JPS6354778A - Infrared ray detector - Google Patents

Infrared ray detector

Info

Publication number
JPS6354778A
JPS6354778A JP61199217A JP19921786A JPS6354778A JP S6354778 A JPS6354778 A JP S6354778A JP 61199217 A JP61199217 A JP 61199217A JP 19921786 A JP19921786 A JP 19921786A JP S6354778 A JPS6354778 A JP S6354778A
Authority
JP
Japan
Prior art keywords
layer
substrate
crystal
dislocation
junction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61199217A
Other languages
Japanese (ja)
Inventor
Mitsuo Yoshikawa
吉河 満男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP61199217A priority Critical patent/JPS6354778A/en
Publication of JPS6354778A publication Critical patent/JPS6354778A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/103Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN homojunction type
    • H01L31/1032Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN homojunction type the devices comprising active layers formed only by AIIBVI compounds, e.g. HgCdTe IR photodiodes

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To obtain an infrared ray detector which has less leakage current due to dislocation based on an irregular lattice by adding an impurity for suppressing the dislocation of the irregular lattice at either one or both of an Hg1-xCdxTe layer for forming a P-N junction and an Hg1-yCdyTe layer formed on the surface. CONSTITUTION:An Hg1-yCdyTe layer 3 having large X value is formed on the surface of an Hg1-xCdxTe substrate 1 or the peripheral region of a P-N junction 2-1 of a photoelectric converter. An impurity for suppressing the movement of the dislocation of the irregular lattice is added to either one or both of the surface layer of the substrate 1 or the layer 3. For example, after a masking film 1-1 is formed on the P-N junction region of the substrate 1 doped with Zn for suppressing the movement of the dislocation. an Hg1-yCdyTe crystal 3 having large X value is formed. A mutual diffused layer 4 is formed during the crystal growth. Then, B ions are implanted to form an N-type layer 2, a zinc sulfide ZnS 5 which becomes an insulating layer is formed on the surface, opened with a predetermined hole, and an In electrode 6 contacted with the layer 2 is formed, thereby obtaining an infrared ray detector.

Description

【発明の詳細な説明】 〔概要〕 赤外線を高感度に検知するHg、−xcdxTe結晶を
用いた赤外線検知器のPN接合部の表面リーク電流を低
減するために、相互拡散層全域に格子不整転位を発生し
ないように、格子不整転位の移動を抑止する不純物を使
用する。
[Detailed Description of the Invention] [Summary] In order to reduce the surface leakage current at the PN junction of an infrared detector using a Hg, -xcdxTe crystal that detects infrared rays with high sensitivity, lattice misalignment dislocations are created throughout the interdiffusion layer. In order to prevent the occurrence of lattice misalignment, impurities are used to inhibit the movement of lattice misalignment dislocations.

〔産業上の利用分野〕[Industrial application field]

この発明は、光起電力型赤外線検知器、特にHg、XC
dxTe結晶を基板に用いた赤外線検知器に関するもの
である。
This invention relates to photovoltaic infrared detectors, especially Hg, XC
This invention relates to an infrared detector using a dxTe crystal as a substrate.

赤外線を高感度に検知するHg、−xcdXTe結晶の
ような化合物半導体結晶を基板として赤外線検知器を作
成している。この赤外線検知器は多素子化され、高感度
に保つために各赤外線検知素子の表面リーク電流を少な
いものが必要とされている。
Infrared detectors are manufactured using compound semiconductor crystals such as Hg, -xcdXTe crystals, which detect infrared rays with high sensitivity, as substrates. This infrared detector has multiple elements, and in order to maintain high sensitivity, each infrared detecting element is required to have a small surface leakage current.

〔従来の技術〕[Conventional technology]

PN接合を用いた起電力型赤外線検知器の特性を左右す
る表面リーク電流には、バンド間トンネル電流と転位な
どの結晶欠陥の関与したトンネル電流がある。バンド間
トンネル電流は、基板を形成するHgI−xCdx T
e結晶のエネルギーギャップεgに関係し、エネルギー
ギャップεgが大きい程、トンネル電流が小さくなる。
Surface leakage currents that affect the characteristics of electromotive force type infrared detectors using PN junctions include band-to-band tunneling currents and tunneling currents associated with crystal defects such as dislocations. The interband tunneling current is caused by the HgI-xCdxT forming the substrate.
It is related to the energy gap εg of the e-crystal, and the larger the energy gap εg, the smaller the tunnel current.

