JPS6354611B2 - - Google Patents

Info

Publication number
JPS6354611B2
JPS6354611B2 JP56117487A JP11748781A JPS6354611B2 JP S6354611 B2 JPS6354611 B2 JP S6354611B2 JP 56117487 A JP56117487 A JP 56117487A JP 11748781 A JP11748781 A JP 11748781A JP S6354611 B2 JPS6354611 B2 JP S6354611B2
Authority
JP
Japan
Prior art keywords
transport
flow rate
powder
pressure
pressurized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56117487A
Other languages
Japanese (ja)
Other versions
JPS5822216A (en
Inventor
Takashi Moryama
Shuzo Fujii
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Consultant and Engineering Co Ltd
Original Assignee
Denka Consultant and Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denka Consultant and Engineering Co Ltd filed Critical Denka Consultant and Engineering Co Ltd
Priority to JP11748781A priority Critical patent/JPS5822216A/en
Publication of JPS5822216A publication Critical patent/JPS5822216A/en
Publication of JPS6354611B2 publication Critical patent/JPS6354611B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G53/00Conveying materials in bulk through troughs, pipes or tubes by floating the materials or by flow of gas, liquid or foam
    • B65G53/34Details
    • B65G53/66Use of indicator or control devices, e.g. for controlling gas pressure, for controlling proportions of material and gas, for indicating or preventing jamming of material

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Air Transport Of Granular Materials (AREA)

Description

【発明の詳細な説明】 この発明は、夫々別個の加圧タンク内に収容さ
れている異種物質粉粒体を加圧輸送管内において
所要の混合比で連続的に混合輸送する装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an apparatus for continuously mixing and transporting dissimilar substance powders stored in separate pressurized tanks at a desired mixing ratio in a pressurized transport pipe.

(従来技術) 従来異種の粉粒体を混合輸送する場合には予め
混合機に異種の粉粒体を混合比に応じた量投入し
これらを撹拌混合した後混合粉粒体を加圧タンク
に供給して高圧輸送するのが一般的である。この
方法によると高圧輸送装置の他に混合機を必要と
するため全体の装置が大型化する上、混合機にお
ける混合比は粉粒体の投入量によつて決定される
ので混合途中で混合比を変更することは不可能で
あり、混合比を制御しながら高圧輸送を行なうこ
とはできない等の欠点を有していた。
(Prior art) Conventionally, when transporting different types of powder and granules, the amounts of different types of powder and granules are charged into a mixer in advance in accordance with the mixing ratio, and after stirring and mixing, the mixed powder and granules are transferred to a pressurized tank. It is common to supply and transport under high pressure. This method requires a mixer in addition to a high-pressure transport device, which increases the size of the entire device.In addition, the mixing ratio in the mixer is determined by the amount of powder and granules input, so the mixing ratio is adjusted during mixing. It is impossible to change the mixing ratio, and it has drawbacks such as the inability to perform high-pressure transportation while controlling the mixing ratio.

また従来は複数の加圧タンクを並列設置して共
通の輸送管に接続した場合は、相互干渉を生じ輸
送が不可能になるか又はDecoupling制御など複
雑な制御系を構成しなければ行なえないものと考
えられていたのである。
In addition, conventionally, when multiple pressurized tanks were installed in parallel and connected to a common transport pipe, mutual interference occurred, making transport impossible, or it was impossible to do so without configuring a complex control system such as decoupling control. It was thought that.

本発明はこのような従来の通念を打破し、圧送
輸送途上において混合するための全く新規な混合
輸送装置を提供するもので、その特徴とする所は
異種の粉粒体を別個の加圧タンクに充填し、これ
ら加圧タンクからの粉粒体をその出口を経た共通
輸送管内で混合すると共に各加圧タンクの粉粒体
切出量を切出操作用制御装置によつて流体力学的
に制御することにより混合比を所望値に制御しな
がら高圧輸送するようにしたことである。
The present invention breaks away from such conventional wisdom and provides a completely new mixing transport device for mixing during pressure transport. The powder and granules from these pressurized tanks are mixed in a common transport pipe via the outlet, and the amount of powder and granules cut out of each pressurized tank is controlled hydrodynamically by a control device for cutting operation. By controlling the mixing ratio to a desired value, high-pressure transportation is possible.

