JPS62149844A - Amorphous magnetostriction material - Google Patents
Amorphous magnetostriction materialInfo
- Publication number
- JPS62149844A JPS62149844A JP61283218A JP28321886A JPS62149844A JP S62149844 A JPS62149844 A JP S62149844A JP 61283218 A JP61283218 A JP 61283218A JP 28321886 A JP28321886 A JP 28321886A JP S62149844 A JPS62149844 A JP S62149844A
- Authority
- JP
- Japan
- Prior art keywords
- amorphous
- value
- electromechanical coupling
- kinds
- magnetostriction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000463 material Substances 0.000 title claims abstract description 18
- 229910052725 zinc Inorganic materials 0.000 claims abstract description 5
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 4
- 239000000203 mixture Substances 0.000 claims description 3
- 230000007797 corrosion Effects 0.000 abstract description 11
- 238000005260 corrosion Methods 0.000 abstract description 11
- 230000008878 coupling Effects 0.000 abstract description 9
- 238000010168 coupling process Methods 0.000 abstract description 9
- 238000005859 coupling reaction Methods 0.000 abstract description 9
- 229910052759 nickel Inorganic materials 0.000 abstract description 8
- 229910052742 iron Inorganic materials 0.000 abstract description 6
- 229910052804 chromium Inorganic materials 0.000 abstract description 4
- 229910052752 metalloid Inorganic materials 0.000 abstract description 4
- 238000005097 cold rolling Methods 0.000 abstract description 2
- 229910052751 metal Inorganic materials 0.000 abstract description 2
- 238000005096 rolling process Methods 0.000 abstract description 2
- 230000015572 biosynthetic process Effects 0.000 abstract 1
- 239000002184 metal Substances 0.000 abstract 1
- 150000002739 metals Chemical class 0.000 abstract 1
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 7
- 229910045601 alloy Inorganic materials 0.000 description 7
- 239000000956 alloy Substances 0.000 description 7
- 238000010438 heat treatment Methods 0.000 description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 229910000859 α-Fe Inorganic materials 0.000 description 3
- 229910000640 Fe alloy Inorganic materials 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 229910000808 amorphous metal alloy Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
Landscapes
- Soft Magnetic Materials (AREA)
Abstract
Description
【発明の詳細な説明】 本発明は磁歪応用の非晶質材料に関するものである。[Detailed description of the invention] The present invention relates to an amorphous material for magnetostrictive applications.
従来、この種用途にはニッケル、13%八βへ鉄合金、
各種フェライト等が実用化されているが、これらはいづ
れも磁歪λとしては比較的大きな値をもっているものの
実用上問題となる電気エネルギーを機械的エネルギーに
変換する変換効率を示す電気機械結合係数にとしては、
せいぜい0.4程度のものしかなく、エネルギー効率の
悪さ、発熱等種々問題があるのが実情であった。Conventionally, for this type of application, nickel, 13% 8β iron alloy,
Various ferrites have been put into practical use, but although they all have relatively large values of magnetostriction λ, they have a practical problem in terms of electromechanical coupling coefficient, which indicates the conversion efficiency of converting electrical energy into mechanical energy. teeth,
The actual situation is that it is only about 0.4 at most, and there are various problems such as poor energy efficiency and heat generation.
すなわち最も多く用いられている金属材料としての13
%八βへFe合金の例では薄板化するための冷間圧延が
相当むつかしく、かつ耐食性が著しく悪いという大きな
欠点をもっている。一方比較的大きな電気機械結合係数
をもつフェライト系の材料では、材質的に脆いという性
質のため磁歪素子として欠は割れ等が著しく発生し易い
という大きな欠点をもっている。In other words, 13 as the most commonly used metal material.
%8β to Fe alloys have the major disadvantage that cold rolling for thinning them is quite difficult and corrosion resistance is extremely poor. On the other hand, ferrite-based materials having a relatively large electromechanical coupling coefficient have a major disadvantage in that they are extremely susceptible to cracking when used as magnetostrictive elements due to their brittle nature.
本発明は従来材質のもつこのような欠点を取り除いた新
材料を提供するものである。The present invention provides a new material that eliminates these drawbacks of conventional materials.
すなわち本発明材は従来材質になく大きな電気機械結合
係数をもつのみならず、高周波特性を向上させる上で必
要となる薄板化が著しく容易であり、かつ耐食性に非常
にすぐれた金属材料である。In other words, the material of the present invention not only has a larger electromechanical coupling coefficient than conventional materials, but it is also extremely easy to make into a thin plate, which is necessary to improve high frequency characteristics, and is a metal material that has excellent corrosion resistance.
