JPS6354758B2 - - Google Patents

Info

Publication number
JPS6354758B2
JPS6354758B2 JP55107317A JP10731780A JPS6354758B2 JP S6354758 B2 JPS6354758 B2 JP S6354758B2 JP 55107317 A JP55107317 A JP 55107317A JP 10731780 A JP10731780 A JP 10731780A JP S6354758 B2 JPS6354758 B2 JP S6354758B2
Authority
JP
Japan
Prior art keywords
pressure
pressure vessel
steam
low
downstream
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55107317A
Other languages
Japanese (ja)
Other versions
JPS5731998A (en
Inventor
Yasuyuki Nakabayashi
Hikoo Matsura
Michio Kurihara
Takao Kamei
Akira Nakamura
Keiichi Komai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Electric Power Development Co Ltd
Kawasaki Motors Ltd
Original Assignee
Electric Power Development Co Ltd
Kawasaki Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electric Power Development Co Ltd, Kawasaki Jukogyo KK filed Critical Electric Power Development Co Ltd
Priority to JP10731780A priority Critical patent/JPS5731998A/en
Publication of JPS5731998A publication Critical patent/JPS5731998A/en
Publication of JPS6354758B2 publication Critical patent/JPS6354758B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working

Landscapes

  • Drying Of Solid Materials (AREA)
  • Solid Fuels And Fuel-Associated Substances (AREA)

Description

【発明の詳細な説明】 本発明は、水が蒸発し得ない雰囲気(以下、非
蒸発雰囲気という)で加熱すると、水分が液状で
離脱する褐炭のような低品位炭の脱水に関し、詳
しくは、前記低品位炭を移動する熱水で予熱した
後、水蒸気で加熱する脱水方法およびその装置に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to the dehydration of low-rank coal such as lignite from which water is released in liquid form when heated in an atmosphere where water cannot evaporate (hereinafter referred to as non-evaporation atmosphere). The present invention relates to a dehydration method and apparatus for preheating the low-rank coal with moving hot water and then heating it with steam.

本件明細書において、「低品位炭」なる用語は、 1 亜瀝青炭、褐炭等の低級石炭(石炭化度の進
んでいない石炭) 2 亜炭、泥炭、草炭等の石炭類似物(石炭化度
が不十分で我国の鉱業法では石炭から除外され
るもの) または、 3 植物、その腐敗物等の石炭根源物質(石炭化
作用を受ければ石炭に変成していくと想定され
る有機固形物) のいずれかに属する多孔質有機固形物であり、よ
り簡明には、 「水分が蒸発し得ない雰囲気で加熱すると、水
分が液状で離脱する多孔質有機固形物」 として定義されるものである。
In this specification, the term "low-grade coal" refers to 1. low-grade coals such as sub-bituminous coal and lignite (coal with a low degree of coalification); 2. coal analogues such as lignite, peat, and grass coal (with a low degree of coalification). 3. Coal source materials such as plants and their decayed materials (organic solids that are assumed to transform into coal when subjected to coalification). More simply, it is defined as ``a porous organic solid that loses water in liquid form when heated in an atmosphere where water cannot evaporate.''

一般に褐炭などの有機固形物を脱水するには、
従来から気流乾燥法や間接加熱乾燥法等の蒸発乾
燥法が用いられている。しかし、これらの技術で
は熱消費が大きいこと、予め脱水物を細粒化して
おく必要があること、脱水製品が発塵したり自然
発火しやすいこと等の欠点があるので、以前から
その代替技術の開発が進められている。
Generally, to dehydrate organic solids such as lignite,
Conventionally, evaporative drying methods such as flash drying method and indirect heating drying method have been used. However, these technologies have drawbacks such as high heat consumption, the need to refine the dehydrated product into fine particles in advance, and the tendency for dehydrated products to generate dust and spontaneously ignite. Therefore, alternative technologies have been developed for some time. development is underway.

ところで、褐炭等の多孔質有機固形物を非蒸発
雰囲気で加熱すると物理的化学的変化が生じ、こ
れ等固形物の細孔内に含まれている水分が液状で
離脱する現象(以下、液状脱水現象という)が知
られている。この液状脱水現象を利用した脱水方
法として、飽和蒸気圧より高い圧力の熱水に褐炭
を浸漬させて加熱する方法(以下、水中加熱脱水
法という)と、飽和蒸気雰囲気で褐炭を加熱する
方法(以下、飽和蒸気脱水法という)がある。前
者はオーストラリア特許第430626号で紹介されて
おり、後者は今世紀初頭に提案されている。
By the way, when porous organic solids such as lignite are heated in a non-evaporating atmosphere, physical and chemical changes occur, and the water contained in the pores of these solids is released in liquid form (hereinafter referred to as liquid dehydration). phenomenon) is known. Dehydration methods that utilize this liquid dehydration phenomenon include a method in which lignite is immersed in hot water with a pressure higher than the saturated steam pressure (hereinafter referred to as underwater heating dehydration method), and a method in which lignite is heated in a saturated steam atmosphere ( There is a saturated steam dehydration method (hereinafter referred to as saturated steam dehydration method). The former is introduced in Australian Patent No. 430626 and the latter was proposed in the early part of this century.

前者の技術は、加熱完了後もなお褐炭が熱水に
浸漬されているので、減圧過程における再吸湿に
より脱水率が低下する欠点がある。後者の技術を
実用化したものには、オーストリー特許第190490
号のように同一形状の複数の圧力容器をその処理
過程に時間的ずれをもたせて回分(バツチ)処理
する褐炭の脱水法がある。
The former technique has the drawback that the lignite is still immersed in hot water even after heating is completed, and the dehydration rate decreases due to reabsorption of moisture during the depressurization process. A practical application of the latter technology is Australian Patent No. 190490.
There is a dehydration method for lignite that involves batch processing using multiple pressure vessels of the same shape with a time lag in the treatment process.

