JPS6354774B2 - - Google Patents

Info

Publication number
JPS6354774B2
JPS6354774B2 JP54001556A JP155679A JPS6354774B2 JP S6354774 B2 JPS6354774 B2 JP S6354774B2 JP 54001556 A JP54001556 A JP 54001556A JP 155679 A JP155679 A JP 155679A JP S6354774 B2 JPS6354774 B2 JP S6354774B2
Authority
JP
Japan
Prior art keywords
present
less
coupling coefficient
electromechanical coupling
extremely
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54001556A
Other languages
Japanese (ja)
Other versions
JPS5595626A (en
Inventor
Yasunobu Ogata
Ryozo Sawada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP155679A priority Critical patent/JPS5595626A/en
Publication of JPS5595626A publication Critical patent/JPS5595626A/en
Priority to JP61283218A priority patent/JPS62149844A/en
Publication of JPS6354774B2 publication Critical patent/JPS6354774B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は磁歪応用の非晶質材料に関するもので
ある。 従来、この種用途にはニツケル、13%Al―鉄
合金、各種フエライト等が実用化されているが、
これらはいづれも磁歪λとしては比較的大きな値
をもつているものの実用上問題となる電気エネル
ギーを機械的エネルギーに変換する変換効率を示
す電気機械結合係数Kとしては、せいぜい0.4程
度のものしかなく、エネルギー効率の悪さ、発熱
等種種問題があるのが実情であつた。 すなわち最も多く用いられている金属材料とし
ての13%Al―Fe合金の例では薄板化するための
冷間圧延が相当むつかしく、かつ耐食性が著しく
悪いという大きな欠点をもつている。一方比較的
大きな電気機械結合係数をもつフエライト系の材
料では、材質的に脆いという性質のため磁歪素子
として欠け割れ等が著しく発生し易いという大き
な欠点をもつている。 本発明は従来材質のもつこのような欠点を取り
除いた新材料を提供するものである。 すなわち本発明材は従来材質になく大きな電気
機械結合係数をもつのみならず、高周波特性を向
上させる上で必要となる薄板化が著しく容易であ
り、かつ耐食性に非常にすぐれた金属材料であ
る。 また材質自体じん性に優れておりフエライトに
みられたような割れ、欠け等の欠陥は、まつたく
発生しないのが大きな特長である。 本発明は基本的にはFe,Ni,CoおよびCrを含
む金属元素とメタロイド元素としてのSi,B,P
およびCの中より選ばれた一種又は二種以上を含
有する非晶質合金よりなる。 Crは非晶質化し耐食性を著しく向上させる上
で必須の成分であり、本発明合金の場合この量が
0.05%未満では効果が少いがそれ以上ならば多い
程いい。 但し、10%をこえると電気機械結合係数への影
響が大きくなり、これを小さくするので0.05%以
上、10%以下(原子比で、以下すべて同様)が好
ましい。また、いわゆるメタロイド元素としての
P,Si,BおよびCの含有量を10%以上38%以下
に限定したのは、この範囲をはずれると非晶質材
を得ることが実質的に困難となり、したがつて電
気機械結合係数も著しく小さくなつてしまい、か
つ脆い材質しか得られないので実用的でないため
である。 なお、Fe,NiおよびCoの相対量については第
1図に示すごとく、これら三元素の相対量でNi,
Coともに60%以下かつFe40%以上のところで大
きなKをもつている。これらの中でもNi,Coが
ともに約30%以下のときはKの値は0.65以上の値
となつていて従来材にない優れたものである。 第1図に示されるように、Ni含有量を示すP
の値が0.03以上かつ、0.3以下、又、Co含有量を
示すqの値が0.2以下の場合、特に大きなK値を
得られる。K値のFe,No,Coの相対量に対する
依存性はCr添加により変わらない。 以下、本発明を実施例に基いて説明する。 実施例 1 (Fe1-q-pNipCoq100-x-yCrxMyにてp,qとお
よびyを以下のように変えた材質を溶解しいわゆ
る片ロール法で非晶質合金をつくり諸特性を調べ
たところ第一表の如き結果を得た。耐食性につい
ては、濃度20%の塩酸に24時間浸した後の試験片
の腐食減量を測定し、腐食減量が0.04wt%以下の
ものを著しく優れているもの(◎)とし、0.05〜
0.1wt%のものを優れているもの(〇)とした。
又、じん性については、破壊強さ(Kg/mm2)が、
350以上のものを著しく優れているもの(◎)と
し、300以上で350未満のものを優れているもの
(〇)とした。ここに耐食性およびじん性は著し
く優れているもの(◎)優れているもの(〇)で
表示してある。
The present invention relates to an amorphous material for magnetostrictive applications. Conventionally, nickel, 13% Al-iron alloys, various ferrites, etc. have been put into practical use for this type of use.
Although these all have relatively large values of magnetostriction λ, the electromechanical coupling coefficient K, which indicates the conversion efficiency of converting electrical energy into mechanical energy, which is a practical problem, is only about 0.4 at most. The reality is that there are various problems such as poor energy efficiency and heat generation. In other words, in the case of 13% Al--Fe alloy, which is the most commonly used metal material, cold rolling to form a thin sheet is extremely difficult, and corrosion resistance is extremely poor. On the other hand, ferrite-based materials having a relatively large electromechanical coupling coefficient have a major drawback in that they are extremely susceptible to cracking and cracking as magnetostrictive elements due to their brittle nature. The present invention provides a new material that eliminates these drawbacks of conventional materials. In other words, the material of the present invention not only has a larger electromechanical coupling coefficient than conventional materials, but it is also extremely easy to make into a thin plate, which is necessary to improve high frequency characteristics, and is a metal material that has excellent corrosion resistance. In addition, the material itself has excellent toughness, and a major feature is that defects such as cracks and chips that occur with ferrite do not occur at all. The present invention basically consists of metal elements including Fe, Ni, Co, and Cr and Si, B, and P as metalloid elements.
It is made of an amorphous alloy containing one or more selected from C and C. Cr is an essential component to become amorphous and significantly improve corrosion resistance, and in the case of the present alloy, this amount is
If it is less than 0.05%, the effect will be small, but if it is more than that, the more the better. However, if it exceeds 10%, the effect on the electromechanical coupling coefficient becomes large, and this is to be reduced, so it is preferably 0.05% or more and 10% or less (in terms of atomic ratio, the same applies hereinafter). In addition, the content of P, Si, B, and C, which are so-called metalloid elements, was limited to 10% or more and 38% or less because it is virtually difficult to obtain an amorphous material outside of this range. This is because the electromechanical coupling coefficient becomes extremely small and only a brittle material can be obtained, making it impractical. Regarding the relative amounts of Fe, Ni and Co, as shown in Figure 1, the relative amounts of these three elements are Ni,
Both have a large K when Co is below 60% and Fe is above 40%. Among these, when Ni and Co are both about 30% or less, the K value is 0.65 or more, which is superior to conventional materials. As shown in Figure 1, P indicates the Ni content.
A particularly large K value can be obtained when the value of q is 0.03 or more and 0.3 or less, and the value of q, which indicates the Co content, is 0.2 or less. The dependence of the K value on the relative amounts of Fe, No, and Co does not change with the addition of Cr. The present invention will be explained below based on examples. Example 1 (Fe 1-qp Ni p Co q ) 100-xy Cr x M y Materials with p, q, and y changed as shown below were melted and an amorphous alloy was made using the so-called single roll method. When various properties were investigated, the results shown in Table 1 were obtained. Regarding corrosion resistance, the corrosion loss of the test piece was measured after being immersed in hydrochloric acid with a concentration of 20% for 24 hours, and those with a corrosion loss of 0.04wt% or less were considered to be extremely excellent (◎), and those with a corrosion loss of 0.05~
Those with 0.1wt% were marked as excellent (〇).
Regarding toughness, the breaking strength (Kg/mm 2 ) is
A score of 350 or above was considered extremely excellent (◎), and a score of 300 or above but less than 350 was considered excellent (◎). The corrosion resistance and toughness are shown as markedly excellent (◎) or excellent (○).