したがって、第3図に示す構造の赤外線検知器が作成さ
れる。すなわち、p−Hg、−xCdxTe結晶基板1
の表面のPN接合部を形成する領域外に、X値の大きい
Hg+−yCdy Te結晶層3を形成する。
Therefore, an infrared detector having the structure shown in FIG. 3 is created. That is, p-Hg, -xCdxTe crystal substrate 1
A Hg+-yCdy Te crystal layer 3 having a large X value is formed outside the region on the surface where the PN junction is to be formed.

このような2層構造の結晶成長を行うと2つの層の境界
には必然的に相互拡散層4を生じる。この相互拡散層4
はHg+−xCdx Te層に比べX値の大きい領域で
ありエネルギーギャップεgが太き(、バンド間トンネ
ル電流による表面リーク電流を減少させる。
When crystal growth of such a two-layer structure is performed, an interdiffusion layer 4 is inevitably generated at the boundary between the two layers. This mutual diffusion layer 4
is a region where the X value is larger than that of the Hg+-xCdx Te layer, and the energy gap εg is wide (which reduces surface leakage current due to interband tunnel current).

第4図は、P−HgsxCdx Te結晶基板1の表面
にHg、、Cd、 Te’R3を形成してから8層2を
形成した場合を示す。
FIG. 4 shows a case where Hg, Cd, and Te'R3 are formed on the surface of a P-HgsxCdxTe crystal substrate 1, and then eight layers 2 are formed.

何れにしても格子不整転位が存在する箇所が相互拡散層
4の全域に拡っている。
In any case, the locations where lattice misalignment dislocations exist are spread throughout the interdiffusion layer 4.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

前記した従来の赤外線検知器は、表面でのバンド間トン
ネル電流を低減させるが、相互拡散層全域に格子不整の
箇所が分布するので、PN接合部がP−Hg+−xCd
x Te結晶1と相互拡散層4との境界面と交差する箇
所にも、高密度の格子不整の箇所が存在し、格子不整に
よる転位が関与するリーク電流がこの箇所で増大する問
題があった。
The conventional infrared detector described above reduces the interband tunneling current at the surface, but since lattice mismatch points are distributed throughout the interdiffusion layer, the PN junction becomes P-Hg+-xCd.
There is also a location where there is a high density of lattice misalignment at the location where it intersects with the interface between the x Te crystal 1 and the interdiffusion layer 4, and there is a problem in that the leakage current associated with dislocations due to the lattice misalignment increases at this location. .

この発明は、以上のような従来の状況から、格子不整に
基づく転位によるリーク電流の少ない赤外線検知器の提
供を目的とするものである。
SUMMARY OF THE INVENTION In view of the above-mentioned conventional situation, it is an object of the present invention to provide an infrared detector that generates less leakage current due to dislocations caused by lattice misalignment.

〔問題点を解決するための手段〕[Means for solving problems]

この発明では、PN接合部を形成するI1g+−xCd
xTe層と、その表面に形成されるHg+−yCdy 
TeFiのいずれか一方又両方に格子不整の転位の移動
を抑止する不純物を添加した構成としている。
In this invention, I1g+-xCd forming the PN junction
xTe layer and Hg+-yCdy formed on its surface
The structure is such that impurities are added to one or both of the TeFi to inhibit the movement of lattice misaligned dislocations.

〔作用〕[Effect]

結晶の拡散を行っても格子不整転位の分布する位置は、
転位を抑止する不純物によって相互拡散層全体に広がら
ないので、PN接合部が、)Ig+−xCdxTe結晶
及び相互拡散層との境界面と交差する位置に格子不整転
位が存在せず、格子不整転位によるリーク電流が防止さ
れる。
Even if the crystal is diffused, the locations where lattice misalignment dislocations are distributed will be
Since the impurities that suppress dislocations do not spread throughout the interdiffusion layer, there are no lattice misalignment dislocations at the position where the PN junction intersects the interface between the )Ig+-xCdxTe crystal and the interdiffusion layer, and the lattice misalignment dislocations Leakage current is prevented.