たとえばプロセスを第1図に示すように、圧力
容器に先ず大気圧状態で褐炭を投入し、予熱した
後外部の蒸気源より飽和蒸気を供給して加熱昇圧
し、その後減圧して大気圧とし脱水褐炭を排出す
る。すなわち、予熱および加熱過程では液状脱水
が行なわれ、減圧過程では残水分の蒸発脱水が行
なわれる。ところで加熱の際発生する熱水は、熱
効率を向上させるため予熱に利用されるが、その
ため各圧力容器の下方に管路で連通された熱水貯
留器が設けられており、熱水を褐炭と分離貯留す
ることが、この技術の特徴である。この予熱は各
圧力容器の処理過程の時間的ずれを利用して行な
われる。すなわちある圧力容器とそれに付随する
熱水貯留器が減圧過程にあるとき蒸発する蒸気あ
るいは前記熱水(以下、予熱媒体という)を、こ
の圧力容器および貯留器と予熱過程にある他の圧
力容器との差圧でもつて移動させている。上記の
予熱媒体のうち蒸気は予熱過程にある圧力容器内
に充満して褐炭を予熱するが、熱水は褐炭投入直
後の圧力容器に導入され褐炭層を流下することに
よつてのみ熱交換を行ない、直ちに熱水貯留器に
排出される。
For example, as shown in Figure 1, lignite is first charged into a pressure vessel at atmospheric pressure, preheated, saturated steam is supplied from an external steam source to heat and pressurize it, and then the pressure is reduced to atmospheric pressure and dehydrated. Discharge lignite. That is, liquid dehydration is performed in the preheating and heating processes, and evaporative dehydration of residual water is performed in the pressure reduction process. By the way, hot water generated during heating is used for preheating in order to improve thermal efficiency. For this purpose, a hot water reservoir connected via a pipe is installed below each pressure vessel, and the hot water is used to convert the hot water into lignite and brown coal. A feature of this technology is that it is separated and stored. This preheating is performed by utilizing the time lag between the processing steps of each pressure vessel. In other words, when a certain pressure vessel and its associated hot water reservoir are in the depressurization process, the steam or the hot water (hereinafter referred to as preheating medium) that evaporates is transferred between this pressure vessel and its associated hot water reservoir and other pressure vessels that are in the preheating process. It is moved even with a pressure difference of . Of the preheating media mentioned above, steam fills the pressure vessel during the preheating process and preheats the brown coal, but hot water is introduced into the pressure vessel immediately after the brown coal is charged and exchanges heat only by flowing down the brown coal layer. and immediately discharged into a hot water reservoir.

このような飽和蒸気脱水法では、圧力容器毎に
熱水貯留器を設けねばならず脱水設備が大規模と
なること、飽和蒸気の供給を受ける加熱過程の初
期と終期では圧力容器の内圧や褐炭温度が異るた
め、蒸気流量が変動するので、蒸気発生量を大き
くするか大容量のアキユムレータを設けねばなら
ないこと、熱効率を向上させるための予熱媒体の
移動は前述したように2容器間の圧力差を利用し
ているため、大気圧(ほぼ100℃)以下の熱水は
投炭により大気圧状態となつている圧力容器には
移動しえないからこのような温度の熱水の顕熱を
予熱に利用できないこと、予熱過程における褐炭
と熱水との接触は熱水の流下中に限られ時間が短
く熱回収が不十分であること等の欠点がある。
In such a saturated steam dehydration method, a hot water storage device must be provided for each pressure vessel, making the dehydration equipment large-scale.At the beginning and end of the heating process when saturated steam is supplied, the internal pressure of the pressure vessel and lignite Since the steam flow rate fluctuates due to the difference in temperature, it is necessary to increase the amount of steam generated or install a large-capacity accumulator.As mentioned above, the movement of the preheating medium to improve thermal efficiency depends on the pressure between the two containers. Since hot water below atmospheric pressure (approximately 100℃) cannot move into a pressure vessel that is at atmospheric pressure due to coal injection, the sensible heat of hot water at such a temperature cannot be transferred. It has drawbacks such as not being able to be used for preheating, and contact between lignite and hot water during the preheating process being limited to the time when the hot water is flowing down, resulting in short time and insufficient heat recovery.

本発明は、蒸発乾燥法の問題点を解決するため
に、液状脱水現象を効果的に利用した褐炭等の多
孔質有機固形物の脱水技術であり、前述した水中
加熱脱水法で採用されている褐炭の熱水浸漬によ
る予熱と、飽和蒸気脱水法で採用されている蒸気
加熱による脱水とを有機的に組合せることによ
り、上記飽和蒸気脱水法の欠点を解決する低品位
炭の脱水方法およびその装置を提供することを目
的とする。
The present invention is a dehydration technology for porous organic solids such as lignite that effectively utilizes the liquid dehydration phenomenon in order to solve the problems of the evaporative drying method, and is adopted in the underwater heating dehydration method described above. A dehydration method for low-rank coal that solves the drawbacks of the saturated steam dehydration method by organically combining preheating of brown coal by immersion in hot water and dehydration by steam heating employed in the saturated steam dehydration method, and its method. The purpose is to provide equipment.