(構成) 本発明装置は、流動床上に開口する排出ノズル
を備え夫々異種物質粉粒体を収容した複数の加圧
タンクの前記排出ノズルが夫々輸送弁を介して共
通の輸送管に接続されると共に前記各輸送弁と前
記輸送管との間に夫々流量調節器を備えたブスタ
ーラインが接続され、前記流量調節器は前記夫々
の加圧タンク圧力と前記各排出ノズル間との差圧
に基いて制御されるものである。
(Structure) The device of the present invention is provided with a plurality of pressurized tanks each having a discharge nozzle that opens above the fluidized bed and each containing a dissimilar substance powder, each of which is connected to a common transport pipe via a transport valve. Also, a booster line equipped with a flow rate regulator is connected between each of the transportation valves and the transportation pipe, and the flow rate regulator is configured to control pressure based on the pressure difference between the respective pressurized tank pressure and the discharge nozzle. It is controlled by

(実施例) 以上図面について本発明装置の実施例を説明す
ると、1A,1Bは夫々異種の粉粒体を夫々投入
弁2A,2Bを介して充填する加圧タンクであつ
て、その下部に流動床3A,3Bが形成されてい
る。
(Embodiment) To explain an embodiment of the apparatus of the present invention with reference to the above drawings, 1A and 1B are pressurized tanks in which different types of powder and granular materials are filled through input valves 2A and 2B, respectively, and the lower part of the tanks are pressurized tanks. Floors 3A and 3B are formed.

5は空気、不活性ガス等の加圧気体供給源、6
A,6Bは供給源5からの加圧気体を加圧タンク
1A,1Bの流動床3A,3Bに供給する加圧ラ
インであつて、これら加圧ライン6A,6Bには
圧力調節弁7A,7Bが介装され、その圧力調節
弁7A,7Bが流動床3A,3B位置の圧力を検
出する圧力検出器8A,8Bの検出出力が供給さ
れた圧力調節計9A,9Bの出力によつて操作さ
れ加圧タンク内圧力が所要値に定値制御される。
5 is a pressurized gas supply source such as air or inert gas; 6
A and 6B are pressurizing lines that supply pressurized gas from the supply source 5 to the fluidized beds 3A and 3B of the pressurizing tanks 1A and 1B, and these pressurizing lines 6A and 6B are equipped with pressure regulating valves 7A and 7B. are interposed, and the pressure regulating valves 7A, 7B are operated by the outputs of pressure regulators 9A, 9B supplied with the detection outputs of pressure detectors 8A, 8B which detect the pressure at the positions of the fluidized beds 3A, 3B. The pressure inside the pressurized tank is controlled at a fixed value to a required value.

11A,11Bは一端が加圧タンク1A,1B
内に延長されて流動床3A,3Bと対向する排出
ノズルであつて、その他端が非輸送時全閉、輸送
時全開に操作される輸送弁12A,12Bを介し
て互に接続されて輸送管13に連通されている。
One end of 11A and 11B is pressurized tank 1A and 1B.
A discharge nozzle extends into the interior and faces the fluidized beds 3A and 3B, and the other end is connected to the transport pipe via transport valves 12A and 12B, which are operated to be fully closed when not in transport and fully open during transport. It is connected to 13.

