JPS635458B2 - - Google Patents

Info

Publication number
JPS635458B2
JPS635458B2 JP11368381A JP11368381A JPS635458B2 JP S635458 B2 JPS635458 B2 JP S635458B2 JP 11368381 A JP11368381 A JP 11368381A JP 11368381 A JP11368381 A JP 11368381A JP S635458 B2 JPS635458 B2 JP S635458B2
Authority
JP
Japan
Prior art keywords
uranium
ammonium carbonate
extraction
organic solvent
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11368381A
Other languages
Japanese (ja)
Other versions
JPS5816035A (en
Inventor
Shoji Yoshinaga
Matsuzo Todo
Kyoshi Fujiwara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP11368381A priority Critical patent/JPS5816035A/en
Publication of JPS5816035A publication Critical patent/JPS5816035A/en
Publication of JPS635458B2 publication Critical patent/JPS635458B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Extraction Or Liquid Replacement (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Description

【発明の詳細な説明】 本発明は、抽出操作でウランを製錬するプロセ
スにおけるウランの逆抽出法に係り、特に、逆抽
出液に炭酸アンモニウム水溶液を用いてウランを
逆抽出するのに好適なウランの逆抽出法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for back-extracting uranium in the process of smelting uranium through an extraction operation, and in particular, a method suitable for back-extracting uranium using an aqueous ammonium carbonate solution as a back-extracting liquid. It concerns the reverse extraction method of uranium.

ウランの製錬方式には、抽出方式、沈澱方式等
種々有るが、中でも、抽出方式は高純度のウラン
を得ることができるため広く用いられている。
There are various methods for smelting uranium, such as extraction methods and precipitation methods, but among them, the extraction method is widely used because it can obtain highly pure uranium.

抽出方式によるウランの抽出プロセスは、抽出
工程と逆抽出工程から成立つている。抽出工程で
は、鉱石中のウランが、硫酸等の液中に溶解した
ウラン水溶液から、ウランを水に難溶な有機溶媒
中へ抽出する。この有機溶媒は、灯油等の溶媒を
希釈剤とし、この中にウランの抽出剤であるアミ
ン系薬品、例えば、トリ・ノルマル・オクチルア
ミン(以下、TnOAと略)等を溶解させたもの
で、ウランは、アミンと反応することにより、ウ
ラン水溶液から有機溶媒中へ移動し、抽出され
る。逆抽出工程では、ウランを抽出した有機溶媒
から逆抽出液中へウランが移動し、逆抽出され
る。
The uranium extraction process using the extraction method consists of an extraction step and a back-extraction step. In the extraction process, uranium in the ore is extracted from an aqueous solution of uranium dissolved in a liquid such as sulfuric acid into an organic solvent that is sparingly soluble in water. This organic solvent uses a solvent such as kerosene as a diluent, and dissolves in it an amine-based chemical that is an extractant for uranium, such as tri-normal octylamine (hereinafter abbreviated as TnOA). By reacting with the amine, uranium moves from the aqueous uranium solution into the organic solvent and is extracted. In the back-extraction step, uranium is transferred from the organic solvent used to extract the uranium into the back-extraction solution and is then back-extracted.