本発明は、相互に隣接した上流側の圧力容器の
下部と下流側の圧力容器の上部とを管路で相互に
連結することにより、2以上の圧力容器を環状に
連結し、前記圧力容器の内、連続する一群の圧力
容器に脱水すべき低品位炭を装填し、この一群の
一端の圧力容器を最も上流側の圧力容器として、
これに高温高圧水蒸気を注入して低品位炭を加熱
することにより脱水し、低品位炭から分離された
水分および水蒸気の凝縮水から成る熱水を下流側
となる圧力容器に順次送り込んでそれらの圧力容
器内の低品位炭を予熱するとともに余剰水を前記
一群中の他端の最も下流側となる圧力容器から排
出し、前記の最上流とした圧力容器の加熱脱水が
終了しかつその圧力容器内から熱水を排出し終え
たとき、または前記最上流とした圧力容器の直ぐ
下流になる圧力容器に水蒸気が幾分供給されたと
きに、前記の最上流とした圧力容器を直ぐ下流に
なる圧力容器と遮断して内部の水蒸気を開放して
減圧した後脱水済みの低品位炭を排出して一連の
脱水操作を終了し、前記の最下流となつていた圧
力容器に隣接し、更に下流側となる圧力容器に脱
水すべき低品位炭が装填され予熱の準備が終了し
た時点で、前記の最上流としていた圧力容器の下
流側に隣接した圧力容器から起算して前記一群の
数と同数の圧力容器で前述と同様の脱水操作を行
ない、このような脱水操作を順次下流側とした方
向に移していくことを特徴とする低品位炭の加熱
脱水方法である。
The present invention connects two or more pressure vessels in an annular shape by interconnecting the lower part of the upstream pressure vessel and the upper part of the downstream pressure vessel which are adjacent to each other through a pipe, and The low-rank coal to be dehydrated is loaded into a continuous group of pressure vessels, and the pressure vessel at one end of this group is designated as the most upstream pressure vessel.
The low-rank coal is dehydrated by injecting high-temperature and high-pressure steam to heat the low-rank coal, and hot water consisting of moisture separated from the low-rank coal and condensed water of steam is sequentially sent to the downstream pressure vessel to dehydrate them. The low-rank coal in the pressure vessel is preheated, and surplus water is discharged from the pressure vessel at the other end of the group, which is the most downstream side, and the heating dehydration of the most upstream pressure vessel is completed, and the pressure vessel When the hot water has been discharged from the inside, or when some steam has been supplied to the pressure vessel immediately downstream of the most upstream pressure vessel, After sealing off the pressure vessel and releasing the internal water vapor to reduce the pressure, the dehydrated low-rank coal is discharged to complete the series of dehydration operations, and then the coal is placed next to the pressure vessel, which was the most downstream, and further downstream. When the low-rank coal to be dehydrated is loaded into the side pressure vessel and the preparation for preheating is completed, the number of coals equal to the number of the group, starting from the pressure vessel adjacent to the downstream side of the pressure vessel which was the most upstream pressure vessel, is This heating dehydration method for low-rank coal is characterized in that the same dehydration operation as described above is performed in a pressure vessel, and the dehydration operation is sequentially transferred downstream.

好ましい実施態様では、環状に連結された全圧
力容器でもつて前記一群の圧力容器を形成させる
ことを特徴とする。
A preferred embodiment is characterized in that the group of pressure vessels is formed by all pressure vessels connected in an annular manner.

また好ましい実施態様では、環状に連結された
全圧力容器数は20以下であることを特徴とする。
Further, a preferred embodiment is characterized in that the total number of pressure vessels connected in an annular manner is 20 or less.

また本発明は、上流と下流の方向性を有する閉
鎖系に連結されるべき複数の低品位炭加熱脱水用
の圧力容器と、この閉鎖系で相互に隣接する上流
側に当る圧力容器の下部と下流側に当る圧力容器
の上部とを開閉弁を介して連結する熱水移送用管
路と、前記各圧力容器を開閉弁を介して水蒸気源
に連結する高温高圧水蒸気供給用管路と、前記各
圧力容器より内部の水蒸気を開放して減圧するた
めの開閉弁を備えた管路とを有することを特徴と
する加熱脱水をするための低品位炭の加熱脱水装
置である。
The present invention also provides a plurality of pressure vessels for heating and dehydrating low-rank coal to be connected to a closed system having upstream and downstream directionality, and lower portions of the pressure vessels adjacent to each other on the upstream side of this closed system. a hot water transfer pipeline connected to the upper part of the pressure vessel on the downstream side via an on-off valve; a high-temperature, high-pressure steam supply pipeline connected to the steam source via the on-off valve of each of the pressure vessels; This heating dehydration apparatus for low-rank coal is characterized by having a pipe line equipped with an on-off valve for releasing the internal steam from each pressure vessel to reduce the pressure.

以下本発明を実施例に基いて説明する。第2図
は本発明の脱水方法を実施するための装置の簡略
化した平面図を示す。脱水装置は複数のたとえば
n基の同一形状の圧力容器A1,A2,…,Ai,…
Aoより構成され、これらは開閉弁B1,B2,…,
Bi,…Boを介装した管路C1,C2,…,Ci,…Co
で接続されて閉回路を形成している。なお前記管
路は第3図(第2図の―矢視図)に示すよう
に圧力容器の下部とその直ぐ下流(第2図の矢符
Pの方向に従う)の圧力容器の上部とを接続して
いる。
The present invention will be explained below based on examples. FIG. 2 shows a simplified plan view of an apparatus for carrying out the dewatering method of the invention. The dehydration device includes a plurality of, for example, n pressure vessels A 1 , A 2 , ..., A i , ... having the same shape.
These are on-off valves B 1 , B 2 ,...,
Conduits C 1 , C 2 ,…, C i ,…C o with B i ,…B o interposed
are connected to form a closed circuit. The pipe connects the lower part of the pressure vessel and the upper part of the pressure vessel immediately downstream (following the direction of arrow P in Figure 2) as shown in Figure 3 (-arrow view in Figure 2). are doing.

