JPS6354681B2 - - Google Patents

Info

Publication number
JPS6354681B2
JPS6354681B2 JP54087917A JP8791779A JPS6354681B2 JP S6354681 B2 JPS6354681 B2 JP S6354681B2 JP 54087917 A JP54087917 A JP 54087917A JP 8791779 A JP8791779 A JP 8791779A JP S6354681 B2 JPS6354681 B2 JP S6354681B2
Authority
JP
Japan
Prior art keywords
tissue
transplantation
organs
freezing
tissues
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54087917A
Other languages
Japanese (ja)
Other versions
JPS5612317A (en
Inventor
Kenji Sato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YAMAKAWA BOEKI KK
Original Assignee
YAMAKAWA BOEKI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YAMAKAWA BOEKI KK filed Critical YAMAKAWA BOEKI KK
Priority to JP8791779A priority Critical patent/JPS5612317A/en
Publication of JPS5612317A publication Critical patent/JPS5612317A/en
Publication of JPS6354681B2 publication Critical patent/JPS6354681B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は、免疫反応を回避し、長期保存及び
注射移植を可能とした新鮮組織の保定法に関す
る。 ニユーハンスが内分必腺の移植療法を提唱して
以来(P.Niehans:Die endokrinen Dru¨senund
die Methoden dev Verju¨ngumg、1928)、腺と
限らず臓器、器管、組織類の外科的移植法は治療
医学の場に広く導入され現今では老化現象に対す
る胎盤或は、白血病、悪液値に対する骨随の移植
効果が注目されてきたが移植の技法は組織切片の
筋膜内埋設の外科的手段に限られており従つて移
植効果は組織の新鮮度、生物学的活性に左右され
勢い移植原材は摘出直後の新鮮組織に制約され
る。然し新鮮組織にしても時間の経過に従つて自
家融解し組織蛋白の変性を来たし生物学的活性を
喪失させる。それを防ぐために加熱とか培養法を
行うとしても屡々局所の膿瘍を招き移植の効果を
妨げる、まして成熟体の組織蛋白の抗原性は否め
ず授体側の抗体反応は避けられない。 これを防止するための免疫抑制剤の事前処置に
しても必ずしも万全とは言い難い。移植の効果を
期待するには移植組織の生物学的活性の維持と免
疫反応の回避に要約できる。移植原材をヒトに求
める場合では免疫反応の回避に授体と同型血液の
ものを必要とする。それ以外の動物の同種同系の
イソ型、同種異系のホモ型、異種のヘテロ型の組
織移植では組織蛋白自体がヒトに異種であると共
に成熟体の組織蛋白の抗原性において授体側の抗
原体反応が必然的となるし、まして加重感作では
シヨツク死をも免かれない。現在の移植術では心
と腎を除いて概ね移植原を牛に求めているが用時
入手の不便や新鮮度の保定に制限が伴い移植の効
果に期待を抱きながらも実施が伴はない恨みがあ
る。 ユーゴスラビヤ原子核研究所で発生した核爆で
瀕死となつた被爆者を頼つた移植法(G.
Mathe;Reu France、Etudes Clin、et Biol、
、1959)は被爆者の兄弟の胸骨、助骨、腹骨か
ら採取した骨随組織をハンクス液(ヘパリン15
mg/100mlと加熱で不活性にしたAB型血清との
15%混和液)で反覆遠心分離した骨随細胞の定量
を輸血セツトで移植する煩雑な抜法である。移植
組織を常時貯えるには血液銀行の如き施設を必要
とし且つ成熟体の組織を移植原とすると免疫抑制
剤を必要とする等、移植療法の展開は容易でな
い。 本発明にある移植原材を牛、豚、羊の胎児又は
出生4ケ月未満仔に求めた理由は、それ等の内外
中各胚葉系間葉系組織や内分秘腺等が何れも形態
的にも機能的にも未熟であり且つ組織蛋白の抗原
性が抗原抗体反応を生起さす能力に欠ける反面細
胞活性が旺盛だからである。総じて免疫能力は出
生の4ケ月後で成立し胎内期や生下直役では抗体
産生能に欠ける反面、自己獲得耐性が附与されて
いる(P.B.Medawar:Biological Problem
Grafting:ANN−N.Y.Acad.Sci、73:539、
1958)。それ故胎児の及び未成熟の動物組織を移
植原としてヒトに適用することは免疫学的反応の
回避には合目的となる。一般に組織の生物学的活
性の保定法として利用されるのは組織培養である
がそれにしても経過中に自家融解を来す特に酵素
に富む肝、臍、副腎、〓、腎の如きは容易に組織
変性がみられるし又、零下50℃以下の凍結処置で
は組織内外に群生する大型氷晶が細胞を損傷し組
織の質量を減少させるし生物学的活性を低下させ
る、また零下20℃附近の冷凍処理でも組織蛋白の
変性を招くし熱処理では組織細胞は失活する。 本発明では新鮮組織の生物学的活性を保定させ
る手段として新鮮組織切片を冷凍室にて零下30℃
に曝し凍結させ次いで冷凍室を減圧しつつ零下30
℃から零下40℃と段階的に低温処理し凍結した組
織の水分を順次昇華させ終末にその水分を質量の
1%以下にとどめることを条件にしている。この
技法は食品野菜類の凍結乾燥処理法とか真空下で
硫酸で脱水し零下20℃で凍結乾化するマルトマン
氏法とは異るものである(R.Altmann:Die
Elementarorganism und ihre Bejiehangevzu
dev Zellen、1890)、前記ア氏法では組織の生物
学的活性の喪失を来す。 本発明では事前に組織を20×20mm程度の一定形
状の切片とし凍結時の組織の均質化を維持させ一
次的に零下30℃の低温で組織を凍結させ二次的に
は減圧下で零下40℃に曝しつつ凍結水分を昇華さ
せ組織細胞の損傷を防止している。 これによる乾化組織はリンゲル液、タイロード
液の如き緩衝液が容易に浸透し細胞浮遊体となり
新鮮組織と同程度の生物学的活性を維持するもの
である。従つてこの乾燥組織の定量をアンプルに
密封しその空相をアルゴンガスの如き不活性ガス
で置換しておけば長期保存に耐えるし用時では緩
衝液の浮遊物として随時筋肉内に注射し任意の組
織の経皮内移植が簡易に行える利便がある。 動物を含めヒトの組織には60〜90%の塩基性水
分が含まれている。この塩分は冷凍温度と時間に
応じて組織の均質化を左右する。冷凍時間が長引
くと塩分濃度が昂まり組織内外で生じる氷晶粒子
が大型化し細胞を損傷し組織の均質化を妨げるし
又、冷凍時間を短縮するために零下45℃以下の温
