JPS5816035A - Back extraction method for uranium - Google Patents

Back extraction method for uranium

Info

Publication number
JPS5816035A
JPS5816035A JP11368381A JP11368381A JPS5816035A JP S5816035 A JPS5816035 A JP S5816035A JP 11368381 A JP11368381 A JP 11368381A JP 11368381 A JP11368381 A JP 11368381A JP S5816035 A JPS5816035 A JP S5816035A
Authority
JP
Japan
Prior art keywords
ammonium carbonate
uranium
extraction
aqueous solution
organic solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11368381A
Other languages
Japanese (ja)
Other versions
JPS635458B2 (en
Inventor
Shoji Yoshinaga
吉永 正二
Matsuzo Todo
藤堂 松三
Kiyoshi Fujiwara
清志 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP11368381A priority Critical patent/JPS5816035A/en
Publication of JPS5816035A publication Critical patent/JPS5816035A/en
Publication of JPS635458B2 publication Critical patent/JPS635458B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Extraction Or Liquid Replacement (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To improve back extraction rate considerably by using a centrifugal extractor for a back extractor, and an aq. ammonium carbonate for back extracting liq., and regulating the temps. of an org. solvent and the aq. ammonium carbonate soln. to specific temps. or above. CONSTITUTION:In the neighborhood of the outside circumference of a rotating body 2 under high speed revolution around the axial center of a revolving shaft 1, an org. solvent wherein amine type chemicals are dissolved in a diluting agent such as kerosene extracted with uranium is heated to about >=40 deg.C and is introduced on the outside circumferential side of the body 2 through an introduction passage 3, and an aq. ammonium carbonate soln. heated to the same temp. is introduced to the inside circumferential side of the body 2 through a back extracting liq. introducing passage 4. In the body 2, the continuous layer 6a on the org.solvent side is formed on the inside circumferential side of the body 2 with a main interface as a boundary and the continuous layer 6b of the aq. ammonium carbonate layer is formed on the outside circumferential side on account of a difference in specific gravity. The respective dispersed liquid drops 7a, 7b flow to the continuous layers 6a, b facing each other and collide against each other at the main interface 5, by which back extraction is progressed. The aq. ammonium carbonate wherein uranium is extracted is discharged through a discharge port 9.

Description

【発明の詳細な説明】 本発明は、抽出操作でウランを製錬するプロセスにおけ
るウランの逆抽出法に係〕、特に、逆抽出液に炭酸アン
モニウム水溶液を用いてつ2ンを逆抽出するのに好適な
ウランの逆抽出法に関するものである。
[Detailed Description of the Invention] The present invention relates to a method for back-extracting uranium in the process of smelting uranium by extraction operation], and in particular, a method for back-extracting uranium using an aqueous ammonium carbonate solution as a back-extraction liquid. This paper relates to a uranium back-extraction method suitable for

ウランの製錬方式には、抽出方式、沈澱方式等積々有る
が、中でも、抽出方式は高純度のウランを得ることがで
きるため広く用いられている0抽出方式によるウランの
抽出ブーセスは、抽出工程と逆抽出工程から成立ってい
る。抽出工程では、鉱石中のウランが、硫酸等の液中に
溶解したウラン水溶液から、ウランを水に難溶な有機溶
媒中へ抽出する。この有機溶媒状、灯油等の溶媒を希釈
剤とし、この中にウランの抽出剤であるアミン系薬品、
例えば、トリ・ノルマル・オクチルアミン(以下、Ta
2人 と略)等を溶解させたもので、ウラン紘、アミン
と反応することによ〕、ウラン水溶液から有機溶媒中へ
移動し、抽出される0逆抽出工程では、ウランを抽出し
た有機溶媒から逆抽出液中へウランが移動し、逆抽出さ
れる。
There are many methods for smelting uranium, such as the extraction method and the precipitation method. Among them, the 0-extraction method is widely used because the extraction method can obtain high-purity uranium. It consists of a process and a back extraction process. In the extraction process, uranium in the ore is extracted from an aqueous solution of uranium dissolved in a liquid such as sulfuric acid into an organic solvent that is sparingly soluble in water. This organic solvent, kerosene, or other solvent is used as a diluent, and in this diluent, an amine-based chemical that is an extractant for uranium,
For example, tri-normal octylamine (hereinafter referred to as Ta
In the back-extraction process, the organic solvent from which uranium was extracted is transferred from the uranium aqueous solution into an organic solvent and extracted by reacting with uranium and amines. The uranium moves from the uranium into the back extraction solution and is back extracted.