第3図を参照して、褐炭Kは整粒手段Mにより
整粒され、搬送手段Qたとえばベルトコンベアに
より搬送される。搬送手段Qには分配手段Rたと
えばトリツパが備えられており、褐炭は上流の圧
力容器から順次投入される。圧力容器は大気圧状
態で褐炭を受入れた後密閉され後述する手順で予
熱した後蒸気源Sより蒸気の供給を受け加熱し、
その後減圧されて大気圧状態で脱水褐炭を排出す
る。
Referring to FIG. 3, lignite K is sized by a sizing means M and conveyed by a conveying means Q, for example, a belt conveyor. The conveying means Q is equipped with a distributing means R, such as a tripper, and lignite is sequentially introduced from an upstream pressure vessel. The pressure vessel receives lignite at atmospheric pressure, is sealed, is preheated by the procedure described below, is supplied with steam from a steam source S, and is heated.
Thereafter, the pressure is reduced and the dehydrated lignite is discharged at atmospheric pressure.

以下にこの脱水処理過程を詳細に説明する。
今、蒸気源Sよりある圧力容器A1に蒸気が供給
される直前の状態から説明する。圧力容器A1
よびその下流で連続する合計i基の圧力容器A1
A2,…,Aiは褐炭が投入され密閉されている。
これらの圧力容器は第2図に斜線で示されてい
る。これらi基の圧力容器のうち最も下流の圧力
容器Aiを除く(i−1)基の圧力容器は弁B1
B2,…,Bi-2を開くことにより連通されており、
高圧の熱水で満され褐炭を予熱している。
This dehydration treatment process will be explained in detail below.
We will now explain the state immediately before steam is supplied from the steam source S to a certain pressure vessel A1 . A pressure vessel A 1 and a total of i pressure vessels A 1 that are continuous downstream thereof,
A 2 , ..., A i are filled with lignite and sealed.
These pressure vessels are shown shaded in FIG. Of these i group pressure vessels, the (i-1) group pressure vessels excluding the most downstream pressure vessel A i have valves B 1 ,
Communication is established by opening B 2 ,...,B i-2 ,
It is filled with high-pressure hot water to preheat the lignite.

次に、弁D1を開いて圧力容器A1に蒸気源Sよ
り蒸気を供給する。この時弁Bi-1を開いて圧力容
器Ai-1とAiを連通させると、圧力容器A1内の熱
水は下流の圧力容器に押出され上部の褐炭から順
次蒸気雰囲気状態におかれると共に、他の圧力容
器A2,A3,…,Aiにはそれぞれ直ぐ上流の各圧
力容器内の熱水が注入される。このようにして圧
力容器Aiに熱水が満されるとその容器の圧力も圧
力容器A1の圧力にほぼ等しい高圧となる。この
間、圧力容器A1において蒸気による加熱脱水が
行なわれ、これにより生じる蒸気の凝縮水と褐炭
からの離脱水分からなる熱水が残存予熱水と共に
その底部に溜る。さらに圧力容器A1の熱水が全
て排出されるまで蒸気を供給すると、他の圧力容
器A2,A3,…,Aiは全熱水を収容しきれないの
で圧力容器Aiが熱水で充満された後その下部にあ
る排水管の弁Ei(図示せず)を開いて余剰熱水が
排出される。
Next, the valve D1 is opened to supply steam from the steam source S to the pressure vessel A1 . At this time, when valve B i-1 is opened and pressure vessels A i-1 and A i communicate with each other, the hot water in pressure vessel A 1 is pushed out to the downstream pressure vessel, and the lignite at the top is sequentially turned into a steam atmosphere. At the same time, the hot water in each pressure vessel immediately upstream is injected into the other pressure vessels A 2 , A 3 , . . . , A i . When the pressure vessel A i is filled with hot water in this manner, the pressure in the vessel becomes high enough to be approximately equal to the pressure in the pressure vessel A 1 . During this time, heating dehydration using steam is performed in the pressure vessel A1 , and hot water consisting of condensed water of the steam generated thereby and water released from the lignite accumulates at the bottom of the vessel together with the remaining preheated water. Furthermore, if steam is supplied until all the hot water in pressure vessel A 1 is discharged, the other pressure vessels A 2 , A 3 , ..., A i cannot accommodate all the hot water, so pressure vessel A After the hot water is filled with hot water, the valve E i (not shown) of the drain pipe located at the bottom is opened and the excess hot water is discharged.