また材質自体じん性に優れておりフェライトにみられた
ような割れ、欠は等の欠陥は、まったく発生しないのが
大きな特長である。In addition, the material itself has excellent toughness, and a major feature is that it does not suffer from defects such as cracks and chips that occur with ferrite.
本発明は基本的にはFe、 Nt、 CoおよびCrを
含む金属元素とメタロイド元素としてのSt、 B、
PおよびCの中より選ばれた一種又は二種以上を含
有する非晶質合金よりなる。The present invention basically consists of metal elements including Fe, Nt, Co and Cr, and metalloid elements such as St, B,
It is made of an amorphous alloy containing one or more selected from P and C.
Crは非晶質化し耐食性を著しく向上させる上で必須の
成分であり、本発明合金の場合この量が0.05原子%
以下では効果が少いがそれ以上ならば多い程いい。Cr is an essential component to become amorphous and significantly improve corrosion resistance, and in the case of the present alloy, this amount is 0.05 at%.
Below that, the effect is small, but above that, the more the better.
但し、10原子%をこえると電気機械結合係数への影響
が大きくなり、これを小さくするので0.05%以上、
10%以下(原子比で、以下すべて同様)が好ましい。However, if it exceeds 10 atomic %, the effect on the electromechanical coupling coefficient becomes large, so this should be reduced, so 0.05% or more,
It is preferably 10% or less (in terms of atomic ratio, the same applies hereinafter).
また、いわゆるメタロイド元素としてのP、 Si、
BおよびCの含有量を10%以上38%以下に限定した
のは、この範囲をはずれると非晶質材を得ることが実質
的に困難となり、したがって電気機械結合係数も著しく
小さくなってしまい、かつ脆い材質しか得られないので
実用的でないためである。In addition, so-called metalloid elements such as P, Si,
The reason why the content of B and C is limited to 10% or more and 38% or less is that if it is outside this range, it becomes substantially difficult to obtain an amorphous material, and therefore the electromechanical coupling coefficient becomes significantly small. This is because only a brittle material can be obtained, making it impractical.
なお、Fe、 NiおよびCoの相対量を特許請求の範
囲の如く限定した理由は第一図に示すごとく、これら三
元素の相対量でNi+ Goともに60%以下がつFe
40%以上のところで大きなKをもっているためであり
、これらの中でもNi、 Coがともに約30%以下の
ときはKの値は0.65以上の値となっていて従来材に
ない優れたものであるからである。The reason why the relative amounts of Fe, Ni and Co are limited as in the claims is as shown in Figure 1.
This is because it has a large K when it is over 40%, and among these, when both Ni and Co are about 30% or less, the K value is over 0.65, which is superior to conventional materials. Because there is.
第1図に示されるように、Ni含有量を示すpの値が0
.03以上かつ、0.3以下、又、Co含有量を示すq
の値が0.2以下の場合、特に大きなに値を得られる。As shown in Figure 1, the value of p, which indicates the Ni content, is 0.
.. 03 or more and 0.3 or less, and q indicating Co content
When the value of is 0.2 or less, a particularly large value can be obtained.
K値のFe、 Ni、 Coの相対量に対する依存性は
Cr添加により変わらない。The dependence of the K value on the relative amounts of Fe, Ni, and Co does not change with the addition of Cr.
以下、本発明を実施例に基いて説明する。The present invention will be explained below based on examples.
実施例1
(Fe、−、−+1 NipCOq)too−x−y−
zcrxMyM ’ zにてp。Example 1 (Fe, -, -+1 NipCOq) too-x-y-
p at zcrxMyM' z.
q、xおよびy (z=0)を変えた材質を溶解しいわ
ゆる片ロール法で非晶質合金をつくり緒特性を調べたと
ころ第−表の如き結果を得た。耐食性については、濃度
20%の塩酸に24時間浸した後の試験片の腐食減量を
測定し、腐食減量が0.04wt%以下のものを著しく
優れているもの(◎)とし、0.05〜0.1wt%の
ものを優れているもの(0)とした。又、じん性につい
ては、破壊強さくkg/am”)が350以上のものを
著しく優れているもの(◎)とし、300以上で350
未満のものを優れているもの(0)とした。ここに耐食
性およびじん性は著しく優れているもの(◎)、優れて
いるもの(○)で表示しである。Materials with different q, x, and y (z=0) were melted to produce amorphous alloys by the so-called single roll method, and their properties were investigated, and the results shown in Table 1 were obtained. Regarding corrosion resistance, the corrosion loss of the test piece was measured after being immersed in hydrochloric acid with a concentration of 20% for 24 hours, and those with a corrosion loss of 0.04 wt% or less were considered to be extremely excellent (◎), and those with a corrosion loss of 0.05 to Those containing 0.1 wt% were evaluated as excellent (0). Regarding toughness, those with a breaking strength of 350 or more (kg/am") are considered to be extremely excellent (◎), and those with a breaking strength of 300 or more are considered to be 350 or more.