度で急速に凍結さすと大型氷晶が群生し組織変性
を招く。 この発明では実験の積み重ねから大型氷晶の群
生を妨ぎ均質化の凍結乾化物を得る至適温が零下
30℃であること且つその凍結水分を昇華させ質量
の1%以下とすること及び組織の変性、細胞の損
傷を来さない至適温が真空状態において零下40〜
45℃であることが判明した。即ち新鮮組織に含ま
れる水分の99%の昇華においても組織細胞活性の
維持が可能であり、その収得率は原材組織の1/15
に該当するものであり、この実験的知見から以下
の方法によつて本発明目的物を取得することがで
きた。 実施例 羊の疾病抵抗力の強いこと及びその組織。 ヒト移植時ではアレルギー反応が陰性である点
を利用し、生下1ケ月前後の仔羊を麻酔下で断頭
致死させ頭部から脳皮質を摘出すると共に開腹し
心、肝、腎、胎盤等を分取し摘出の各組織を蒸水
で良く洗滌し附着物、血泥を3%クエン酸ナトリ
ウム液で除去しフオルマリンエヤゾルで滅菌しつ
つミクロトームで厚さ2mm20×20mmの切片とし組
織別にフラスコの内壁に貼り各フラスコをドライ
アイス、エチルアルコール槽内に5〜10分間浸し
急激に凍結させた後これを二段回転式真空ポンプ
と直結させた小型電機冷凍庫の棚上に置き予め零
下30℃にした冷凍庫内を真空ポンプを作動させ
10-2mmHg圧で30分減圧し次いで零下40℃から45
℃の範囲で30分間凍結組織の水分が1%以下とな
るまで減圧した。 かくして得た乾燥組織を共栓瓶乃至硝子アンプ
ルに移し空相をアルゴンガスと置換密封しその7
日後で開封しその100mgを1mlのリンゲル液と混
和すると数秒間で細胞浮遊体となり、それを筋肉
用注射針で吸引すると全量の吸引が可能であつ
た。この乾燥組織100mgは新鮮組織の1.5gと等量
である、その物理化学的性状は概ね下記の如くで
ある。 物理化学的性質 黄灰色、脆弱性、多孔質の乾燥組織体である程
度の湿度を有し、気中では数分間で軟質化し緩衝
液とは数秒間で浸透し細胞浮遊状態を呈する。組
織蛋白の変性はみられず耐熱性で紫外線分光測定
では紫外部の特定域に吸光度の大を示し細胞構成
物質の核酸塩の存在を示す(P.M.Walker;
General Cytoehemical Methods 1、p−166、
細胞構成物質と紫外線吸収値の関係、1958)。流
動パラフインと96%エタノールで定着しヘマトキ
シンで染色した顕鏡下視野では新鮮組織と匹敵さ
れる細胞構成を示し組織間隙に氷晶粒子が散見で
きるが、それによる細胞損傷はみられない。何れ
の乾燥組織での総蛋白は組織当量の60〜85%で、
遊離窒素はその40〜60%の範囲を示している。こ
の乾燥組織の100mgに含まれる総蛋白を80mgとし
ても破傷用ワクチンの血清蛋白の200〜1000mgと
比較すれば遥かに微量であり血清蛋白の如き抗原
抗体反応を生起さす程の抗原性ではない。この乾
燥組織は凍結処理前の新鮮組織の同程度の生物学
的活性を維持することがコリンエステラーゼ活
性、ペプチターゼ活性で支持されるし又、アミノ
酸群のルイチン、フエニールアラニン、メチオニ
ン、グルタミン酸、アルギニン、アラニン、チロ
シン、スレオニン、グリシン、アスパラギン酸、
シスチン等の検出からも同定できる。副腎、胎盤
の乾燥組織からケトステロイドホルモンが検出さ
れるがその程度は5mg/100乃至8mg/150の範囲
で17−ケトステロイドの薬力学的力価より遥かに
少い又、染色標本から核酸塩、グリコーゲン、類
脂質が検出され概ね新鮮組織と同定される細胞構
成を示す。 本発明による仔羊臓器組織乾燥物の化学的分析
値:組織100mg当量値
The present invention relates to a method for preserving fresh tissue that avoids immune reactions and enables long-term storage and injection transplantation. Since P. Niehans proposed the transplantation therapy of internal glands (P.Niehans: Die endokrinen Dru¨senund).
Surgical transplantation of not only glands but also organs, organs, and tissues has been widely introduced into therapeutic medicine, and is now used to treat the placenta for aging phenomena, leukemia, and cachex levels. The effect of bone graft transplantation has been attracting attention, but the transplantation technique is limited to surgical means of embedding tissue sections within the fascia, and therefore the transplantation effect depends on the freshness and biological activity of the tissue, and the transplantation technique is limited to the surgical method of embedding tissue sections in the fascia. The raw material is limited to fresh tissue immediately after extraction. However, even if the tissue is fresh, it self-dissolves over time, causing tissue protein denaturation and loss of biological activity. Even if heating or culturing methods are used to prevent this, local abscesses often occur and the effectiveness of the transplant is hampered.Furthermore, the antigenic nature of tissue proteins in the mature body is unavoidable, and antibody reactions on the recipient side are unavoidable. Even if pretreatment with immunosuppressants is used to prevent this, it cannot be said that it is always perfect. The expected effects of transplantation can be summarized as maintaining the biological activity of the transplanted tissue and avoiding immune