圧力容器A1への蒸気の供給が終了する(蒸気
の供給停止は圧力容器A1からの熱水の排出が無
いことまたは圧力容器A2に蒸気が侵入したこと
を検知して行なえばよい。)と開閉弁B1で管路C1
を遮断し、弁F1を開いて圧力容器A1を減圧した
後脱水褐炭を取出す。この間に弁D2が開いて圧
力容器A2に蒸気源Sより蒸気の供給が開始され
る。なおこの時までに圧力容器Ai+1は褐炭の投入
と容器の密閉が終了しておればよい。そして上述
した手順でもつて加熱脱水すると共に圧力容器
A3,A4,…,Ai+1内に熱水が注入され予熱が行
なわれる。なお減圧時蒸気が管路G1を介して容
器外に放出されるが、その単位体積当りのエンタ
ルピは同一温度の熱水のエンタルピの1/20にすぎ
ないので、熱損失は極めて少い。しかし第3図に
示すようにたとえば圧力容器の上方のバンカU1
U2,…内の褐炭層を通過させるような手段でも
つて放出熱量を少くすることもできる。
The supply of steam to the pressure vessel A1 is terminated (the supply of steam may be stopped by detecting that no hot water is discharged from the pressure vessel A1 or that steam has entered the pressure vessel A2) . ) and on-off valve B 1 with conduit C 1
is shut off, valve F1 is opened to reduce the pressure in pressure vessel A1 , and then the dehydrated lignite is taken out. During this time, the valve D 2 is opened and the supply of steam from the steam source S to the pressure vessel A 2 is started. By this time, the charging of lignite and the sealing of the pressure vessel A i+1 should have been completed. Then, heat dehydration is performed using the above-mentioned procedure, and the pressure vessel is
Hot water is injected into A 3 , A 4 , ..., A i+1 to perform preheating. Note that when the pressure is reduced, steam is released outside the container via the pipe G1 , but its enthalpy per unit volume is only 1/20 of the enthalpy of hot water at the same temperature, so the heat loss is extremely small. However, as shown in FIG. 3, for example, the bunker U 1 above the pressure vessel,
It is also possible to reduce the amount of heat released by passing the lignite layer through the lignite layer in U 2 , ....

以上述べた一連の操作を繰返すことにより、褐
炭は比較的低温の熱水とから徐々に高温の熱水で
もつて行なわれる水中高圧予熱と蒸気による加熱
との一連の昇温過程で液状脱水され、その後の蒸
気中での減圧により熱水が褐炭に再吸湿すること
なく褐炭の顕熱を利用して残存する水分も蒸発さ
れて脱水はさらに進行する。
By repeating the series of operations described above, lignite is dehydrated in liquid form through a series of temperature-raising processes, including underwater high-pressure preheating with relatively low-temperature hot water and gradually high-temperature hot water, and heating with steam. Thereafter, due to the reduced pressure in the steam, the remaining moisture is evaporated using the sensible heat of the brown coal without the hot water re-absorbing moisture into the brown coal, and the dehydration further progresses.

ところで、本発明においてn=iとする態様が
ある。この態様は、全部の圧力容器を最も無駄な
く使えるので有利であり、特に限られた基数の圧
力容器を用いて本発明を実施する場合に都合が良
い。しかしある圧力容器A1の蒸気供給過程が終
了した時、ただちに圧力容器A2へ蒸気の供給を
開始することはできない。なぜならAi+1の圧力容
器はA1の圧力容器を意味するから、圧力容器A3
〜Ai+1に上流の圧力容器A2から熱水を移動させ
ることはできず、圧力容器A2への蒸気供給前に
圧力容器A1の減圧、排炭、投炭操作を終了して
おく必要がある。
By the way, in the present invention, there is a mode in which n=i. This embodiment is advantageous because all the pressure vessels can be used with the least wastage, and is particularly convenient when implementing the present invention using a limited number of pressure vessels. However, when the steam supply process for a certain pressure vessel A 1 is completed, it is not possible to immediately start supplying steam to the pressure vessel A 2 . Because the pressure vessel of A i+1 means the pressure vessel of A 1 , so the pressure vessel A 3
It is not possible to move hot water from upstream pressure vessel A 2 to ~A i+1 , and the depressurization, coal discharge, and coal injection operations of pressure vessel A 1 must be completed before steam is supplied to pressure vessel A 2 . It is necessary to keep it.

管路C1,C2,…の内部の熱水は、高温側(上
流の圧力容器側)が下方に位置しているため、熱
水の移動が停止すると管内の対流を生じやすい。
従つて、n=iの態様において、ある圧力容器
A1が減圧や排入炭を行なう期間中に対流が発生
することを防止するためには、各管路C1,C2
…に逆止弁を設けるか、前記開閉弁B1,B2,…
のすべてをこの期間中だけ閉じれば良い。また、
この期間、圧力容器A2へ少流量の蒸気供給を開
始すると共に、この期間だけ通常より1基少い
A3,A4,…,Aiの(i−2)基の圧力容器に熱
水を移動させ、圧力容器Aiより少流量で排水する
ようにしても良い。
Since the high temperature side (upstream pressure vessel side) of the hot water inside the pipes C 1 , C 2 , ... is located below, convection within the pipes tends to occur when the movement of the hot water stops.
Therefore, in the embodiment where n=i, a certain pressure vessel
In order to prevent convection from occurring during the period when A 1 is depressurizing or discharging coal, each pipe C 1 , C 2 ,
Either check valves are provided in... or the on-off valves B 1 , B 2 ,...
You only need to close all of them during this period. Also,
During this period, we will start supplying a small amount of steam to pressure vessel A 2 , and for this period only we will be supplying one vessel less than usual.
The hot water may be moved to the (i-2) pressure vessels of A 3 , A 4 , . . . , A i and drained at a smaller flow rate than the pressure vessels A i .