15A,15Bは加圧気体供給源5及び排出ノ
ズル11A,11Bの輸送弁12A,12Bの二
次側間に接続されたブスターラインであつて、流
量検出器16A,16B及び流量調節弁17A,
17Bが介装され、流量検出器16A,16Bの
検出出力が流量調節計18A,18Bに供給され
これら調節計の出力によつて流量調節弁17A,
17Bが操作され、ブスター気体流量が制御され
ることによつて排出ノズル11A,11Bを通じ
ての粉粒体切出量が制御される。即ちブスター気
体流量を増加させることによつて粉粒体切出量を
減少させ、逆に減少させることによつて粉粒体切
出量を増加させ粉粒体切出量を流体力学的に制御
する。
15A, 15B are booster lines connected between the pressurized gas supply source 5 and the secondary sides of the transport valves 12A, 12B of the discharge nozzles 11A, 11B, and are connected to the flow rate detectors 16A, 16B and the flow rate adjustment valves 17A,
17B is interposed, and the detection outputs of the flow rate detectors 16A and 16B are supplied to the flow rate regulators 18A and 18B.
17B is operated and the booster gas flow rate is controlled, thereby controlling the amount of powder material cut out through the discharge nozzles 11A and 11B. That is, by increasing the booster gas flow rate, the amount of powder material cut out is decreased, and by decreasing it, the amount of powder material material cut out is increased, and the amount of powder material cut out is controlled hydrodynamically. do.

20A,20Bは排出ノズル11A,11Bの
圧力損失を検出する差圧検出器であつて、これら
差圧検出器の出力に基づき排出ノズル11A,1
1Bを通過する粉粒体の質量流量が計測される。
即ち排出ノズルの圧力損失△Pは、 △P=△Pa+△Ps ……(1) である。
20A and 20B are differential pressure detectors that detect the pressure loss of the discharge nozzles 11A and 11B, and based on the outputs of these differential pressure detectors, the discharge nozzles 11A and 1
The mass flow rate of the powder passing through 1B is measured.
That is, the pressure loss △P of the discharge nozzle is △P=△Pa+△Ps (1).

但し、△Paは加圧気体のみの圧力損失である。 However, △Pa is the pressure loss of pressurized gas only.

また、△Psは粉粒体に基因する圧力損失であ
つてこれを附加圧力損失といい、粉粒体が低速高
濃度の場合気体流量をQ、粉粒体と加圧気体の質
量流量比(固気比)をmとしてkmQとなること
が知られている。
In addition, △Ps is the pressure loss due to the granular material, which is called the additional pressure loss. When the granular material is at low speed and high concentration, the gas flow rate is Q, and the mass flow rate ratio of the granular material and pressurized gas ( It is known that the solid-gas ratio) is kmQ.

故に△P=△Pa+kmQ ……(2) なお質量流量とは単位時間当たりの粉粒体の移
動量であり〔Kg/h〕で表される。
Therefore, △P=△Pa+kmQ...(2) Mass flow rate is the amount of movement of powder and granular material per unit time, and is expressed in [Kg/h].

粉粒体の質量流量W=mQであるから W=(△P−△Pa)/K ……(3) となり、この式において排出ノズルの加圧気体の
み圧力損失△Paの値は無視し得る程度に小さい
ので、結局(3)式はW≒K△Pとなる。
Since the mass flow rate of powder and granular material W = mQ, W = (△P - △Pa) / K ... (3), and in this equation, the value of pressure loss △Pa can be ignored only for the pressurized gas at the discharge nozzle. Therefore, equation (3) becomes W≒K△P.

つまり排出ノズル圧力損失(差圧)の測定値は
質量流量を表すことになる。
In other words, the measured value of the discharge nozzle pressure drop (differential pressure) represents the mass flow rate.

従つて質量流量演算器21A,21Bで差圧検
出器20A,20Bの出力に予め計算された比例
常数Kを乗算することによつて排出ノズル11
A,11Bを通過する粉粒体のみの質量流量を計
測することができ、これら演算器の出力によつて
ブスター流量調節計18A,18Bをカスケード
制御することによつて粉粒体流量を所望値に確実
に制御することができる。
Therefore, by multiplying the outputs of the differential pressure detectors 20A, 20B by a proportionality constant K calculated in advance by the mass flow calculators 21A, 21B, the discharge nozzle 11
The mass flow rate of only the powder passing through A and 11B can be measured, and by controlling the booster flow rate controllers 18A and 18B in cascade based on the output of these calculators, the flow rate of the powder and granule can be adjusted to a desired value. can be reliably controlled.