従来、逆抽出液には、主に炭酸ソーダ水溶液
が、また、逆抽出機には、ミキサセトラ形抽出機
が用いられていた。逆抽出液に炭酸ソーダ水溶液
を用いた場合は、炭酸ソーダ水溶液のPHが安定し
ているため、ウランの逆抽出(以下、逆抽出と
略)操作が容易で、また、有機溶媒との間でエマ
ルジヨンが発生しないといつた利点がある反面、
原子炉燃料用に再精製する工程で、ナトリウム分
等不純物の除去に多くの工程を要するといつた欠
点がある。このため最近では、逆抽出液として再
精製工程で不純物除去が容易な炭酸アンモニウム
水溶液の適用が注目を集めている。しかし、炭酸
アンモニウム水溶液のPHが高いため、例えば
TnOAと接触した場合、有機溶媒中に炭酸アンモ
ニウム水溶液の微細な滴が分散し、W/O型のエ
マルジヨンが発生するといわれている。その反
面、炭酸アンモニウム水溶液中に溶解したウラン
は、炭酸根と安定した錯体を作るため、液中に溶
解し沈澱等は発生せず安定した逆抽出操作ができ
るともいわれている。一方、TnOAは、弱アルカ
リ性であり、逆抽出液のPHが高い場合には、ウラ
ンを出しウラン化合物から単体に戻る。すなわ
ち、逆抽出が進行し、第1図のように、例えば、
逆抽出液のPHが5以上では100%近い逆抽出率が
得られる。つまり、炭酸アンモニウム水溶液は緩
衝作用があり、少量の酸が入つてもPHの変動が少
なく逆抽出操作が容易で、また、ウランの沈澱等
も発生せず安定した逆抽出操作ができ、更に、そ
のPHも9.5程度と高いために、エマルジヨンの発
生さえなければ、炭酸アンモニウム水溶液は理想
的な逆抽出液といえる。
Conventionally, a sodium carbonate aqueous solution has been mainly used as the back extraction liquid, and a mixer-settler type extractor has been used as the back extraction machine. When a sodium carbonate aqueous solution is used as the back extraction solution, the PH of the sodium carbonate aqueous solution is stable, so the uranium back extraction (hereinafter referred to as "reverse extraction") operation is easy. Although it has the advantage that emulsion does not occur,
The drawback is that it requires many steps to remove impurities such as sodium during the process of refining it for use as nuclear reactor fuel. For this reason, recently, the application of ammonium carbonate aqueous solution as a back-extraction liquid, from which impurities can be easily removed in the repurification process, has been attracting attention. However, because the pH of ammonium carbonate aqueous solution is high, e.g.
When it comes into contact with TnOA, fine droplets of ammonium carbonate aqueous solution are dispersed in the organic solvent, and it is said that a W/O type emulsion is generated. On the other hand, it is said that uranium dissolved in an aqueous ammonium carbonate solution forms a stable complex with carbonate radicals, so that it dissolves in the solution and does not cause precipitation, allowing stable back-extraction operations. On the other hand, TnOA is weakly alkaline, and if the pH of the back-extraction solution is high, it releases uranium and returns to the simple substance from a uranium compound. That is, as the back extraction progresses, as shown in Figure 1, for example,
When the pH of the back extraction solution is 5 or higher, a back extraction rate of nearly 100% can be obtained. In other words, the ammonium carbonate aqueous solution has a buffering effect, and even if a small amount of acid is added, there is little PH fluctuation, making the back extraction operation easy. Also, the back extraction operation can be performed stably without causing uranium precipitation. Since its pH is as high as 9.5, an aqueous ammonium carbonate solution can be said to be an ideal back-extraction solution as long as emulsion does not occur.

そこで、従来より逆抽出に適用されているミキ
サセトラ形抽出機を想定し、撹拌翼を取付けた温
水ジヤケツト付の500c.c.のビーカを用い、実験液
には、ウランを6g/含有した有機溶媒と炭酸
アンモニウム濃度が130g/の炭酸アンモニウ
ム水溶液の混合液(量比1対1、PH=9.5)を用
い逆抽出実験を行つた。実験条件の内、実験液の
温度は、20℃,30℃,40℃の3条件で、また、有
機溶媒および炭酸アンモニウム水溶液に別々に又
は同時にそれぞれに可溶なエマルジヨンブレーカ
を最大総量200ppm添加した。この場合は、撹拌
翼で実験液を15分間激しく撹拌し、10ないし40分
間静置した後にウランの逆抽出状況をチエツクし
た。その結果、従来よりいわれているようにW/
O型のエマルジヨンが発生し、このエマルジヨン
中にはウランは逆抽出されるが、炭酸アンモニウ
ム水溶液中には、逆抽出は起らなかつた。そこ
で、更に静置時間を約3時間と長時間にしたとこ
ろ、実験液の温度が40℃の条件で初めて炭酸アン
モニウム水溶液中に逆抽出が進行するようになつ
た。このように、逆抽出機にミキサセトラ型抽出
機を、また、逆抽出液に炭酸アンモニウム水溶液
を用いて逆抽出する場合は、撹拌後、長時間静置
する必要があり、実用上極めて不経済な逆抽出と
なる。
Therefore, assuming a mixer-settler type extractor conventionally used for back extraction, a 500 c.c. beaker with a hot water jacket and a stirring blade was used. A back extraction experiment was carried out using a mixed solution of aqueous ammonium carbonate solution with an ammonium carbonate concentration of 130 g/1 (quantity ratio 1:1, PH=9.5). Among the experimental conditions, the temperature of the experimental solution was 20°C, 30°C, and 40°C, and a maximum total amount of 200 ppm of emulsion breaker soluble in the organic solvent and ammonium carbonate aqueous solution was added separately or simultaneously. did. In this case, the experimental solution was vigorously stirred with a stirring blade for 15 minutes, left to stand for 10 to 40 minutes, and then the status of uranium back-extraction was checked. As a result, W/
An O-type emulsion was generated, and uranium was back-extracted into this emulsion, but no back-extraction occurred in the ammonium carbonate aqueous solution. Therefore, when the standing time was further increased to approximately 3 hours, back extraction began to proceed into the ammonium carbonate aqueous solution for the first time under conditions where the temperature of the experimental solution was 40°C. In this way, when performing back extraction using a mixer settler type extractor and an aqueous ammonium carbonate solution as the back extraction liquid, it is necessary to leave the mixture still for a long time after stirring, which is extremely uneconomical in practice. This is a reverse extraction.