〔実施例〕〔Example〕

第1図は本発明の赤外線検知器を説明するだめの断面図
である。第1図fa)に示すように、転位の移動を抑止
するため亜鉛(Zn)をドープしたP−Hg+−xCd
xTe結晶基板1のPN接合領域にマスキング用の膜1
−1を付けた後、X値が大きいHg+−yCdy Te
結晶3を形成して第1図(b)の状態を形成する。
FIG. 1 is a cross-sectional view for explaining the infrared detector of the present invention. As shown in Figure 1 fa), P-Hg+-xCd doped with zinc (Zn) to inhibit dislocation movement.
A masking film 1 is placed on the PN junction region of the xTe crystal substrate 1.
After adding -1, Hg+-yCdy Te with large X value
A crystal 3 is formed to form the state shown in FIG. 1(b).

結晶成長中に第1図(C)に示すように相互拡散層4が
形成される。相互拡散が生じても格子不整転位の分布箇
所(図にX印で示す)は、添加されたZnによって格子
不整の転位の移動が防止されて相互拡散層4の全域に広
がらず、Hg+−yCdy Tei形成前のP4g+−
yCdy Te結晶基板表面の位置に留まる。
During crystal growth, an interdiffusion layer 4 is formed as shown in FIG. 1(C). Even if interdiffusion occurs, the distribution locations of lattice misaligned dislocations (indicated by P4g+- before Tei formation
It remains at the surface of the yCdy Te crystal substrate.

このZnの添加によって転位の移動が抑止されるのは、
結晶を構成するHgとTe或いはCdとTe原子の結合
エネルギーに比べZnとTeの結合エネルギーが大きい
ためである。
This addition of Zn inhibits the movement of dislocations because
This is because the bond energy between Zn and Te is larger than the bond energy between Hg and Te or Cd and Te atoms that constitute the crystal.

この状態でPN接合を形成する領域に、硼iBの原子が
イオン注入されて8層2が形成される。ここでPN接合
部は2−1で示される。従って、PN接合部2−1がP
−Hg+−xCdx Te層と相互拡散層との境界と交
差する箇所に格子不整が存在しないため、格子不整の転
位によるリーク電流の防止が図れる。
In this state, boron iB atoms are ion-implanted into the region where the PN junction is to be formed to form eight layers 2. Here the PN junction is designated 2-1. Therefore, the PN junction 2-1 is P
-Hg+-xCdx Since no lattice misalignment exists at the location where the Te layer intersects with the boundary between the interdiffusion layer, leakage current due to dislocations due to lattice misalignment can be prevented.

さらに第1図(dlに示すように、表面に絶縁層となる
硫化亜鉛ZnS 5を形成して、これに所定の開ロヲ行
い8層2に接触するインジウムInの電極6を形成して
、赤外線検知器が得られる。
Further, as shown in FIG. 1 (dl), zinc sulfide ZnS 5 is formed on the surface to serve as an insulating layer, and an indium In electrode 6 is formed in contact with the 8 layer 2 by opening it in a predetermined manner. A detector is obtained.

第2図は、他の実施例を示す要部断面図であり、p−n
g、−xCaxTe結晶層にZnをドープして、Hg+
−yCdyTe結晶3を形成したる後にNi2を形成し
たものであり、これも父上記した実施例と同一効果を有
する。
FIG. 2 is a sectional view of main parts showing another embodiment, p-n
g, -xCaxTe crystal layer is doped with Zn to form Hg+
Ni2 is formed after the -yCdyTe crystal 3 is formed, and this also has the same effect as the above-mentioned embodiment.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなように、この発明によれば、H
g+−xCdx Te結晶とHg1−、Cd、 Te結
晶の何れが一方或いは、両方に格子不整転位の移動を抑
止する不純物を添加する簡単なことで、リーク電流の少
ない高感度の赤外線検知器となり、品質を向上する上で
極めて有効な効果を奏する。
As is clear from the above description, according to the present invention, H
By simply adding an impurity to one or both of the g+-xCdx Te crystal and the Hg1-, Cd, or Te crystal to suppress the movement of lattice misalignment dislocations, a highly sensitive infrared detector with low leakage current can be obtained. This has an extremely effective effect in improving quality.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の赤外線検知器の一実柊例の要部を示す
断面図、 第2図は本発明の他実施例を示す要部断面図、第3図は
従来の赤外線検知器の結晶状態を説明するための第1の
要部断面図、 第4図は従来の赤外線検知器の結晶状態を説明するため
の第2の要部断面図である。 図に於いて、 1はp−Hg、−xCdxTe拮晶基板、2はN層、3
はHg、yCdyTe結晶、4は相互拡散層を示す。 /1芋節酢面の 第1図 6t′a ?1イぎ明の月とり突〉癒召騙9求T1附を戸i$il
第2図 才r^票fp#:tの 第3図 マ3緑のオフにrxpp向道ご 第4図
Fig. 1 is a sectional view showing the main part of an example of an infrared detector according to the present invention, Fig. 2 is a sectional view of the main part showing another embodiment of the invention, and Fig. 3 is a sectional view of a conventional infrared detector. A first main part sectional view for explaining the crystalline state. FIG. 4 is a second main part sectional view for explaining the crystalline state of a conventional infrared detector. In the figure, 1 is a p-Hg, -xCdxTe antagonistic substrate, 2 is an N layer, and 3
4 indicates a Hg, yCdyTe crystal, and 4 indicates an interdiffusion layer. /1 Figure 1 of potato flakes vinegar side 6t'a? 1st day of dawn moon tori attack〉Healing summoning trick 9 request T1 attached to door i$il
Figure 2: r^vote fp#:T Figure 3: Ma3 green off, rxpp bound for Figure 4