本発明装置において、ブスター流量Qと粉粒体
切出量が反比例して変化する理由は、発送圧力
(タンク内圧力)と到着圧力が一定のとき、△P
は一定であるから(3)式により△Paが大きくなれ
ばWは小さくなる。
In the device of the present invention, the reason why the booster flow rate Q and the amount of powder cut out vary in inverse proportion is that when the shipping pressure (tank internal pressure) and arrival pressure are constant, △P
Since is constant, according to equation (3), as △Pa increases, W decreases.

而して△Pa∝Q2なる関係があるから質量流量
Wは気体流量Qに反比例するのである。
Since there is a relationship △Pa∝Q 2 , the mass flow rate W is inversely proportional to the gas flow rate Q.

次に本発明装置の動作を説明すると、先ず各加
圧タンクの圧力調節弁7A,7B及び輸送弁12
A,12Bを閉じてタンク内圧力を常圧とした状
態で投入弁2A,2Bを開き加圧タンク1A,1
B内に夫々異種の混合すべき粉粒体を充填する。
次いで圧力調節弁7A,7Bを開き加圧タンク内
圧力を所要値に昇圧した後輸送弁12A,12B
を開くと共に流量調節弁17A,17Bを開くこ
とによつて加圧ライン6A,6Bから供給される
加圧気体により流動化された粉粒体が排出ノズル
11A,11Bを通じて切出されノズルの合流点
で混合されて輸送管13を通じて輸送される。こ
の際粉粒体の混合比はブスターライン15A,1
5Bの流量調節計18A,18Bの設定値を所望
値に設定して各加圧タンクからの粉粒体切出量を
制御することによつて、所望値に設定する。混合
比を変更する場合は流量調節計18A,18Bの
設定値を変更すれば良い。
Next, to explain the operation of the device of the present invention, first, the pressure control valves 7A and 7B of each pressurized tank and the transport valve 12
A, 12B are closed to make the pressure inside the tank normal pressure, and then the input valves 2A, 2B are opened to pressurize tanks 1A, 1.
B is filled with different types of powder and granular materials to be mixed.
Next, the pressure control valves 7A and 7B are opened and the pressure inside the pressurized tank is increased to the required value, and then the transport valves 12A and 12B are opened.
By opening the flow control valves 17A and 17B at the same time, the powder fluidized by the pressurized gas supplied from the pressure lines 6A and 6B is cut out through the discharge nozzles 11A and 11B, and the nozzle confluence point is cut out. are mixed and transported through the transport pipe 13. At this time, the mixing ratio of powder and granules is booster line 15A, 1
The desired value is set by setting the set values of the flow rate controllers 18A and 18B of 5B to a desired value and controlling the amount of powder and granular material cut out from each pressurized tank. When changing the mixing ratio, it is sufficient to change the set values of the flow rate controllers 18A and 18B.

又排出ノズル11A,11Bを通過する粉粒体
の質量流量を演算器21A,21Bで計測してそ
の計測出力で流量調節計18A,18Bがカスケ
ード制御される。
Further, the mass flow rate of the powder passing through the discharge nozzles 11A, 11B is measured by computing units 21A, 21B, and the flow rate regulators 18A, 18B are cascade-controlled by the measured output.

以上のように本発明装置によると、混合する粉
粒体数に応じた数の加圧タンクを設けそれらの粉
粒体切出量を制御することによつて、別途混合機
を設けることなく粉粒体を混合して高圧輸送する
ことができると共にその混合比を容易に且つ任意
に変更することができ、確実な混合輸送を行なう
ことができる優れた特徴を有する。
As described above, according to the apparatus of the present invention, the number of pressurized tanks corresponding to the number of powders and granules to be mixed is provided and the amount of the powders and granules cut out is controlled, thereby eliminating the need for a separate mixer. It has the excellent characteristics of being able to mix granules and transport them under high pressure, as well as being able to easily and arbitrarily change the mixing ratio, thereby ensuring reliable mixed transport.