一方、n>iであり、ある圧力容器A1の蒸気
供給過程が終了すると同時に、圧力容器A2への
蒸気の供給を開始すると共に、圧力容器A3,A4
…,Ai+1の(i−1)基に熱水を移動させる態様
がある。この態様では、蒸気の供給が連続的にな
るようにし、また管路C1,C2,…で常に熱水が
移動して、対流も少なくなるようにすることもで
きる。なお上述のn=iの如き対流防止方法を併
用してもよい。弁B1,B2,…や弁E1,E2,…に
流量調整弁を用いて、管路C1,C2,…内の熱水
の流速を対流速度より大きくしておけば対流が防
止できると共に、蒸気供給過程にある圧力容器内
における液面の降下速度も一定になるので、蒸気
流量の変動もきわめて少くなり、好適である。
On the other hand, n>i, and at the same time as the steam supply process of a certain pressure vessel A 1 is completed, the supply of steam to the pressure vessel A 2 is started, and at the same time, the steam supply to the pressure vessel A 3 , A 4 ,
..., there is an embodiment in which hot water is transferred to the (i-1) group of A i+1 . In this embodiment, the supply of steam can be made continuous, and the hot water can be constantly moved in the pipes C 1 , C 2 , . . . , so that convection can also be reduced. Note that a convection prevention method such as the above-mentioned n=i may be used in combination. If flow rate adjustment valves are used for valves B 1 , B 2 , ... and valves E 1 , E 2 , ... to make the flow rate of hot water in the pipes C 1 , C 2 , ... higher than the convection speed, convection will occur. This method is preferable because it prevents this and also makes the rate of drop of the liquid level in the pressure vessel constant during the steam supply process, so that fluctuations in the steam flow rate are extremely small.

上述の態様のいかんにかかわらず圧力容器の基
数nを大きくすると、予熱中の褐炭がより十分に
昇温し加熱時間を短縮できる。しかし、その短縮
には限界があるので、nを過大にすると処理時間
がむしろ長大し、このため放熱により熱効率が低
下することから、nは20以下が好ましい。但し上
述の記載から解るように2以上であることが必要
である。
Regardless of the above-mentioned embodiments, if the base number n of the pressure vessel is increased, the temperature of the lignite being preheated can be raised more sufficiently, and the heating time can be shortened. However, there is a limit to its reduction, and if n is made too large, the processing time will actually become longer, and as a result, the thermal efficiency will decrease due to heat dissipation, so n is preferably 20 or less. However, as can be seen from the above description, it is necessary that the number is 2 or more.

ところで加熱、予熱、排炭の各時間の最適値は
褐炭の物性値(比熱、熱伝導率等)、含水率、毛
細管の状態、粒径それに圧力容器の容量等によつ
ても異なるので、上記したnやiを適切に選択し
各処理時間の最適値に近づけることによつて熱効
率の向上や処理時間の短縮を図ることができる。
By the way, the optimal values for the heating, preheating, and coal discharge times vary depending on the physical properties of lignite (specific heat, thermal conductivity, etc.), moisture content, capillary condition, particle size, and capacity of the pressure vessel. By appropriately selecting n and i and bringing them close to the optimum values for each processing time, it is possible to improve thermal efficiency and shorten processing time.

以上の説明においては、蒸気源から供給される
蒸気は、飽和水蒸気であつたが、本発明による脱
水方法は、褐炭の昇温のかなりの部分を水中で行
なうので、過熱水蒸気を供給しても蒸発脱水は最
終部に限られるので、液状脱水現象の特質は十分
に活かされる。この場合、蒸気源より過熱水蒸気
の供給を受ける圧力容器内において、過熱水蒸気
は飽和化して、さらに凝縮して熱水となる。した
がつてこの圧力容器は過熱水蒸気の供給を受ける
と同時に熱水を排出し、他の圧力容器に供給する
ことになる。
In the above explanation, the steam supplied from the steam source was saturated steam, but in the dehydration method according to the present invention, a considerable portion of the heating of lignite is carried out in water, so even if superheated steam is supplied, Since evaporative dehydration is limited to the final stage, the characteristics of liquid dehydration can be fully utilized. In this case, the superheated steam is saturated and further condensed into hot water in the pressure vessel that receives superheated steam from the steam source. Therefore, this pressure vessel is supplied with superheated steam and simultaneously discharges hot water and supplies it to other pressure vessels.

また、脱水物を褐炭で説明したが、非常発雰囲
気で加熱されることにより、液状脱水する多孔質
有機固形物であれば、すべて適用できることは言
うまでもない。そして本脱水方法における加熱過
程を液状脱水現象を生じない固形物を高温に加熱
する産業上の要求に答えるために適用することも
可能であることを付言しておく。
Furthermore, although the dehydrated product has been described using lignite, it goes without saying that any porous organic solid that dehydrates into a liquid state when heated in an emergency atmosphere can be applied. It should be added that the heating process in this dehydration method can also be applied to meet the industrial demand for heating solid materials to high temperatures that do not cause liquid dehydration.

以上詳細に述べたように本発明によれば、蒸気
加熱と同時にこの圧力でもつて熱水を環状に配置
した他の圧力容器に移動させるので、前述した飽
和蒸気脱水法で必要とされる熱水貯留器は不要と
なり設備全体が簡素化できる。
As described in detail above, according to the present invention, the hot water is transferred to another pressure vessel arranged in an annular manner at the same time as steam heating at this pressure. There is no need for a reservoir, and the entire facility can be simplified.

加えて熱水温度のいかんにかかわらず下流の圧
力容器に注入できるので、圧力容器の基数を増す
ことにより飽和蒸気脱水法では利用できなかつた
100℃以下の熱水からも熱回収ができ熱回収率を
著しく向上させることができる。
In addition, since the hot water can be injected into downstream pressure vessels regardless of its temperature, increasing the number of pressure vessels makes it possible to use hot water that cannot be used with saturated steam dehydration.
Heat can be recovered even from hot water below 100°C, and the heat recovery rate can be significantly improved.

