suction and discharge operations are performed alternately in the same manner as described above.

また本実施例においては、前記第1の実施例に比して構
造が簡易化し、カム形状も単純化する。
Furthermore, in this embodiment, the structure is simplified compared to the first embodiment, and the cam shape is also simplified.

なお、本実施例においては1つのカムフロア3に対し各
揺動ピストン30を連結しであるため、シリンダ室の一
方側で吸込みを行うと同時に、他方側で排出を行う。し
かしながら、前記カムフロア32′jk180 °対問
して一対設け、夫々の揺動ピストン30i各カムフロア
32に連結するようにすnば、第1実施例と同様に上下
対角線上に吸込みと吐出を交互に行うことができる。
In this embodiment, since each swing piston 30 is connected to one cam floor 3, suction is performed on one side of the cylinder chamber, and discharge is performed on the other side at the same time. However, if a pair of cam floors 32'jk are provided facing each other by 180 degrees and the respective swing pistons 30i are connected to each cam floor 32, suction and discharge can be performed alternately on the upper and lower diagonals as in the first embodiment. It can be carried out.

更に、各実施例においては揺動ピストンを一対設けたが
1つの揺動ピストンでもよいし、3ないしそ0以上設け
ることも可能であることは云うまでもない。
Further, in each embodiment, a pair of swinging pistons are provided, but it goes without saying that it is also possible to provide one swinging piston, or three to zero or more.

以上各実施例において詳細に説明したように、本発明に
あっては、前述の如く、駆動軸の回転運動を揺動運動に
変換して吸込まnycガスを交互に圧縮するようにしで
あるために、従来の往復ピストン式の気体圧縮機に比し
て、回転運@t−に線運動に変換するための複雑な機構
ft要せず、機構が簡単となり、シかも回転式の気体圧
縮機に比して圧縮モレがなく、″またそのためのシール
機構も圧縮作業室の両端に設けねばよいため、摺動琴線
抵抗が小さく、駆動動力も小さくてよいなど各種の効果
がある。
As explained in detail in each of the embodiments above, in the present invention, as described above, the rotational motion of the drive shaft is converted into a swinging motion to alternately compress the sucked NYC gas. Compared to conventional reciprocating piston type gas compressors, the mechanism is simple and does not require a complicated mechanism to convert rotational motion to linear motion. There is no compression leakage compared to the conventional compressor, and since the sealing mechanism for this need only be provided at both ends of the compression work chamber, there are various effects such as low sliding chord resistance and low driving power.

【図面の簡単な説明】[Brief explanation of the drawing]

瀉1図は本発明の第1笑施例による気体圧縮機の正断面
図、第2図は第1図のn−n線断面図、第3図は第2図
のm −m 綜における逆上弁を示す正面図、第4図(
A) 、 (B) 、 (G’)は作動を示す説明図、
第5図は本発明の第2実施例による断面図である20.
圧縮機本体 40.シリンダ 50.フロントサイドブロック 60.リアサイドブロック 7、艶。、揺動ピストン 81.駆動軸 90.支軸 12、。吸気ポート 130.逆止弁 13b、、リードバルブ 145.吐出ポート 150.リードバルブ 以上 第4図(A)   第4図(El)   第4図(0)
第5図
Figure 1 is a front cross-sectional view of a gas compressor according to the first embodiment of the present invention, Figure 2 is a cross-sectional view taken along line n--n in Figure 1, and Figure 3 is a reverse view of the m-m helix in Figure 2. Front view showing the upper valve, Figure 4 (
A), (B), (G') are explanatory diagrams showing the operation,
FIG. 5 is a cross-sectional view 20 according to a second embodiment of the present invention.
Compressor body 40. Cylinder 50. Front side block 60. Rear side block 7, glossy. , swinging piston 81. Drive shaft 90. Support shaft 12. Intake port 130. Check valve 13b, reed valve 145. Discharge port 150. Reed valve and above Figure 4 (A) Figure 4 (El) Figure 4 (0)
Figure 5

Claims (1)

【特許請求の範囲】[Claims] α)シリンダ室内に揺動可能に横架さtたピストンと、
シリンダ室を貫通して軸受さnるとともに、前記ピスト
ンに連繋してその回転により前記ピストンを揺動させる
ピストン駆動軸ζ、前記ピストンの外周とシリンダ室の
内壁とによって構成さnる圧縮作業室内に連通ずる吸気
ボート及び吐出ボートと、各ボートに設けらnfc吸気
及び吐出用の逆止弁とからなること全特徴とする気体圧
縮機
α) A piston horizontally suspended in a cylinder chamber so as to be able to swing;
A compression work chamber formed by a piston drive shaft ζ that passes through the cylinder chamber and is supported by a bearing, and is connected to the piston and swings the piston by its rotation, the outer periphery of the piston and the inner wall of the cylinder chamber. A gas compressor characterized by consisting of an intake boat and a discharge boat that communicate with each other, and an NFC intake and discharge check valve provided on each boat.
JP3405383A 1983-03-01 1983-03-01 Gas compressor Granted JPS59160086A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3405383A JPS59160086A (en) 1983-03-01 1983-03-01 Gas compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3405383A JPS59160086A (en) 1983-03-01 1983-03-01 Gas compressor

Publications (2)

Publication Number Publication Date
JPS59160086A true JPS59160086A (en) 1984-09-10
JPS6354915B2 JPS6354915B2 (en) 1988-10-31

Family

ID=12403540

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3405383A Granted JPS59160086A (en) 1983-03-01 1983-03-01 Gas compressor

Country Status (1)

Country Link
JP (1) JPS59160086A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4966102A (en) * 1989-02-07 1990-10-30 Mulakken Joy P Compression/combustion assembly

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4966102A (en) * 1989-02-07 1990-10-30 Mulakken Joy P Compression/combustion assembly

Also Published As

Publication number Publication date
JPS6354915B2 (en) 1988-10-31

Similar Documents

Publication Publication Date Title
JPH08200259A (en) Multicylinder rotary compressor
JP4385565B2 (en) Rotary compressor
JP2003056468A (en) Small pump
JPH06117367A (en) Reciprocating compressor
WO2005111427A1 (en) Rotary compressor
JPS59160086A (en) Gas compressor
JPH074487A (en) Crank driving mechanism
JPH0552189A (en) Scroll fluid machinery
JP3200693B2 (en) Diaphragm pump
JPH0791367A (en) Vacuum pump device
JPS5911755B2 (en) axial piston machine
JPH03140659A (en) Rotational motion-reciprocative motion converter
US6354820B1 (en) Pump
JPH0357889A (en) Diaphragm pump
KR200325459Y1 (en) Vacuum swing absorption type oxygen generation apparatus for car
JPS58152192A (en) Oscillating rotary compressor
JPH0719167A (en) Vacuum pump
JP3505628B2 (en) Reciprocating positive displacement machine
KR100455487B1 (en) Double acting compressor
JPH03279684A (en) Compression device
JP3111693B2 (en) Reciprocating compressor
JP2993299B2 (en) Rotary compressor
KR0139008Y1 (en) Rotary two-stroke vane compressor
JP3139643B2 (en) Swash plate compressor
KR20230132650A (en) Leak-proof cylinder block of orbiter compressor for vehicle