又排出ノズルの圧力損失を検出して排出ノズル
を通過する粉粒体の質量流量を計測しその計測値
によつて粉粒体切出量を操作するようにして実際
の粉粒体流量に基づいて混合比を制御しているの
で、正確な混合比で混合粉粒体を輸送することが
できる特徴を有する。
In addition, the pressure loss of the discharge nozzle is detected, the mass flow rate of the powder passing through the discharge nozzle is measured, and the amount of powder cut out is controlled based on the measured value, based on the actual flow rate of the powder. Since the mixing ratio is controlled by using the method, the mixed powder and granular material can be transported at an accurate mixing ratio.

尚上例においては2種の粉粒体を混合する場合
について説明したが、加圧タンクを増設すること
によつて3種以上の粉粒体を混合輸送することが
でき、又粉粒体同志を混合する場合に限らず粉粒
体と液体とを混合して輸送することも可能であ
る。
In the above example, the case of mixing two types of powder and granules was explained, but by adding a pressurized tank, it is possible to mix and transport three or more types of powder and granules. It is also possible not only to mix powder or granules and liquid, but also to mix and transport them.

又各加圧タンク1A,1Bへの加圧気体の供給
は第2図に示すように両者に共通の圧力調節弁7
及び圧力調節計9を設けるようにしても良い。
Also, pressurized gas is supplied to each pressurized tank 1A, 1B through a pressure regulating valve 7 common to both, as shown in FIG.
A pressure regulator 9 may also be provided.

更にブスターラインの流量制御によつて粉粒体
切出量を制御するに代え、第3図に示すように、
各加圧タンクの流動床3A,3Bへの加圧気体供
給圧力を調節計9A,9Bで調節して切出量を制
御するようにしても良い。
Furthermore, instead of controlling the amount of powder cut out by controlling the flow rate of the booster line, as shown in Fig. 3,
The amount of cutout may be controlled by adjusting the pressurized gas supply pressure to the fluidized beds 3A, 3B of each pressurized tank using regulators 9A, 9B.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明装置の一実施例を示す系統図、
第2図及び第3図は夫々本発明装置の他の例を示
す系統図である。 1A,1Bは加圧タンク、3A,3Bは流動
床、6A,6Bは加圧ライン、7,7A,7Bは
圧力調節弁、11A,11Bは排出ノズル、13
は輸送管、15A,15Bはブスターライン、1
7A,17Bは流量調節弁、20A,20Bは差
圧検出器、21A,21Bは質量流量演算器。
FIG. 1 is a system diagram showing an embodiment of the device of the present invention;
FIGS. 2 and 3 are system diagrams showing other examples of the apparatus of the present invention, respectively. 1A, 1B are pressurized tanks, 3A, 3B are fluidized beds, 6A, 6B are pressurized lines, 7, 7A, 7B are pressure control valves, 11A, 11B are discharge nozzles, 13
is a transport pipe, 15A, 15B are booster lines, 1
7A and 17B are flow control valves, 20A and 20B are differential pressure detectors, and 21A and 21B are mass flow rate calculators.

Claims (1)

【特許請求の範囲】[Claims] 1 流動床上に開口する排出ノズルを備え夫々異
種物質粉粒体を収容した複数の加圧タンクの前記
排出ノズルが夫々輸送弁を介して共通の輸送管に
接続されると共に前記各輸送弁と前記輸送管との
間に夫々流量調節器を備えたブスターラインが接
続され、前記流量調節器は前記夫々の加圧タンク
圧力と前記各排出ノズル間との差圧に基いて制御
されることによつて各加圧タンクからの切出量を
所要比率で排出させ前記輸送管内において混合輸
送することを特徴とする粉粒体混合高圧気体輸送
装置。
1. The discharge nozzles of a plurality of pressurized tanks each having a discharge nozzle that opens above the fluidized bed and each containing a dissimilar material powder are connected to a common transport pipe via a transport valve, and each of the transport valves and the Booster lines each having a flow rate regulator are connected between the transport pipes, and the flow rate regulators are controlled based on the pressure difference between the respective pressurized tank pressures and the respective discharge nozzles. A high-pressure gas transport device for mixing powder and granular materials, characterized in that the amounts cut out from each pressurized tank are discharged at a required ratio and mixed and transported in the transport pipe.
JP11748781A 1981-07-27 1981-07-27 Conveying device for high pressure gas containing pulverous material Granted JPS5822216A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11748781A JPS5822216A (en) 1981-07-27 1981-07-27 Conveying device for high pressure gas containing pulverous material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11748781A JPS5822216A (en) 1981-07-27 1981-07-27 Conveying device for high pressure gas containing pulverous material