reactions. When using humans as raw materials for transplantation, blood of the same type as the donor body is required to avoid immune reactions. In transplantation of allogeneic isotype, allogeneic homotype, and xenogeneic heterogeneous tissue from other animals, the tissue protein itself is foreign to humans, and the antigenicity of the mature tissue protein is the same as that of the donor. A reaction is inevitable, and even worse, with aggravated sensitization, death from shock is inevitable. Current transplantation techniques mostly rely on cows as transplant sources, except for the heart and kidneys, but it is inconvenient to obtain them at the time of use and there are restrictions on maintaining freshness, so although there is hope for the effects of transplants, it is not carried out. There is. Transplantation method using survivors who were on the verge of death from the nuclear bombing that occurred at the Yugoslav Institute for Nuclear Research (G.
Mathe; Reu France, Etudes Clin, et Biol,
(1959) used Hank's solution (heparin 15
mg/100ml and AB type serum inactivated by heating.
This is a complicated extraction method in which a quantitative amount of bone parasitic cells that have been centrifuged repeatedly in a 15% mixture (15% mixture) is transplanted into a blood transfusion set. The development of transplant therapy is not easy, as a facility such as a blood bank is required to constantly store transplant tissue, and immunosuppressants are required if tissue from a mature body is used as the transplant source. The reason why the transplant material of the present invention was obtained from cow, pig, and sheep fetuses or children less than 4 months old is that the internal and external embryonic mesenchymal tissues and internal glands are morphologically This is because they are immature in terms of function and function, and the antigenicity of tissue proteins lacks the ability to cause antigen-antibody reactions, but on the other hand, they are highly active in cells. In general, immunity is established four months after birth, and while the ability to produce antibodies is lacking during the in utero period or immediately after birth, self-acquired resistance is conferred (PBMedawar: Biological Problem
Grafting:ANN-NYAcad.Sci, 73:539,
1958). The application of fetal and immature animal tissues as transplant sources to humans therefore makes sense in order to avoid immunological reactions. Tissue culture is generally used as a method to preserve the biological activity of tissues, but even so, tissues that undergo autolysis over time, such as the liver, umbilicus, adrenal glands, kidneys, etc., which are particularly rich in enzymes, easily degenerate. In addition, freezing treatment at temperatures below -50°C causes large ice crystals that cluster inside and outside the tissue to damage cells, reduce tissue mass, and reduce biological activity; However, it causes denaturation of tissue proteins, and heat treatment deactivates tissue cells. In the present invention, as a means of preserving the biological activity of fresh tissue, fresh tissue sections are stored at -30°C in a freezing room.
Exposure to freezing and then reduce the pressure to below 30 while reducing the pressure in the freezer compartment.