Claims (1)

【特許請求の範囲】[Claims] 水銀・カドミウム・テルル(Hg_1_−_xCd_x
Te)基板(1)の表面或いは、光電変換部であるPN
接合部(2−1)の周辺領域にx値が大きいHg_1_
−_yCd_yTe層(3)を形成してなる赤外線検知
器において、前記Hg_1_−_xCd_xTe基板(
1)の表面層或いは、前記Hg_1_−_yCd_yT
e層(3)のいずれか一方又両方に格子不整転位の移動
を抑止する不純物を添加したことを特徴とする赤外線検
知器。
Mercury, cadmium, tellurium (Hg_1_-_xCd_x
Te) The surface of the substrate (1) or the PN which is the photoelectric conversion part
Hg_1_ with a large x value in the surrounding area of the joint (2-1)
-_yCd_yTe layer (3) In the infrared detector formed by forming the Hg_1_-_xCd_xTe substrate (
1) surface layer or the Hg_1_-_yCd_yT
An infrared detector characterized in that one or both of the e-layers (3) are doped with impurities that inhibit the movement of lattice misalignment dislocations.
JP61199217A 1986-08-25 1986-08-25 Infrared ray detector Pending JPS6354778A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61199217A JPS6354778A (en) 1986-08-25 1986-08-25 Infrared ray detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61199217A JPS6354778A (en) 1986-08-25 1986-08-25 Infrared ray detector

Publications (1)

Publication Number Publication Date
JPS6354778A true JPS6354778A (en) 1988-03-09

Family

ID=16404083

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61199217A Pending JPS6354778A (en) 1986-08-25 1986-08-25 Infrared ray detector

Country Status (1)

Country Link
JP (1) JPS6354778A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01245567A (en) * 1988-03-28 1989-09-29 Toshiba Corp Semiconductor light-receiving device and manufacture thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01245567A (en) * 1988-03-28 1989-09-29 Toshiba Corp Semiconductor light-receiving device and manufacture thereof

Similar Documents

Publication Publication Date Title
US5066340A (en) Photovoltaic device
US5990415A (en) Multilayer solar cells with bypass diode protection
US6657194B2 (en) Multispectral monolithic infrared focal plane array detectors
JPH0634406B2 (en) Intrinsic semiconductor electro-optical device
JPS61255074A (en) Photoelectric conversion semiconductor device
Bratt HgCdTe heterojunctions
US5599733A (en) Method using cadmium-rich CdTe for lowering the metal vacancy concentrations of HgCdTe surfaces
JPS6354778A (en) Infrared ray detector
EP0090669A2 (en) Electromagnetic radiation detector
JPH01243480A (en) Infrared sensor and infrared camera including the same
JPH07105519B2 (en) Solar cell
JPH0492481A (en) Photosensor
JPS61214462A (en) Arrangement type infrared detector
JPH02237154A (en) Light-detecting device
US5004698A (en) Method of making photodetector with P layer covered by N layer
JP2848345B2 (en) Infrared detector
JP2922825B2 (en) Solar cell and method of manufacturing the same
JPH0779008A (en) Infrared detector
JP2955983B2 (en) Manufacturing method of infrared detector
EP0249624A1 (en) Photodetectors and methods for making such detectors
RU2034369C1 (en) Heteroepitaxial semiconductor structure for photodetector cell
JPH06120549A (en) Radiation detector
JPH04313267A (en) Infrared rays detector
JPH0196968A (en) Infrared ray detector
JPS6255966A (en) Infrared ray detector