【表】 第1表において、#1,#2および#3が本発
明の実施例の合金であり、#4および#5は比較
例の合金である。 第1表の結果から明らかなように本発明合金は
従来材の欠点である耐食性およびじん性を著しく
向上させている上に大きな電気機械結合係数をも
つことが明白である。 なお、本発明合金においては、主要成分以外の
量の遷移金属およびMg,Ca,Zn,Cd,Sr,
Ba,Se,Te,Al,Ge,N,S,Bi等を8%を
越えない範囲で含有させると、電気機械結合係数
Kを大きくするための熱処理が容易となり、かつ
Kの周波数依存性およびバイアス磁場依存性が改
善される。但し、これらの量が8%をこえるとK
を劣化させるので実用的でなくなる。 なお、本発明における非晶質とは、マクロなX
線回析によつて明白なデバイシユラーリングが出
ていないという状況をいい、実用上それで問題な
いものである。
[Table] In Table 1, #1, #2 and #3 are alloys of examples of the present invention, and #4 and #5 are alloys of comparative examples. As is clear from the results in Table 1, the alloy of the present invention has significantly improved corrosion resistance and toughness, which are disadvantages of conventional materials, and also has a large electromechanical coupling coefficient. In addition, in the present alloy, amounts of transition metals other than the main components and Mg, Ca, Zn, Cd, Sr,
When Ba, Se, Te, Al, Ge, N, S, Bi, etc. are contained in a range not exceeding 8%, heat treatment to increase the electromechanical coupling coefficient K becomes easy, and the frequency dependence of K and Bias magnetic field dependence is improved. However, if these amounts exceed 8%, K
It becomes impractical as it deteriorates the Note that amorphous in the present invention refers to macroscopic
This refers to a situation in which no obvious device-like ring is detected by line diffraction, and there is no problem in practical use.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、(Fe1-q-pNipCoq75Cr3Si10B12系にお
けるFe,Ni,Coの相対量とKとの関係を示す曲
線図である。
FIG. 1 is a curve diagram showing the relationship between the relative amounts of Fe, Ni, and Co and K in the (Fe 1-qp Ni p Co q ) 75 Cr 3 Si 10 B 12 system.