The condition is that the water in the frozen tissue is gradually sublimated through stepwise low-temperature treatment from -40°C to 40°C, and that the water content is kept at less than 1% of the mass at the end. This technique is different from the freeze-drying method for food vegetables and R. Altmann's method, which dehydrates with sulfuric acid under vacuum and freeze-dries at -20°C.
Elementarorganism und ihre Bejiehangevzu
dev Zellen, 1890), said method results in loss of biological activity of the tissue. In the present invention, the tissue is cut into sections of a certain shape of about 20 x 20 mm in advance, and the tissue is frozen at a temperature of -30°C to maintain homogenization during freezing. The frozen water is sublimated while being exposed to ℃ to prevent tissue cell damage. The resulting dried tissue is easily penetrated by buffer solutions such as Ringer's solution and Tyrode's solution, and becomes a cell suspension, maintaining biological activity at the same level as fresh tissue. Therefore, if a fixed amount of this dried tissue is sealed in an ampoule and the air phase is replaced with an inert gas such as argon gas, it can be stored for a long time, and when used, it can be injected intramuscularly as a suspension in a buffer solution. It has the convenience of being able to easily perform percutaneous intracutaneous transplantation of tissue. Human tissues, including those of animals, contain 60-90% basic water. This salt affects the homogenization of the tissue depending on the freezing temperature and time. If the freezing time is prolonged, the salt concentration will increase, and the ice crystal particles generated inside and outside the tissue will become larger, damaging cells and preventing tissue homogenization.In addition, in order to shorten the freezing time, rapid freezing is performed at a temperature below -45℃. As expected, large ice crystals grow in clusters, leading to tissue degeneration. In this invention, based on repeated experiments, the optimum temperature for preventing the clustering of large ice crystals and obtaining a homogenized freeze-dried product is below zero.
The temperature must be 30℃, the frozen moisture must be sublimated to less than 1% of the mass, and the optimum temperature that does not cause tissue degeneration or cell damage is -40 to -40℃ in a vacuum.
It turned out to be 45°C. In other words, it is possible to maintain tissue cell activity even when 99% of the water contained in fresh tissue is sublimated, and the yield rate is 1/15 of that of raw tissue.
Based on this experimental knowledge, the object of the present invention could be obtained by the following method. Example Strong disease resistance of sheep and its tissue. Taking advantage of the fact that allergic reactions are negative during human transplantation, lambs around one month old are decapitated to death under anesthesia, the brain cortex is removed from the head, and the heart, liver, kidneys, placenta, etc. are separated by abdominal surgery. Each removed tissue was thoroughly washed with steam, and adhesion and blood sludge were removed with 3% sodium citrate solution. Sterilized with formalin aerosol, cut into 2mm x 20mm thick sections using a microtome, and separated into flasks for each tissue. After each flask was immersed in a dry ice or ethyl alcohol bath for 5 to 10 minutes to rapidly freeze it, it was placed on the shelf of a small electric freezer directly connected to a two-stage rotary vacuum pump and heated to -30°C. Operate the vacuum pump inside the frozen freezer.