本発明は、上記問題の解決を目的としたもの
で、逆抽出機に遠心式抽出機を、また、逆抽出液
に炭酸アンモニウム水溶液を用い、炭酸アンモニ
ウム水溶液と有機溶媒の温度を40℃付近以上に規
制し若しくは有機溶媒および炭酸アンモニウム水
溶液に別々に又は同時にそれぞれ可溶なエマルジ
ヨンブレーカを添加することを特徴とするウラン
の逆抽出法を提供しようとするものである。
The present invention aims to solve the above problem, and uses a centrifugal extractor as the back extractor, an ammonium carbonate aqueous solution as the back extractant, and the temperature of the ammonium carbonate aqueous solution and the organic solvent is set to around 40°C or higher. The object of the present invention is to provide a method for back-extracting uranium, which is characterized by adding a soluble emulsion breaker separately or simultaneously to an organic solvent and an aqueous ammonium carbonate solution.

本発明の一実施例を第2図および実験データに
より説明する。なお、遠心式抽出機としては、一
般に使用されているものと同等であり説明を省略
する。
An embodiment of the present invention will be described with reference to FIG. 2 and experimental data. Note that the centrifugal extractor is the same as one commonly used, and its explanation will be omitted.

第2図で、回転軸1の軸心を中心として高速回
転中の回転体2の外周側付近に有機溶媒は有機溶
媒導入路3より導入され、また、炭酸アンモニウ
ム水溶液は逆抽出液導入路4より回転体2の内周
側付近に導入される。回転体2内では、比重差に
より主界面5を境として回転体2内周側付近には
有機溶媒側連続層6aが、また、回転体2外周側
付近には炭酸アンモニウム水溶液側連続層6bが
形成され、それぞれの分散液滴7a,7bは相対
する連続層6a,6bへ流れ主界面5で衝突し、
逆抽出が進行する。その後、ウランを抽出した炭
酸アンモニウム水溶液は逆抽出液導出路8より、
また、ウランを抽出された有機溶媒は有機溶媒導
出路9より機外へ導出される。
In FIG. 2, the organic solvent is introduced into the vicinity of the outer periphery of the rotating body 2 which is rotating at high speed around the axis of the rotating shaft 1 through the organic solvent introduction path 3, and the ammonium carbonate aqueous solution is introduced into the back extraction liquid introduction path 4. It is introduced closer to the inner circumferential side of the rotating body 2. Inside the rotating body 2, an organic solvent side continuous layer 6a is formed near the inner circumferential side of the rotating body 2 with the main interface 5 as a boundary, and an ammonium carbonate aqueous solution side continuous layer 6b is formed near the outer circumferential side of the rotating body 2 due to the difference in specific gravity. The dispersed droplets 7a, 7b collide with the opposing continuous layers 6a, 6b at the flow main interface 5,
Reverse extraction progresses. After that, the ammonium carbonate aqueous solution from which uranium was extracted is passed through the back extraction liquid outlet 8.
Further, the organic solvent from which uranium has been extracted is led out of the machine through an organic solvent lead-out path 9.