Publications (2)

Publication Number Publication Date
JPS5822216A JPS5822216A (en) 1983-02-09
JPS6354611B2 true JPS6354611B2 (en) 1988-10-28

Family

ID=14712926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11748781A Granted JPS5822216A (en) 1981-07-27 1981-07-27 Conveying device for high pressure gas containing pulverous material

Country Status (1)

Country Link
JP (1) JPS5822216A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0622211U (en) * 1992-05-07 1994-03-22 住友建機株式会社 Fuel tank

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60141207U (en) * 1984-02-28 1985-09-19 株式会社 明星金属工業所 Synthetic resin recycled material mixing ratio adjustment device
JPS62240222A (en) * 1986-04-11 1987-10-21 Kawasaki Steel Corp Conveyance and mixing of bulk material
KR100582164B1 (en) * 2001-08-27 2006-05-23 재단법인 포항산업과학연구원 Controller for powder flow rate in pneumatic transport

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5532333B2 (en) * 1977-05-09 1980-08-25
JPS5652321A (en) * 1979-10-05 1981-05-11 Denka Consult & Eng Co Ltd Fixed-flow-rate pressurization distributor for high- pressure gas conveyor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS586810Y2 (en) * 1978-08-16 1983-02-05 川崎炉材株式会社 Powder raw material feeding device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5532333B2 (en) * 1977-05-09 1980-08-25
JPS5652321A (en) * 1979-10-05 1981-05-11 Denka Consult & Eng Co Ltd Fixed-flow-rate pressurization distributor for high- pressure gas conveyor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0622211U (en) * 1992-05-07 1994-03-22 住友建機株式会社 Fuel tank

Also Published As

Publication number Publication date
JPS5822216A (en) 1983-02-09

Similar Documents

Publication Publication Date Title
US3001829A (en) Arrangement for the automatic adjustment of a distributor of pulverulent material under pressure
US4830508A (en) Controlling method and a measuring mixer for liquids and powders
EP0114916B1 (en) Method of distributing and transporting powdered or granular material
DE2461093C2 (en) Method and device for regulating the weight throughput of pneumatically conveyed, powdery material
US5240355A (en) Dense phase transporter pneumatic conveying system
US3661365A (en) Apparatus for proportioning dry particulate materials
EP0081622A2 (en) Method and apparatus for distributing powdered particles
JPH0774044B2 (en) Pneumatic or hydraulic pipe conveying method for solid content and its implementation device
US4662798A (en) Method and a device for measuring and/or regulating the mass flow of solid particles
GB1021645A (en) Improvements relating to a method for controlling the flow of solid pulverulent substances in suspension in a gas
JPS6354611B2 (en)
US6106202A (en) Pneumatic conveying air assist line with air bleed
US5507573A (en) Method and a means for continuous, static mixing of thin layers
US4483646A (en) Apparatus for distributing powdered particles
JPH0144609B2 (en)
US4613113A (en) Apparatus for blowing powdery refining agent into refining vessel
US2102330A (en) Conveying apparatus
JP6859240B2 (en) Powder and granular material blowing device, calibration curve creation device and calibration curve creation method
US3085582A (en) Method and apparatus for controlling the bulk density of coal
JPH0158085B2 (en)
JPS5839738B2 (en) Blowout restriction method in high pressure gas transport equipment
US3194607A (en) Salt conveying system
JPS5974822A (en) Powdered material supplying method
JPS60294B2 (en) Constant flow continuous transport device for powder, granules, etc.
JP2001220016A (en) Control method for transporting speed of powder and grain and transporting device