従来、逆抽出液には、主に炭酸ソーダ水溶液が、また、
逆抽出機には、ミ中す七ト2形抽出機が用いられていた
。逆抽出液に炭酸ソーダ水嬢液を用いた場合は、炭酸ソ
ーダ水溶液のPHが安定しているため、ウランの逆抽出
(以下、逆抽出と略)操作が容易で、また、有機溶媒と
の間で工マルジ■ンが発生しないといった利点がある反
面、原子炉燃料用に再精製する1福で、ナトリウム分等
不純物の除去に多くの工程を要するといった欠点がある
。このため最近では、逆抽出液として再精製工程で不純
物除去が容易な炭酸アンモニウム水溶液の適用が注目を
集めている。しかし、炭酸アンモニウム水溶液のPHが
高いため、例えばToOAと接触した場合、有機溶媒中
に炭酸アンモニウム水溶液の微細な滴が分散し、wlo
mのエマルシロンが発生するといわれている。その反面
、炭酸アンモニウム水溶液中に溶解し九クラン社、炭酸
根と安定した錯体を作るため、液中に溶解し沈澱等は発
生せず安定した逆抽出操作ができるともいわれている。
Conventionally, the back extraction solution was mainly a sodium carbonate aqueous solution, and
The back extractor used was a Michusu Shichito 2 type extractor. When a sodium carbonate aqueous solution is used as the back extraction solution, the pH of the sodium carbonate aqueous solution is stable, so the uranium back extraction (hereinafter abbreviated as "reverse extraction") operation is easy, and the uranium removal process is easy. While it has the advantage of not producing any process margins during production, it has the disadvantage of requiring many steps to remove impurities such as sodium during refining for use as nuclear reactor fuel. For this reason, recently, the application of ammonium carbonate aqueous solution as a back-extraction liquid, from which impurities can be easily removed in the repurification process, has been attracting attention. However, because the pH of the ammonium carbonate aqueous solution is high, when it comes into contact with ToOA, for example, fine droplets of the ammonium carbonate aqueous solution are dispersed in the organic solvent, causing wlo
It is said that an emulsion of m is generated. On the other hand, it is said that because it dissolves in an aqueous ammonium carbonate solution and forms a stable complex with the carbonate radical, it dissolves in the solution and does not generate precipitation, allowing for stable back extraction operations.

一方、TnOAは、弱アルカリ性であシ、逆抽出液のP
Hが高い場合には、ウランを出しウラン化合物から単体
に戻る。すなわち、逆抽出が進行し、第1図のように、
例えば、逆抽出液のPHが5以上では10〇−近い逆抽
出率が得られる。
On the other hand, TnOA is weakly alkaline and P of the back extract.
If H is high, uranium is released and the uranium compound returns to the simple substance. In other words, as the back extraction progresses, as shown in Figure 1,
For example, when the pH of the back extraction liquid is 5 or higher, a back extraction rate of nearly 100 can be obtained.

つまシ、炭酸アンモニウム水溶液は緩衝作用があシ、少
量の酸が入ってもPHの変動が少なく逆抽出操作が容品
で、また、ウランの沈澱等も発生せず安定した逆抽出操
作ができ、更に、そのPHも9.5程度と高いために、
エマルシロンの発生さえなければ、炭酸アンモニウム水
溶液は理想的な逆抽出液といえる。
The ammonium carbonate aqueous solution has a buffering effect, so even if a small amount of acid is mixed in, there is little change in pH, making it easy to carry out back extraction operations.Also, it does not cause uranium precipitation and allows for stable back extraction operations. Furthermore, since its pH is as high as 9.5,
As long as emulsilone does not occur, ammonium carbonate aqueous solution can be said to be an ideal back extraction solution.