蒸気の供給を受けている圧力容器において、脱
水される低品位炭は供給された蒸気雰囲気にある
ものだけであつて熱水中の低品位炭は未だ予熱の
最終過程にあると言える。したがつて逐次供給さ
れる蒸気は熱水面上に新たに露出する低品位炭を
脱水の対象とするため大量の蒸気をバツチ式に供
給する必要がなく、しかも連続的に一定量を供給
すればよいので、蒸気源の運転を定常的に行なう
ことができる。
In a pressure vessel that is supplied with steam, the low-rank coal that is dehydrated is only in the supplied steam atmosphere, and it can be said that the low-rank coal in the hot water is still in the final process of preheating. Therefore, since the steam supplied sequentially dehydrates the low-rank coal newly exposed on the hot water surface, there is no need to supply a large amount of steam in batches, and moreover, if a constant amount is supplied continuously, Therefore, the steam source can be operated regularly.

脱水物の予熱を熱水で行なうが前述の水中加熱
脱水法と異なり加熱過程は蒸気で行なうので、減
圧時熱水が再吸着することが防止できると共に、
低品位炭の顕熱で減圧時に残水分の蒸発も行なう
ことができる。
The preheating of the dehydrated product is performed with hot water, but unlike the above-mentioned underwater heating dehydration method, the heating process is performed with steam, so it is possible to prevent the hot water from being re-adsorbed during depressurization, and
Residual water can also be evaporated during pressure reduction using the sensible heat of low-rank coal.

予熱水は圧力容器の上部から注入されて下部よ
り排出されるので、容器内で対流を起すことなく
熱交換が行なわれる。したがつて予熱水は極めて
変動の少い安定した、“温度が下流に行くに従い
低くなる”温度低下を呈するので熱効率が高く、
また脱水物に急激な熱負荷を与えることなく予熱
できる等の幾多の顕著な効果を有する。
Since preheated water is injected from the top of the pressure vessel and discharged from the bottom, heat exchange is performed without causing convection within the vessel. Therefore, the preheated water exhibits a stable temperature drop with extremely little fluctuation, and the temperature decreases as it goes downstream, resulting in high thermal efficiency.
It also has many remarkable effects, such as being able to preheat the dehydrated material without applying a sudden heat load.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、従来技術である飽和蒸気脱水法にお
ける処理過程を示す流れ図、第2図は、本発明の
方法を実施するために環状配置された圧力容器と
管路系の簡略平面図、第3図は第2図の矢視―
に当る部分の本発明装置の簡略立面図である。 A1,A2,…,Ao…圧力容器、C1,C2,…,Co
…管路、K…褐炭、S…蒸気源。
FIG. 1 is a flowchart showing the treatment process in the conventional saturated steam dehydration method, FIG. Figure 3 is the arrow view of Figure 2.
FIG. 2 is a simplified elevational view of a portion of the device of the present invention. A 1 , A 2 ,…, A o …pressure vessel, C 1 , C 2 ,…, Co
...Pipe line, K...Lignite, S...Steam source.

Claims (1)