Depressurize at 10 -2 mmHg pressure for 30 minutes and then reduce the pressure to -40°C to 45°C.
The pressure was reduced at ℃ for 30 minutes until the moisture content of the frozen tissue was 1% or less. The dried tissue thus obtained was transferred to a stoppered bottle or glass ampoule, and the empty phase was replaced with argon gas and sealed.
A day later, the package was opened and 100 mg of the solution was mixed with 1 ml of Ringer's solution to form a cell suspension within a few seconds, and when this was aspirated with an intramuscular injection needle, the entire amount could be aspirated. 100 mg of this dried tissue is equivalent to 1.5 g of fresh tissue, and its physicochemical properties are generally as follows. Physicochemical properties It is a yellowish-gray, brittle, porous dry tissue with a certain degree of humidity.It becomes soft in air in a few minutes, and permeates into a buffer solution in a few seconds, exhibiting a cell-suspending state. No denaturation of tissue proteins is observed, and it is heat resistant, and ultraviolet spectrometry shows high absorbance in a specific region of the ultraviolet region, indicating the presence of nucleic acid salts, which are cellular constituents (PMWalker;
General Cytochemical Methods 1, p-166,
Relationship between cell constituent substances and ultraviolet absorption values, 1958). A microscopic view of the tissue fixed with liquid paraffin and 96% ethanol and stained with hematoxin showed a cell composition comparable to that of fresh tissue, with ice crystal particles scattered in the interstices of the tissue, but no cell damage was observed. The total protein in any dry tissue is 60-85% of the tissue equivalent;
Free nitrogen shows a range of 40-60%. Even if the total protein contained in 100 mg of this dry tissue is 80 mg, it is a much smaller amount compared to the 200 to 1000 mg of serum protein in the tetan vaccine, and it is not antigenic enough to cause an antigen-antibody reaction like serum protein. . This dried tissue maintains the same level of biological activity as fresh tissue before freezing treatment, as evidenced by cholinesterase activity and peptidase activity, and the amino acid group leutin, phenylalanine, methionine, glutamic acid, arginine, Alanine, tyrosine, threonine, glycine, aspartic acid,
It can also be identified by detecting cystine, etc. Ketosteroid hormones are detected in dried tissues of the adrenal glands and placenta, but the amount ranges from 5 mg/100 to 8 mg/150, which is far lower than the pharmacodynamic potency of 17-ketosteroids. , glycogen, and lipidoids are detected, indicating a cellular composition that is generally identified as fresh tissue. Chemical analysis value of dried lamb organ tissue according to the present invention: value equivalent to 100 mg of tissue