逆抽出液に炭酸アンモニウム水溶液を用い逆抽
出する場合、特に重量な点は、発生したエマルジ
ヨンをいかにして崩壊させるかという点であり、
このためには、第2図の有機溶媒側連続層6aに
分散、浮遊している分散液滴7aを炭酸アンモニ
ウム水溶液側連続層6bへ良好に合一させる必要
がある。この方法としては、分散液滴7a,7b
を衝突させ大形化し、相対するそれぞれの連続層
6a,6bに向つて流れ易くする方法と、分散液
滴7aに力を付与し、炭酸アンモニウム水溶液側
連続層6bに向つて流れ易くする方法とがある。
エマルジヨンブレーカを添加するのは前者の方法
であり、衝突により分散液滴7a,7bの大形化
を助長する効果がある。しかし、分散液滴7a,
7bが微細な場合は、衝突の機会が少なくなり、
エマルジヨンブレーカを添加しても分散液滴7
a,7bが大形化するには長時間を要し、エマル
ジヨンが崩壊し難くなる。従来のミキセトラ形抽
出機による場合がこれに相当する。一方、遠心式
抽出機による場合は、後者の方法に相当し分散液
滴7a,7bに遠心力が付与され、相対する連続
層6a,6bへ向つて流れ易くなるため、分散液
滴7a,7bの衝突の機会も多くなり、したがつ
て、分散液滴7aの炭酸アンモニウム水溶液側連
続層6bへの合一も容易となる。しかし、遠心式
抽出機による場合も、分散液滴7a,7bが極め
て微細な場合は衝突の機会が少なくなり、分散液
滴7aは炭酸アンモニウム水溶液側連続層6bへ
合一し難くなる。つまり、遠心式抽出機により逆
抽出を行う場合は、分散液滴7aの炭酸アンモニ
ウム水溶液側への合一を容易にする操作条件の選
定が必要である。
When performing back extraction using an ammonium carbonate aqueous solution as the back extraction solution, a particularly important point is how to break up the generated emulsion.
For this purpose, it is necessary to properly coalesce the dispersed droplets 7a, which are dispersed and suspended in the continuous layer 6a on the organic solvent side shown in FIG. 2, into the continuous layer 6b on the ammonium carbonate aqueous solution side. As this method, dispersed droplets 7a, 7b
A method of colliding the dispersed droplets 7a to make them larger and making them easier to flow toward the respective continuous layers 6a and 6b facing each other, and a method of applying force to the dispersed droplets 7a to make them easier to flow toward the continuous layer 6b on the ammonium carbonate aqueous solution side. There is.
Adding an emulsion breaker is the former method, which has the effect of promoting enlargement of the dispersed droplets 7a, 7b due to collision. However, the dispersed droplets 7a,
If 7b is minute, there will be less chance of collision,
Even if an emulsion breaker is added, dispersed droplets 7
It takes a long time for a and 7b to become large, making it difficult for the emulsion to collapse. This corresponds to the case using a conventional mixer type extractor. On the other hand, when a centrifugal extractor is used, it corresponds to the latter method, and centrifugal force is applied to the dispersed droplets 7a, 7b, making them easier to flow toward the opposing continuous layers 6a, 6b. This increases the chances of collision between the dispersed droplets 7a and facilitates the coalescence of the dispersed droplets 7a into the continuous layer 6b on the ammonium carbonate aqueous solution side. However, even when using a centrifugal extractor, if the dispersed droplets 7a, 7b are extremely fine, there will be fewer chances of collision, and the dispersed droplets 7a will be difficult to coalesce into the continuous layer 6b on the ammonium carbonate aqueous solution side. That is, when performing back extraction using a centrifugal extractor, it is necessary to select operating conditions that facilitate the coalescence of the dispersed droplets 7a to the ammonium carbonate aqueous solution side.