そこで、従来よp逆抽出に適用されているミキサセトラ
形抽出機に想定し、攪拌翼を取付けた温水ジャケット付
の5000Cのビー力を用い、実験液には、ウランを6
 fl/l含有した有機溶媒と炭酸アンモニウム111
度が1a o f//lの炭酸アンモニウム水溶液の混
合[(量比1対1.PH=9.5)を用い逆抽出実験を
行つ声。実験条件の内、実験液の温度は、20℃、30
℃、40℃の34件で、また、有機溶媒および炭酸アン
モニウム水溶液に別々に又は同時にそれぞれに可溶なエ
マルシロンブレーカを最大総量200 pprn添加し
た。この場合は、攪拌翼で実験液を15分間激しく攪拌
し、10ないし40分間靜装した後にウランの逆抽出状
況をチェックした。その結果、従来よりいわれているよ
うにW/Q !Itのエマルジョンが発生し、このエマ
ルジーン中にはウランは逆抽出されるが、炭酸アンモニ
ウム水溶液中には、逆抽出は起らなかった。そこで、更
に静置時間を約3時間と長時間にしたところ、実験液の
温度が40℃の条件で初めて炭酸アンモニウム水溶液中
に逆抽出が進行するようになっ九oこのように、逆抽出
機にミキサセトラ型抽出機を、また、逆抽出液に炭酸ア
ンモニウム水溶液を用いて逆抽出する場合は、攪拌後、
長時間静置する必要があシ、実用上極めて不経済な逆抽
出となる。
Therefore, assuming a mixer settler type extractor conventionally applied to p back extraction, a 5000C bee force equipped with a hot water jacket equipped with stirring blades was used, and uranium was added to the experimental liquid.
fl/l containing organic solvent and ammonium carbonate 111
A person who performs a back extraction experiment using a mixture of ammonium carbonate aqueous solution with a concentration of 1 a.f.//l (quantity ratio 1:1.PH=9.5). Among the experimental conditions, the temperature of the experimental solution was 20°C and 30°C.
C. and 40.degree. C., a maximum total amount of 200 pprn of Emulsilon Breaker, which is soluble in the organic solvent and ammonium carbonate aqueous solution, was added separately or simultaneously to the organic solvent and the ammonium carbonate aqueous solution. In this case, the experimental solution was vigorously stirred with a stirring blade for 15 minutes, and after being allowed to cool for 10 to 40 minutes, the status of uranium back-extraction was checked. As a result, as has been said before, W/Q! An emulsion of It was generated, and uranium was back-extracted into this emulsion, but no back-extraction occurred in the aqueous ammonium carbonate solution. Therefore, when we further increased the standing time to about 3 hours, back extraction proceeded into the ammonium carbonate aqueous solution for the first time when the temperature of the experimental solution was 40°C. When back-extracting using a mixer-settler type extractor and an aqueous ammonium carbonate solution for the back-extracting liquid, after stirring,
It is necessary to leave the sample still for a long time, making reverse extraction extremely uneconomical in practice.

本発明は、上記問題の清快を目的としたもので、逆抽出
機に遠心式抽出機を、また、逆抽出液に炭酸アンモニウ
ム水溶液を用い、炭酸アンモニウム水溶液と有機溶媒の
温度を40℃付近以上に規制し若しくは有機溶媒および
炭酸アンモニウム水溶液に別々に又は同時にそれぞれ可
溶なエマルシロンブレーカを゛        添加す
ることを特徴とするウランの逆抽出法を提供しようとす
るものである。
The present invention aims to solve the above problem, and uses a centrifugal extractor as the back extractor, an ammonium carbonate aqueous solution as the back extractant, and the temperature of the ammonium carbonate aqueous solution and the organic solvent is adjusted to around 40°C. It is an object of the present invention to provide a method for back-extracting uranium, which is characterized by adding soluble emulsilon breaker to an organic solvent and an aqueous ammonium carbonate solution separately or simultaneously.