【表】【table】

【表】 同上における蛋白質のアルブミン、グロブリン
の構成比(%)
[Table] Composition ratio (%) of protein albumin and globulin in the same as above

【表】 以上の実施例は実験室的の例示であるが工業的
には図示のように内部に数段のフラスコ棚2を備
え棚下にヒートパイプ3を配管し熱交換を容易と
したステンレス製冷凍室1と、それより小型の通
気室4を直結させ通気室の内部に冷却ガス発生器
6(F22フレオン冷媒)のパイプ7と減圧用パイ
プ8を配置した一連の凍結乾燥装置を利用し新鮮
組織切片をフラスコの内壁に貼り、底に重ねるこ
とを避けステンレス冷凍室の棚に置きフレオン
F22を冷媒とした零下60℃のガス発生能力を持つ
市販の電機冷凍ガス発生器を駆動させ一次的に零
下30℃の冷却ガスを約60分間通気室を介して、冷
凍室に充満させ冷凍室内の棚上のフラスコを冷凍
させると共に真空ポンプ5を駆動させ10-2mmHg
圧で通気室及び冷凍室の内圧を真空状態に導く、
次いで冷却温を零下40℃とし90分間同様に処置し
フラスコ内壁の組織切片の細胞構成物質の流出を
防ぎつつ凍結組織の水分を昇華させる。この工程
の終末時で得られた乾燥組織を日本薬局方一般試
験法の水分測定法に準じて測定すれば湿度は1%
以下を示す。その物理化学的性状は実験室的の処
置法で得られたものと同一である。
[Table] The above example is a laboratory example, but for industrial use, as shown in the figure, stainless steel is used with several flask shelves 2 inside and a heat pipe 3 installed under the shelf to facilitate heat exchange. A series of freeze-drying equipment is used in which a freezing chamber 1 and a smaller ventilation chamber 4 are directly connected, and a pipe 7 for a cooling gas generator 6 (F22 Freon refrigerant) and a decompression pipe 8 are placed inside the ventilation chamber. Paste the tissue sections on the inner wall of the flask and place them on a shelf in a stainless steel freezer, avoiding stacking them on the bottom.
A commercially available electric refrigeration gas generator with the ability to generate gas at -60°C using F22 as a refrigerant is driven to first fill the freezing compartment with cooling gas at -30°C for about 60 minutes through the ventilation chamber. Freeze the flask on the shelf and drive the vacuum pump 5 to achieve a temperature of 10 -2 mmHg.
The internal pressure of the ventilation chamber and freezing chamber is brought to a vacuum state by pressure,
Next, the cooling temperature is set to -40°C and the same treatment is performed for 90 minutes to sublimate the water content of the frozen tissue while preventing the outflow of cell constituents of the tissue section on the inner wall of the flask. When the dry tissue obtained at the end of this process is measured according to the moisture measurement method of the Japanese Pharmacopoeia General Tests, the humidity is 1%.
The following is shown. Its physicochemical properties are identical to those obtained with laboratory treatments.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明における冷凍組織脱水装置の断面図
である。1はステンレス製冷凍室2は新鮮組織を
冷凍脱水させるためのフラスコ棚3は熱交換のた
めに用意されるヒートパイプ4は通気室。
The figure is a sectional view of the frozen tissue dehydration device according to the present invention. 1 is a stainless steel freezer compartment 2 is a flask shelf 3 for freezing and dehydrating fresh tissues; a heat pipe 4 is a ventilation chamber;

Claims (1)