Those with a score of less than 100% were considered excellent (0). The corrosion resistance and toughness are indicated by markedly excellent (◎) and excellent (◎).
Kの測定法としては、長尺状試料をコイルの中に入れ、
コイルに励磁用交流電流を流すとそれによって生じる交
流磁場を感じて、磁歪効果により試料が伸縮して振動状
態を生じる。To measure K, place a long sample into a coil,
When an excitation alternating current is passed through the coil, the resulting alternating magnetic field is felt, and the sample expands and contracts due to the magnetostrictive effect, creating a vibrating state.
このとき、コイル両端のインピーダンスの絶対値を励磁
電流の周波数をかえて測定すると周波数が高くなるにつ
れてピークと縮小が生じる。At this time, when the absolute value of the impedance at both ends of the coil is measured by changing the frequency of the excitation current, a peak and a reduction occur as the frequency increases.
この場合インピーダンスのピークを生じる周波数fRを
共鳴周波数、インピーダンス極小の周波tf、を反共鳴
周波数と称し、電気機械結合係数には次式で与えられる
。In this case, the frequency fR at which the impedance peak occurs is called the resonant frequency, and the frequency tf at which the impedance is minimum is called the anti-resonant frequency, and the electromechanical coupling coefficient is given by the following equation.
第 1 表
第1表の結果から明らかなようにCr添加により合金は
耐食性およびじん性を著しく向上させている上に大きな
電気機械結合係数をもっことが示される。Table 1 As is clear from the results in Table 1, the addition of Cr significantly improves the corrosion resistance and toughness of the alloy, and also shows that it has a large electromechanical coupling coefficient.
本発明合金においては、Mg、 CaおよびZnの1種
以上を8%を越えない範囲で含有させることにより、電
気機械結合係数Kを大きくするための熱処理が容易とな
り、かつKの周波数依存性およびバイアス磁場依存性が
改善される。但し、これらの量が8%をこえるとKを劣
化させるので実用的でなくなる。In the alloy of the present invention, by containing one or more of Mg, Ca, and Zn within a range not exceeding 8%, heat treatment for increasing the electromechanical coupling coefficient K is facilitated, and the frequency dependence of K and Bias magnetic field dependence is improved. However, if these amounts exceed 8%, K will deteriorate, making it impractical.
第2表及び第3表に試料IIkL12〜14及び阻16
〜18として、Ca、 MgおよびZnを添加した本発
明の合金例の組成を示す。Samples IIkL12-14 and IIkL16 are shown in Tables 2 and 3.
-18 shows the composition of an example alloy of the present invention to which Ca, Mg and Zn are added.
第 2 表
第2図及び第3図に、熱処理温度(annealtem
p)と得られるに値の関係を示した。第2図及び第3図
に示される如(、Mg、 Ca又はZnの添加により高
いに値を得るための熱処理温度の幅が広がり、熱処理が
行ない易(なる。Table 2, Figures 2 and 3 show heat treatment temperatures (annealtem
The relationship between p) and the obtained value is shown. As shown in FIGS. 2 and 3, the addition of Mg, Ca, or Zn widens the range of heat treatment temperatures needed to obtain a high value, making the heat treatment easier.
第4表にバイアス磁場(Hb)に対するに値の依存性の
例を試料Na1l及び阻12の合金について示しである
。K値のピーク値の273の値に対する分布曲線の横幅
をΔHbとして、第4表に他の合金組成のものも含めて
、そのΔH,(Os)を示した。Ca、 Mg又はZn
の添加によりΔH5値が大きくなり、K値のバイアス磁
場依存性が改善されることが示される。Table 4 shows examples of the dependence of the value on the bias magnetic field (Hb) for alloys of samples Na11 and No12. Table 4 shows the ΔH, (Os), including those of other alloy compositions, assuming that the width of the distribution curve for the peak K value of 273 is ΔHb. Ca, Mg or Zn
It is shown that the addition of ΔH5 increases the ΔH5 value and improves the bias magnetic field dependence of the K value.
第 4 表
〒
本発明における非晶質とは、マクロなX線回折によって
明白なデバイシュラ−リングが出ていないという状況を
いい、実用上それで問題ないものである。Table 4 Amorphous in the present invention refers to a situation in which no obvious Debye-Schuller ring is observed by macroscopic X-ray diffraction, and there is no problem in practical use.