本発明の一実施例を第2図および実験データによシ説明
する。なお、遠心式抽出機としては、一般に使用されて
いるものと同等であシ説明を省略する0 第2図で、回転軸lの軸心を中心として高速回転中の回
転体2の外周儒付近に有機溶媒は有機溶媒導入路3より
導入され、また、炭酸アンモニウム水溶液は逆抽出液導
入路4よシ回転体2の内周側付近に導入される。回転体
2内でり、比重差によp主界面5を境として回転体2内
周側付近には有機溶媒側連続層61が、また、回転体2
外周側付近には炭酸アンモニウム水溶液側連続層6bが
形成され、それぞれの分散液滴ja、7bは相対する連
続層6g、6bへ流れ主界面5で衝突し、逆抽出が進行
する。その後、ウランを抽出した炭酸アンモニウム水溶
液は逆抽出液導出路8よシ、また、ウランを抽出された
有機溶媒は有機溶媒導出路9よシ機外へ導出される。
An embodiment of the present invention will be explained with reference to FIG. 2 and experimental data. In addition, the centrifugal extractor is equivalent to the one commonly used, and the explanation will be omitted. An organic solvent is introduced through the organic solvent introduction path 3, and an aqueous ammonium carbonate solution is introduced into the vicinity of the inner circumferential side of the rotating body 2 through the back extraction liquid introduction path 4. Inside the rotating body 2, due to the difference in specific gravity, an organic solvent-side continuous layer 61 is formed near the inner circumferential side of the rotating body 2 with the p main interface 5 as a boundary;
A continuous layer 6b on the ammonium carbonate aqueous solution side is formed near the outer circumferential side, and the respective dispersed droplets ja, 7b flow to the opposing continuous layers 6g, 6b and collide at the main interface 5, so that back extraction proceeds. Thereafter, the aqueous ammonium carbonate solution from which uranium has been extracted is led out of the machine through a back-extraction liquid outlet 8, and the organic solvent from which uranium has been extracted is led out through an organic solvent outlet 9.

逆抽出液に炭酸アンモニウム水溶液を用い逆抽出する場
合、特に重量な点は、発生したエマルシロンをいかにし
て崩壊させるかという点であり、このためには、第2図
の有機溶媒側連続層61に分散、浮遊している分散液滴
7mを炭酸アンモニウム水溶液側連続層6bへ良好に合
一させる必要がある。この方法としては、分散液滴7a
、7bを衝突させ大形化し、相対するそれぞれの連続層
6m、6bに向って流れ易くする方法と、分散液滴7a
に力を付与し、炭酸アンモニウム水溶液側連続層6bに
向うて流れ易くする方法とがある。
When performing back extraction using an ammonium carbonate aqueous solution as the back extraction liquid, a particularly important point is how to break down the generated emulsilone. It is necessary to successfully coalesce the 7 m of dispersed droplets that are dispersed and suspended in the continuous layer 6b on the ammonium carbonate aqueous solution side. In this method, the dispersed droplets 7a
, 7b to collide with each other to increase their size so that they flow easily toward the respective continuous layers 6m and 6b facing each other, and the dispersed droplets 7a
There is a method of applying force to the ammonium carbonate aqueous solution to make it easier to flow toward the continuous layer 6b on the ammonium carbonate aqueous solution side.

エマルシロンブレーカを添加するのは前者の方法であ〕
、衝突によシ分散液滴7a、7bの大形化を助長する効
果がある。しかし、分散液滴7a。
Adding Emulsilon Breaker is the former method.
This has the effect of promoting enlargement of the dispersed droplets 7a, 7b due to collision. However, the dispersed droplets 7a.

7bが黴細な場合線、衝突の機会が少なくなシ、エマル
シーンブレーカを添加しても分散液滴7 m。
If 7b is a fine line, there is little chance of collision, and even if an emulsion breaker is added, the dispersed droplet is 7 m.