【特許請求の範囲】[Claims] 1 羊、豚、牛の胎児若しくは四ケ月未満仔の臓
器、器管、腺、生殖器、胎盤、動脈管管類の組織
をクエン酸ナトリウム液で洗滌し、フオルマリン
エヤゾルで滅菌処理したものを凍結させ次いで減
圧下で更に段階的に低温にして凍結乾化させ、水
分が乾燥組織の1%以下になるまで昇華させ、そ
の一定量を遮光容器に移し該容器の空相を不活性
ガスで置換密栓し、用時緩衝液の浮遊物として筋
肉内注射移植を可能にした新鮮組織の保定法。
1 Tissues of organs, organs, glands, reproductive organs, placenta, and arterial ducts of sheep, pigs, and cow fetuses or children under four months of age, washed with sodium citrate solution and sterilized with formalin aerosol. Freeze the tissue, then lower the temperature stepwise under reduced pressure to lyophilize it, sublimate it until the water content is less than 1% of the dried tissue, transfer a certain amount of it to a light-shielding container, and fill the empty phase of the container with an inert gas. A method of preserving fresh tissue that allows for intramuscular injection and transplantation as a suspension in the buffer solution at the time of use.
JP8791779A 1979-07-10 1979-07-10 Retention of fresh tissue transplantable by injection Granted JPS5612317A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8791779A JPS5612317A (en) 1979-07-10 1979-07-10 Retention of fresh tissue transplantable by injection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8791779A JPS5612317A (en) 1979-07-10 1979-07-10 Retention of fresh tissue transplantable by injection

Publications (2)

Publication Number Publication Date
JPS5612317A JPS5612317A (en) 1981-02-06
JPS6354681B2 true JPS6354681B2 (en) 1988-10-28

Family

ID=13928266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8791779A Granted JPS5612317A (en) 1979-07-10 1979-07-10 Retention of fresh tissue transplantable by injection

Country Status (1)

Country Link
JP (1) JPS5612317A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5059518A (en) * 1988-10-20 1991-10-22 Coulter Corporation Stabilized lyophilized mammalian cells and method of making same
JPH0637707B2 (en) * 1988-12-26 1994-05-18 住友金属工業株式会社 Multi-layer plated steel sheet with excellent flaking resistance
JPH05214549A (en) * 1992-02-05 1993-08-24 Murata Mfg Co Ltd Formation of bismuth electroless-plating film and bismuth electroless plating bath

Also Published As

Publication number Publication date
JPS5612317A (en) 1981-02-06

Similar Documents

Publication Publication Date Title
JP4942896B2 (en) New method for warming frozen samples
JP6850360B2 (en) Clinically usable cell cryopreservation solution
US6284285B1 (en) Tissue repair promoting composition
US4473552A (en) Anaerobic method for preserving whole blood, tissue and components containing living mammalian cells
US3303662A (en) Process for cell preservation
JP2005502712A5 (en)
US8628960B2 (en) Desiccated biologics and methods of preparing the same
CA2719806A1 (en) Method, system, and apparatus for hypothermic collection, storage, transport and banking of birth tissue
JP2024026645A (en) Pathogen-reduced platelet compositions and related methods
CN108812643B (en) Preparation and cryopreservation method and application of human placental chorionic villus tissue
CN106367388A (en) Method for protecting umbilical cord mesenchymal stem cell culture supernatant at 4 DEG C
US4374830A (en) Platelet aggregating material from equine arterial tissue
US20140193456A1 (en) Method for Drying-Conservation of Natural Substances
JPS6354681B2 (en)
CN108812642B (en) Systematic method for preparing placenta tissue according to structural hierarchy and cryopreserving and application
JP6412696B2 (en) Serum preparation method and instrument
EP0061277B1 (en) Anaerobic method for preserving whole blood, tissue and components containing living mammalian cells
CN108812641A (en) Human trophoblastic tissue prepares cryopreservation methods and application
TWI640630B (en) A freezing medium combination without fetal bovine serum (fbs)
Sereni et al. High Survival Rate After Cryopreservation of Human Prophase I Oocytes (Germinal Vesicle)
KR20220167616A (en) Composition for removing goat seminal plasma comprising milk protein and method for removing seminal plasma using the same
WO2022159934A1 (en) Methods for optimizing reproductive tissue derived cell yield and viability for clinical applications
O'RIELLY A comparison of the reduction in immunoglobulin (IgG) concentration of frozen equine plasma treated by three thawing techniques
Boone et al. Freezing of mammalian embryos without the aid of a programmable freezer
NL2034495A (en) Stem cell cryopreservation protective agent, preparation method, and application thereof