【特許請求の範囲】 1 相互に隣接した上流側の圧力容器の下部と下
流側の圧力容器の上部とを管路で相互に連結する
ことにより、2以上の圧力容器を環状に連結し、
前記圧力容器の内、連続する一群の圧力容器に脱
水すべき低品位炭を装填し、この一群の一端の圧
力容器を最も上流側の圧力容器として、これに高
温高圧水蒸気を注入して低品位炭を加熱すること
により脱水し、低品位炭から分離された水分およ
び水蒸気の凝縮水から成る熱水を下流側となる圧
力容器に順次送り込んでそれらの圧力容器内の低
品位炭を予熱するとともに余剰水を前記一群中の
他端の最も下流側となる圧力容器から排出し、前
記の最上流とした圧力容器の加熱脱水が終了しか
つその圧力容器内から熱水を排出し終えたとき、
または前記の最上流とした圧力容器の直ぐ下流に
なる圧力容器に水蒸気が幾分供給されたときに、
前記の最上流とした圧力容器を直ぐ下流になる圧
力容器と遮断して内部の水蒸気を開放して減圧し
た後脱水済みの低品位炭を排出して一連の脱水操
作を終了し、前記の最下流となつていた圧力容器
に隣接し、更に下流側となる圧力容器に脱水すべ
き低品位炭が装填され予熱の準備が終了した時点
で、前記の最上流としていた圧力容器の下流側に
隣接した圧力容器から起算して前記一群の数と同
数の圧力容器で前述と同様の脱水操作を行ない、
このような脱水操作を順次下流側とした方向に移
していくことを特徴とする低品位炭の加熱脱水方
法。 2 環状に連結された全圧力容器でもつて前記一
群の圧力容器を形成させることを特徴とする特許
請求の範囲第1項記載の低品位炭の加熱脱水方
法。 3 環状に連結された全圧力容器数は20以下であ
ることを特徴とする特許請求の範囲第1項または
第2項記載の低品位炭の加熱脱水方法。 4 上流と下流の方向性を有する閉鎖系に連結さ
れるべき複数の低品位炭加熱脱水用の圧力容器
と、この閉鎖系で相互に隣接する上流側に当る圧
力容器の下部と下流側に当る圧力容器の上部とを
開閉弁を介して連結する熱水移送用管路と、前記
各圧力容器を開閉弁を介して水蒸気源に連結する
高温高圧水蒸気供給用管路と、前記各圧力容器よ
り内部の水蒸気を開放して減圧するための開閉弁
を備えた管路とを有することを特徴とする加熱脱
水をするための低品位炭の加熱脱水装置。
[Claims] 1. Two or more pressure vessels are connected in an annular manner by interconnecting the lower part of the upstream pressure vessel and the upper part of the downstream pressure vessel which are adjacent to each other through a pipe,
Among the pressure vessels, a continuous group of pressure vessels is loaded with low-grade coal to be dehydrated, and the pressure vessel at one end of the group is designated as the most upstream pressure vessel, and high-temperature, high-pressure steam is injected into it to dehydrate the low-grade coal. Coal is dehydrated by heating, and hot water consisting of water and steam condensed water separated from the low-rank coal is sequentially sent to downstream pressure vessels to preheat the low-grade coal in those pressure vessels. Excess water is discharged from the most downstream pressure vessel at the other end of the group, and when the heating dehydration of the most upstream pressure vessel is completed and the hot water is discharged from the pressure vessel,
Or, when some steam is supplied to the pressure vessel immediately downstream of the pressure vessel that is the most upstream,
The most upstream pressure vessel is isolated from the immediately downstream pressure vessel, the steam inside is released and the pressure is reduced, and the dehydrated low-rank coal is discharged to complete the series of dehydration operations. When the low-rank coal to be dehydrated is loaded into the pressure vessel that is adjacent to the pressure vessel that was downstream, and the preparation for preheating is completed, the pressure vessel that is located downstream of the pressure vessel that is the most upstream Carry out the same dehydration operation as described above with the same number of pressure vessels as the number of the group, counting from the number of pressure vessels that have been prepared.
A method for heating and dehydrating low-rank coal, which is characterized by sequentially moving such dehydration operations downstream. 2. The method of heating and dehydrating low-rank coal according to claim 1, characterized in that the group of pressure vessels is formed by all pressure vessels connected in an annular manner. 3. The method for heating and dehydrating low-rank coal according to claim 1 or 2, wherein the total number of pressure vessels connected in a ring is 20 or less. 4. A plurality of pressure vessels for heating and dehydrating low-grade coal to be connected to a closed system with upstream and downstream directionality, and pressure vessels on the lower and downstream sides of the pressure vessels that are adjacent to each other on the upstream side in this closed system. a hot water transfer pipeline connected to the upper part of the pressure vessel via an on-off valve; a high-temperature, high-pressure steam supply pipeline connected to a steam source via the on-off valve of each of the pressure vessels; 1. A heating dehydration device for low-rank coal for thermal dehydration, comprising a pipe line equipped with an on-off valve for opening and reducing the pressure of internal steam.
JP10731780A 1980-08-04 1980-08-04 Method and apparatus for heating and dehydrating organic solid matter Granted JPS5731998A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10731780A JPS5731998A (en) 1980-08-04 1980-08-04 Method and apparatus for heating and dehydrating organic solid matter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10731780A JPS5731998A (en) 1980-08-04 1980-08-04 Method and apparatus for heating and dehydrating organic solid matter

Publications (2)

Publication Number Publication Date
JPS5731998A JPS5731998A (en) 1982-02-20
JPS6354758B2 true JPS6354758B2 (en) 1988-10-31

Family

ID=14455997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10731780A Granted JPS5731998A (en) 1980-08-04 1980-08-04 Method and apparatus for heating and dehydrating organic solid matter

Country Status (1)

Country Link
JP (1) JPS5731998A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE526170C2 (en) * 2003-05-07 2005-07-19 Akzo Nobel Nv Aqueous composition containing an alkylene oxide adduct, a hexyl glucoside and an active nonionic alkylene oxide adduct as a wetting agent

Also Published As

Publication number Publication date
JPS5731998A (en) 1982-02-20

Similar Documents

Publication Publication Date Title
AU715926B2 (en) Method and apparatus for reducing the by-product content in carbonaceous materials
US5290523A (en) Method and apparatus for upgrading carbonaceous fuel
EA022975B1 (en) Method for reducing water content in carbonaceous materials
CN102072613B (en) Method for multi-effect evaporation and dehydration of solid material
JPS60212491A (en) Drying plant for high water content brown coal
HU182594B (en) Process and apparatus for improving coals of weak quality, first of all brown coal, other coal-type materials as lignite, turf or vaste coal
SE464260B (en) SET AND APPLIANCE FOR DRYING OF LOW COALS
CN102134520B (en) Method for improving quality of lignite by adopting fixed bed in single set of equipment
US4403996A (en) Method of processing low rank coal
US5624469A (en) Method and apparatus for recovering heat from solid material separated from gasification or combustion processes
JPS6354758B2 (en)
US4472885A (en) Process and apparatus for dehydrating organic solid material
JPS649359B2 (en)
SU1309923A3 (en) Device for drying organic solid substances with high water content
Rozgonyi et al. Upgrading of high moisture content lignite using saturated steam
GB2035366A (en) Treating brown coal or lignite
JPS649360B2 (en)
JPS58142987A (en) Dehydration of brown coal with steam
RU2793161C1 (en) Method for drying coal mass
JPS6354759B2 (en)
SK2152000A3 (en) A method and an apparatus for upgrading a solid material
US2536106A (en) Apparatus for producing activated carbon
JPS61171796A (en) Method for improving quality of low-grade coal
JPH0348240B2 (en)
Rozgonyi et al. Upgrading of high moisture content lignite