そこで、逆抽出機に処理量3/mmの遠心式抽
出機を、また、実験液にウランを6g/含有し
た有機溶媒と炭酸アンモニウム濃度が130g/
の炭酸アンモニウム水溶液(量比1対1,PH=
9.5)を用い、実験液の温度を20℃,30℃,35℃
および40℃の4条件とし、また、有機溶媒および
炭酸アンモニウム水溶液に別々に又は同時にそれ
ぞれに可溶なエマルジヨンブレーカを最大総量
200ppm添加し、逆抽出実験を行つた。実験の結
果、エマルジヨンブレーカ無添加の場合、実験液
の温度が20℃,30℃,35℃ではエマルジヨンが崩
壊せず逆抽出は進行しなかつたが、しかし、実験
液の温度が40℃では、遠心式抽出機内での有機溶
媒と炭酸アンモニウム水溶液の滞在時間内(数秒
から1ないし2分間程度)で逆抽出が進行し、逆
抽出率99%が得られた。また、エマルジヨンブレ
ーカ添加の場合は、実験液の温度に無関係に遠心
式抽出機内での有機溶媒と炭酸アンモニウム水溶
液の短い滞在時間内で逆抽出が進行し、逆抽出率
99%が得られた。但し、エマルジヨンブレーカの
添加総量が5ppm以下ではエマルジヨン崩壊に有
効でなく、また200ppmではエマルジヨンブレー
カの添加が逆効果になり炭酸アンモニウム水溶液
側連続層にエマルジヨンが発生した。
Therefore, a centrifugal extractor with a throughput of 3/mm was used as the back extractor, and the experimental solution was an organic solvent containing 6 g/mm of uranium and an ammonium carbonate concentration of 130 g/mm.
ammonium carbonate aqueous solution (quantity ratio 1:1, PH=
9.5), adjust the temperature of the experimental solution to 20℃, 30℃, 35℃.
and 40℃, and the maximum total amount of emulsion breaker soluble in organic solvent and ammonium carbonate aqueous solution separately or simultaneously.
A back extraction experiment was performed by adding 200 ppm. As a result of the experiment, when no emulsion breaker was added, the emulsion did not collapse and back extraction did not proceed when the temperature of the experimental solution was 20℃, 30℃, and 35℃, but when the temperature of the experimental solution was 40℃, The back extraction proceeded within the residence time of the organic solvent and ammonium carbonate aqueous solution in the centrifugal extractor (from several seconds to about 1 to 2 minutes), and a back extraction rate of 99% was obtained. In addition, in the case of adding an emulsion breaker, back extraction proceeds within a short residence time of the organic solvent and ammonium carbonate aqueous solution in the centrifugal extractor, regardless of the temperature of the experimental solution, and the back extraction rate
99% was obtained. However, if the total amount of emulsion breaker added was less than 5 ppm, it was not effective in breaking down the emulsion, and at 200 ppm, the addition of emulsion breaker had the opposite effect, and emulsion was generated in the continuous layer on the ammonium carbonate aqueous solution side.

本発明は、以上説明したように、逆抽出機に遠
心式抽出機を、また、逆抽出液に炭酸アンモニウ
ム水溶液を用い、有機溶媒と炭酸アンモニウム水
溶液の温度を40℃付近以上に規制し若しくは有機
溶媒および炭酸アンモニウム水溶液に別々に又は
同時にそれぞれに可溶なエマルジヨンブレーカを
添加したことで、エマルジヨンを極めて短時間で
崩壊でき、逆抽出率が極めて高い状態でウランを
逆抽出できる効果がある。
As explained above, the present invention uses a centrifugal extractor as a back extractor, an ammonium carbonate aqueous solution as a back extractant, and regulates the temperature of the organic solvent and ammonium carbonate aqueous solution to around 40°C or higher, or By adding a soluble emulsion breaker to the solvent and the ammonium carbonate aqueous solution, either separately or simultaneously, the emulsion can be broken down in a very short time and uranium can be back-extracted with an extremely high back-extraction rate.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、ミキサセトラ形抽出機相定実験で得
られた逆抽出液PHと逆抽出率の関係図、第2図
は、本発明の一実施例を説明するもので遠心式抽
出機でのウランの逆抽出状況図である。 1……回転軸、2……回転体、3……有機溶媒
導入路、4……逆抽出液導入路、5……主界面、
6a……有機溶媒側連続層、6b……炭酸アンモ
ニウム水溶液側連続層、7a,7b…分散液滴、
8……逆抽出液導出路、9……有機溶媒導出路。
Fig. 1 is a diagram showing the relationship between the back extraction liquid PH and the back extraction rate obtained in the mixer-settler type extractor phase determination experiment, and Fig. 2 is a diagram illustrating one embodiment of the present invention. It is a diagram of the reverse extraction of uranium. 1...Rotating shaft, 2...Rotating body, 3...Organic solvent introduction path, 4...Reverse extraction liquid introduction path, 5...Main interface,
6a... Continuous layer on organic solvent side, 6b... Continuous layer on ammonium carbonate aqueous solution side, 7a, 7b... Dispersed droplets,
8... Reverse extraction liquid outlet path, 9... Organic solvent outlet path.

Claims (1)