7bが大形化するには長時間を要し、エマルシロンが崩
壊し難くなる。従来のミ中セト2形抽出機による場合が
これに相当する。一方、遠心式抽出機による場合は、後
者の方法に相当し分散液滴7m+7bに遠心力が付与さ
れ、相対する連続層6m、6bへ向って流れ易くなるた
め、分散液滴7m、7bの衝突の機会も多くな夛、シた
がって、分散液滴7mの炭酸アンモニウム水溶液側連続
層6bへの合一も容易となる。しかし、遠心式抽出機に
よる場合も、分散液滴7m、7bが極めて微細な場合は
衝突の機会が少なくな)、分散液滴7aは炭酸アンモニ
ウム水溶液側連続層6bへ合一し離くなる。つtシ、遠
心式抽出機によシ逆抽出を行う場合は、分散液滴7mの
炭酸アンモニウム水溶液側への・合一を容易にする操作
条件の選定が必要である。
It takes a long time for 7b to increase in size, making it difficult for Emulsilon to disintegrate. This corresponds to the case using the conventional Michuset 2 type extractor. On the other hand, in the case of using a centrifugal extractor, which corresponds to the latter method, centrifugal force is applied to the dispersed droplets 7m + 7b, making them easier to flow toward the opposing continuous layers 6m and 6b, so that the dispersed droplets 7m and 7b collide. Therefore, it becomes easy to coalesce the dispersed droplets 7m into the continuous layer 6b on the ammonium carbonate aqueous solution side. However, even in the case of using a centrifugal extractor, if the dispersed droplets 7m and 7b are extremely fine, there is less chance of collision), and the dispersed droplets 7a coalesce into the continuous layer 6b on the ammonium carbonate aqueous solution side and separate. However, when performing back extraction using a centrifugal extractor, it is necessary to select operating conditions that facilitate the coalescence of 7 m of dispersed droplets to the ammonium carbonate aqueous solution side.

そこで、逆抽出機に処理量31/jlLの遠心式抽出機
を、また、実験液にウランをe9/l含有した有機溶媒
と炭酸アンモニウム11度がxaof//の炭酸アンモ
ニウム水溶液(量比1対1.PH=9.5) を用い、
実験液の温度を20℃、30℃。
Therefore, a centrifugal extractor with a throughput of 31/jlL was used as the back extractor, and the experimental solution was an organic solvent containing e9/l of uranium and an ammonium carbonate aqueous solution with a concentration of xaof// of ammonium carbonate (1:1 ratio). 1. Using PH=9.5),
The temperature of the experimental solution was 20°C and 30°C.

35℃および40℃の4条件とし、tた、有機溶媒およ
び炭酸アンモニウム水溶液に別々に又は同時にそれぞれ
に可溶なエマルシーンブレーカを最大総量200 pp
m添加し、逆抽出実験を行った。
Four conditions were used: 35°C and 40°C, and a maximum total amount of 200 pp of emulsion breaker soluble in an organic solvent and an ammonium carbonate aqueous solution, either separately or simultaneously, was used.
m was added and a back extraction experiment was performed.

実験の結果、エマルシーンブレーカ無添加の場合、実験
液の温度が20℃、30℃、35℃ではエマルシロンが
崩壊せず逆抽出は進行しなかったが、しかし、実験液の
温度が40℃では、遠心式抽出機内での有機溶媒と炭酸
アンモニウム水溶液の滞在時間内(数秒から1ないし2
分間程度)で逆抽出が進行し、逆抽出率999Gが得ら
れた。また、エマルシーンブレーカ添加の場合は、実験
液の温度に無関係に遠心式抽出機内での有機溶媒と炭酸
アンモニウム水溶液の短い滞在時間内で逆抽出が進行し
、逆抽出率99チが得られた。但し、エマルシーンブレ
ーカの添加総量が5 ppm以下ではエマルジーン崩壊
に有効でなく、tた2 00 ppmではエマルシーン
ブレーカの添加が逆効果にな〕炭酸アンモニウム水溶液
側連続層にエマルシロンが発生した。
As a result of the experiment, when the emulsion breaker was not added, Emulsilone did not collapse and back extraction did not proceed when the temperature of the experimental solution was 20°C, 30°C, and 35°C, but when the temperature of the experimental solution was 40°C, , within the residence time of the organic solvent and ammonium carbonate aqueous solution in the centrifugal extractor (from several seconds to 1 to 2
The back extraction proceeded in about 1 minute), and a back extraction rate of 999G was obtained. In addition, in the case of adding emulsion breaker, back extraction proceeded within a short residence time of the organic solvent and ammonium carbonate aqueous solution in the centrifugal extractor, regardless of the temperature of the experimental solution, and a back extraction rate of 99% was obtained. . However, if the total amount of emulsine breaker added was less than 5 ppm, it was not effective in disintegrating emulsine, and if the total amount added was 200 ppm, the addition of emulsine breaker had the opposite effect.Emulsillone was generated in the continuous layer on the ammonium carbonate aqueous solution side.