第1図は、(Fet−p−qNipcOq) 、scr
*si+ oB+ z系におけるFe、 Ni、 Co
の相対量とKとの関係を示す曲線図、第2図および第3
図は、K値の熱処理温度に対する依存性を示す図、第4
図は、K値のバイアス磁場依存性を示す図である。
゛\−1/
第1図
N1
第2図
anneal temp (’c )
第3図
anneal temp (’c )第4図
Hb(○e〕FIG. 1 shows (Fet-p-qNipcOq), scr
*Fe, Ni, Co in si+oB+z system
Curve diagrams showing the relationship between the relative amount of and K, Figures 2 and 3
Figure 4 shows the dependence of K value on heat treatment temperature.
The figure is a diagram showing the bias magnetic field dependence of the K value.゛\-1/ Figure 1 N1 Figure 2 Anneal temp ('c) Figure 3 Anneal temp ('c) Figure 4 Hb (○e)
Claims (1)
0_0_−_x_−_y_−_zCr_xM_yM′_
z但し、M:Si、B、PおよびCの内より選ばれた一
種又は二種以上の組合せ M′:Mg、CaおよびZnの内より選ばれた一種又は
二種以上の組合せ 0.03≦p≦0.3、0≦q≦0.2 0.05≦x≦10、10≦y+z≦38、0<z≦8 であることを特徴とする非晶質磁歪材料。[Claims] 1. The atomic ratio composition is (Fe_1_-_p_-_qNi_pCO_q)_1_
0_0_-_x_-_y_-_zCr_xM_yM'_
zHowever, M: one or more combinations selected from Si, B, P, and C M': one or more combinations selected from Mg, Ca, and Zn 0.03≦ An amorphous magnetostrictive material characterized in that p≦0.3, 0≦q≦0.2, 0.05≦x≦10, 10≦y+z≦38, and 0<z≦8.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61283218A JPS62149844A (en) | 1979-01-09 | 1986-11-28 | Amorphous magnetostriction material |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP155679A JPS5595626A (en) | 1979-01-09 | 1979-01-09 | Amorphous magnetostrictive material |
JP61283218A JPS62149844A (en) | 1979-01-09 | 1986-11-28 | Amorphous magnetostriction material |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP155679A Division JPS5595626A (en) | 1979-01-09 | 1979-01-09 | Amorphous magnetostrictive material |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62149844A true JPS62149844A (en) | 1987-07-03 |
Family
ID=26334795
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61283218A Pending JPS62149844A (en) | 1979-01-09 | 1986-11-28 | Amorphous magnetostriction material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62149844A (en) |
-
1986
- 1986-11-28 JP JP61283218A patent/JPS62149844A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4437907A (en) | Amorphous alloy for use as a core | |
KR930000413B1 (en) | Soft magnetic materials | |
JP2004052112A (en) | Molybdenum alloy | |
JPH03264654A (en) | Use of glass-like alloy | |
Aoki et al. | Ductilization of Ni3Al by alloying with boron and substitutional elements | |
JPH10237603A (en) | Free cutting ferritic stainless steel excellent in corrosion resistance | |
JPS61210143A (en) | Amorphous alloy having high corrosion resistance | |
US5006054A (en) | Low density heat resistant intermetallic alloys of the Al3 Ti type | |
US4440585A (en) | Amorphous magnetic alloy | |
JPS62149844A (en) | Amorphous magnetostriction material | |
KIKUCHI et al. | Young's Modulus and Delay Time Characteristics of Ferromagnetic Fe-Si-B Amorphous Alloys | |
JP4573918B2 (en) | Flat Fe-based alloy powder for magnetic shield | |
Major et al. | Physical metallurgy and properties of a new high saturation Co-Fe alloy | |
US1203555A (en) | Metal alloy. | |
US6093337A (en) | Material for magnetostrictive sensors and other applications based on ferrite materials | |
JP2791564B2 (en) | Magnetostrictive material | |
JP2698769B2 (en) | Manufacturing method of high permeability core | |
US4891184A (en) | Low density heat resistant intermetallic alloys of the Al3 Ti type | |
JPS63274764A (en) | Alloy target for magneto-optical recording | |
JPH02258957A (en) | Fe-base soft-magnetic alloy | |
JPS58123850A (en) | Amorphous magnetic alloy | |
JP2002249858A (en) | Iron - chromium - aluminum alloy for heating wire | |
JPH0255497B2 (en) | ||
JPH0255498B2 (en) | ||
JPS58164201A (en) | Wound core |