【特許請求の範囲】 1 灯油等の希釈剤にアミン系薬品を溶解させた
有機溶媒中に抽出されたウランを逆抽出液に炭酸
アンモニウム水溶液を用い逆抽出する方法におい
て、逆抽出機に遠心式抽出機を用い、前記ウラン
の逆抽出時の前記有機溶媒と前記炭酸アンモニウ
ム水溶液の温度を40℃付近以上に規制することを
特徴とするウランの逆抽出法。 2 灯油等の希釈剤にアミン系薬品を溶解させた
有機溶媒中に抽出されたウランを逆抽出液に炭酸
アンモニウム水溶液を用い逆抽出する方法におい
て、逆抽出機に遠心式抽出機を用い前記ウランの
逆抽出時に前記有機溶媒および炭酸アンモニウム
水溶液に別々に又は同時にそれぞれに可溶なエマ
ルジヨンブレーカを添加することを特徴とするウ
ランの逆抽出法。 3 前記エマルジヨンブレーカの添加総量を5な
いし200ppmとした特許請求の範囲第2項記載の
ウランの逆抽出法。
[Claims] 1. In a method for back-extracting uranium extracted into an organic solvent in which an amine-based chemical is dissolved in a diluent such as kerosene using an aqueous ammonium carbonate solution as a back-extracting liquid, a centrifugal type back-extractor is used. A method for reverse extraction of uranium, characterized in that the temperature of the organic solvent and the ammonium carbonate aqueous solution during the reverse extraction of uranium is controlled to around 40° C. or higher using an extractor. 2. In a method of back-extracting uranium extracted into an organic solvent in which an amine-based chemical is dissolved in a diluent such as kerosene using an aqueous ammonium carbonate solution as a back-extracting liquid, a centrifugal extractor is used as the back-extracting machine to remove the uranium. A method for back-extracting uranium, which comprises adding a soluble emulsion breaker to the organic solvent and the ammonium carbonate aqueous solution separately or simultaneously during the back-extraction of uranium. 3. The method for reverse extraction of uranium according to claim 2, wherein the total amount of the emulsion breaker added is 5 to 200 ppm.
JP11368381A 1981-07-22 1981-07-22 Back extraction method for uranium Granted JPS5816035A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11368381A JPS5816035A (en) 1981-07-22 1981-07-22 Back extraction method for uranium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11368381A JPS5816035A (en) 1981-07-22 1981-07-22 Back extraction method for uranium

Publications (2)

Publication Number Publication Date
JPS5816035A JPS5816035A (en) 1983-01-29
JPS635458B2 true JPS635458B2 (en) 1988-02-03

Family

ID=14618525

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11368381A Granted JPS5816035A (en) 1981-07-22 1981-07-22 Back extraction method for uranium

Country Status (1)

Country Link
JP (1) JPS5816035A (en)

Also Published As

Publication number Publication date
JPS5816035A (en) 1983-01-29

Similar Documents

Publication Publication Date Title
CA1073368A (en) Three phase separation
CN112981139B (en) Hydrophobic eutectic solvent for separating nickel and cobalt ions, preparation method thereof and method for separating nickel and cobalt ions
US4292181A (en) Use of liquid membrane systems for selective ion transfer
US4599221A (en) Recovery of uranium from wet process phosphoric acid by liquid-solid ion exchange
US4012481A (en) Process for the separation of platinum group metals
US2962372A (en) Columbium and tantalum separation
JPS635458B2 (en)
GB1563608A (en) Use of liquid membrane systems for selective ion transfer
US3179503A (en) Extraction of cesium from aqueous solution using phenols
AU681693B2 (en) Controlled acid - strong acid strip process
RU2229178C2 (en) METHOD FOR RECOVERING SPENT NUCLEAR FUEL (ALTERNATIVES), Np(VI)-\lang1033\f1 TO\lang1049\f0 -Np(V) REDUCER, Pu(IV)-TO-Pu(III) REDUCER, AND JOINED Np(VI)-TO-Np(V) AND Pu(IV)-TO- (Pu(III) REDUCER
JPS6227140B2 (en)
RU2012075C1 (en) Method of processing of irradiated fuel of atomic power plants
US4369165A (en) Recovery of tungsten values from alkali tungstate solutions by solvent extraction
US5204074A (en) Recovery of gallium values from basic aqueous solutions thereof
US4360503A (en) Recovery of tungsten values from alkali tungstate solutions by solvent extraction
US4450144A (en) Ammonium hydroxide stripping of tungsten from organic solvents
EP0125229B1 (en) Decontamination of ka oil refinement waste stream
CN102167415B (en) Method for separating and recovering phosphoric acid from acetic acid-nitric acid-phosphoric acid series mixed acid waste liquor
JPH06248369A (en) Separation of molybdenum from aluminum solution containing molybdenum
US2721221A (en) Propanol extraction of sodium vanillinate
JPS631246B2 (en)
US3241909A (en) Recovery of uranium values by solvent extraction
US4360502A (en) Recovery of tungsten values from alkali tungstate solutions by solvent extraction
US4202862A (en) Removal of 3-mercapto-4-methyl-2-pentanone from zirconium/hafnium separation processes