Claims (1)

【特許請求の範囲】 1 原子比組成が (Fe1-p-qNipCoq100-x-yCrxMy 但し、M:Si,B,PおよびCの中より選ばれ
た一種又は二種以上の組合せ 0.03p0.3,q0.2 0.05x10,10y38 であることを特徴とする非晶質磁歪材料。 2 原子比組成が (Fe1-pNip100-x-yCrxMy 但し、M:Si,B,PおよびCの中より選ばれ
た一種又は二種以上の組合せ 0.03p0.3 0.05x10,10y38 であることを特徴とする非晶質磁歪材料。
[Claims] 1. Atomic ratio composition is (Fe 1-pq Ni p Co q ) 100-xy Cr x M y However, M: one or more selected from Si, B, P and C An amorphous magnetostrictive material characterized by a combination of 0.03p0.3, q0.2 0.05x10, 10y38. 2 Atomic ratio composition is (Fe 1-p Ni p ) 100-xy Cr x M y However, M: one or a combination of two or more selected from Si, B, P and C0.03p0.3 0.05x10 , 10y38.
JP155679A 1979-01-09 1979-01-09 Amorphous magnetostrictive material Granted JPS5595626A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP155679A JPS5595626A (en) 1979-01-09 1979-01-09 Amorphous magnetostrictive material
JP61283218A JPS62149844A (en) 1979-01-09 1986-11-28 Amorphous magnetostriction material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP155679A JPS5595626A (en) 1979-01-09 1979-01-09 Amorphous magnetostrictive material

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP61283218A Division JPS62149844A (en) 1979-01-09 1986-11-28 Amorphous magnetostriction material

Publications (2)

Publication Number Publication Date
JPS5595626A JPS5595626A (en) 1980-07-21
JPS6354774B2 true JPS6354774B2 (en) 1988-10-31

Family

ID=11504792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP155679A Granted JPS5595626A (en) 1979-01-09 1979-01-09 Amorphous magnetostrictive material

Country Status (1)

Country Link
JP (1) JPS5595626A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4268325A (en) * 1979-01-22 1981-05-19 Allied Chemical Corporation Magnetic glassy metal alloy sheets with improved soft magnetic properties
JPH0758810B2 (en) * 1986-09-26 1995-06-21 日産自動車株式会社 Torque sensor
CN104946955B (en) * 2015-06-26 2017-05-31 西安理工大学 A kind of Fe Ni Metal Substrate magnetostriction materials and preparation method thereof

Also Published As

Publication number Publication date
JPS5595626A (en) 1980-07-21

Similar Documents

Publication Publication Date Title
US4668310A (en) Amorphous alloys
JPS6030734B2 (en) Amorphous alloy containing iron group elements and zirconium with low brittleness and excellent thermal stability
US5634989A (en) Amorphous nickel alloy having high corrosion resistance
EP1382700A1 (en) Improved oxidation resistant molybdenum alloy
JPH06179953A (en) Stainless steel resisting to embrittlement
JPS6354774B2 (en)
US4309489A (en) Fe-Ni-Cu-Cr Layered bimetal
JP2000504786A (en) Austenitic stainless steel with good oxidation resistance
US4131457A (en) High-strength, high-expansion manganese alloy
JP4573918B2 (en) Flat Fe-based alloy powder for magnetic shield
JPS63274764A (en) Alloy target for magneto-optical recording
JPS6130645A (en) Tantalum-niobium-molybdenum-tangsten alloy
JP2828071B2 (en) Physically deposited amorphous film material with excellent corrosion resistance
JPS6152224B2 (en)
US3849189A (en) Flux coated electrode
EP0314805B1 (en) Highly corrosion-resistant amorphous nickel-based alloy
JPH0255498B2 (en)
JPS62149844A (en) Amorphous magnetostriction material
JPH01119642A (en) Soft magnetic material having high saturated magnetic flux density
JPH0255497B2 (en)
JPS62142749A (en) High permeability pb permalloy having superior suitability to press blanking
CA1124552A (en) Low thermal expansion nickel-iron alloy
JP3735420B2 (en) Co-based metallic glass alloy
JPS5949316B2 (en) Corrosion resistant magnetic material
JPS58164201A (en) Wound core