本発明は、以上説明したように、逆抽出機に遠心式抽出
機を、また、逆抽出液に炭酸アンモニウム水溶液を用い
、有機溶媒と炭酸アンモニウム水溶液の温度を40℃付
近以上に規制し若しくは有機溶媒および炭酸アンモニウ
ム水溶液に別々に又は同時にそれぞれに可溶なエマルシ
ロンブレーカを            添加しf?、
、ことで、エマルシロンを極めて短時間で崩壊でき、逆
抽出率が極めて高い状態でウランを逆抽出できる効果が
ある。
As explained above, the present invention uses a centrifugal extractor as a back extractor, an ammonium carbonate aqueous solution as a back extractant, and regulates the temperature of the organic solvent and ammonium carbonate aqueous solution to around 40°C or higher, or Add soluble emulsilon breaker to the solvent and ammonium carbonate aqueous solution separately or simultaneously. ,
This has the effect of being able to disintegrate emulsilon in an extremely short period of time and allowing uranium to be back-extracted with an extremely high back-extraction rate.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、ミキサモト2形抽出機相定実験で得られた逆
抽出1iPHと逆抽出率の関係図、第2図は、本発明の
一実施例を説明するもので遠心式抽出機でのウランの逆
抽出状況図である。 l・・・・・・回転軸、2・・・・・・回転体、3・・
・・・・有機溶媒導入路、4・・・・・・逆抽出液導入
路、5・・・・・・主界面、6a・・・・・・有機溶媒
側連続層、6b・・・・・・炭酸アンモニクム水溶液側
連続層、1畠、7b・・−・・分散液滴、8・・・・・
・逆抽出液導出路、9・・・・・・有機溶媒導出路v′
10 al
Fig. 1 is a diagram showing the relationship between the back extraction 1iPH and the back extraction rate obtained in the Mixamoto type 2 extractor phase determination experiment, and Fig. 2 is a diagram illustrating an embodiment of the present invention. It is a diagram of the reverse extraction situation of uranium. l... Rotating shaft, 2... Rotating body, 3...
... Organic solvent introduction path, 4 ... Reverse extraction liquid introduction path, 5 ... Main interface, 6a ... Organic solvent side continuous layer, 6b ... ...Continuous layer on ammonium carbonate aqueous solution side, 1 field, 7b...Dispersed droplets, 8...
・Reverse extraction liquid outlet path, 9...Organic solvent outlet path v'
10 al

Claims (1)

【特許請求の範囲】 1、灯油等の希釈剤にアミン系薬品を溶解させた有機溶
媒中に抽出されたウランを逆抽出液に炭酸アンモニウム
水溶液を用い逆抽出する方法において、逆抽出機に遠心
式抽出機を用い、前記ウランの逆抽出時の前記有機溶媒
と前記炭酸アンモニウム水溶液の温度を40℃付近以上
に規制することを!像とするウランの逆抽出法。 2、灯油等の希釈剤にアミン系薬品を溶解させた有機溶
媒中に抽出されたウランを逆抽出液に炭酸アンモニウム
水溶液を用い逆抽出する方法において、逆抽出機に遠心
式抽出槽を用い前記ウランの逆抽出時に前記有機溶媒お
よび炭酸アンモニウム水溶液に別々に又は同時にそれぞ
れに可溶な工マルジ曹ンプレーカを添加することを41
黴とするウランの逆抽出法。 3、前記エマルジ冒ンプレーカの添加総量を5ないし2
00ppmとした特許請求の範囲第2項記載のウランの
逆抽出法。
[Claims] 1. In a method of back-extracting uranium extracted into an organic solvent in which an amine-based chemical is dissolved in a diluent such as kerosene using an aqueous ammonium carbonate solution as a back-extracting liquid, Use a type extractor to control the temperature of the organic solvent and ammonium carbonate aqueous solution to around 40°C or higher during the back extraction of uranium! A method for reverse extraction of uranium as an image. 2. In a method of back-extracting uranium extracted into an organic solvent in which an amine-based chemical is dissolved in a diluent such as kerosene using an ammonium carbonate aqueous solution as a back-extracting liquid, a centrifugal extraction tank is used as the back-extracting machine and the method described above is used. At the time of back-extraction of uranium, adding a soluble industrial carbonate solution to the organic solvent and the ammonium carbonate aqueous solution separately or simultaneously.
Reverse extraction method of uranium as mold. 3. The total amount of the emulsion sprayer added is 5 to 2.
The method for back-extracting uranium according to claim 2, wherein the uranium concentration is 00 ppm.
JP11368381A 1981-07-22 1981-07-22 Back extraction method for uranium Granted JPS5816035A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11368381A JPS5816035A (en) 1981-07-22 1981-07-22 Back extraction method for uranium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11368381A JPS5816035A (en) 1981-07-22 1981-07-22 Back extraction method for uranium

Publications (2)

Publication Number Publication Date
JPS5816035A true JPS5816035A (en) 1983-01-29
JPS635458B2 JPS635458B2 (en) 1988-02-03

Family

ID=14618525

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11368381A Granted JPS5816035A (en) 1981-07-22 1981-07-22 Back extraction method for uranium

Country Status (1)

Country Link
JP (1) JPS5816035A (en)

Also Published As

Publication number Publication date
JPS635458B2 (en) 1988-02-03

Similar Documents

Publication Publication Date Title
RU2645535C1 (en) Method for producing a low-silica vanadium pentoxide from solution containing vanadium, chrome and silicon
CA1073368A (en) Three phase separation
CN109881012B (en) Treatment method for recycling tungsten from tungsten metallurgy dephosphorization residues
US3207577A (en) Method for the recovery of copper from a slurry containing the same
EP2929924B1 (en) Method for extracting and removing rare earth metal ions from plating solution
US4292181A (en) Use of liquid membrane systems for selective ion transfer
CN105271413B (en) A kind of method for extracting tungsten from phosphotungstic acid/phosphotungstate solution
Hirato et al. Concentration of uranyl sulfate solution by an emulsion-type liquid membrane process
US4551314A (en) Process for improving solvent extraction operation using two mixers
Valenzuela et al. Use of a surfactant liquid membrane contactor for zinc uptake from an acid aqueous effluent
US3533742A (en) Production of titanium dioxide
JPS6050128A (en) Extracting method of iron (iii) from aqueous solution and reverse extracting method of iron (iii) from extracting solvent
JPS5816035A (en) Back extraction method for uranium
JPH01294733A (en) Removal of alkali metal compound from crude polymeric substance
SU862819A3 (en) Method of extracting univalent inorganic acids from aqueous solution
EA003234B1 (en) Method for extracting copper from an aqueous solution
EP0189831A1 (en) Cobalt recovery method
GB1563608A (en) Use of liquid membrane systems for selective ion transfer
CN102167415B (en) Method for separating and recovering phosphoric acid from acetic acid-nitric acid-phosphoric acid series mixed acid waste liquor
CN107915256A (en) Dead catalyst prepares high-purity molybdic acid method
US4450144A (en) Ammonium hydroxide stripping of tungsten from organic solvents
TWI461354B (en) Separation and Recovery of Phosphoric Acid from Acetic Acid - Nitric Acid - Phosphate Mixed Acid Waste
SE517587C2 (en) Procedure for leaching electric filter ash from a soda boiler
US4360503A (en) Recovery of tungsten values from alkali tungstate solutions by solvent extraction
JPS631246B2 (en)