JPS6354287B2 - - Google Patents

Info

Publication number
JPS6354287B2
JPS6354287B2 JP60218980A JP21898085A JPS6354287B2 JP S6354287 B2 JPS6354287 B2 JP S6354287B2 JP 60218980 A JP60218980 A JP 60218980A JP 21898085 A JP21898085 A JP 21898085A JP S6354287 B2 JPS6354287 B2 JP S6354287B2
Authority
JP
Japan
Prior art keywords
chitosan
molecular weight
solution
porous granular
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP60218980A
Other languages
Japanese (ja)
Other versions
JPS6279201A (en
Inventor
Itsuo Kurahashi
Hiroaki Yabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Spinning Co Ltd
Original Assignee
Fuji Spinning Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Spinning Co Ltd filed Critical Fuji Spinning Co Ltd
Priority to JP60218980A priority Critical patent/JPS6279201A/en
Publication of JPS6279201A publication Critical patent/JPS6279201A/en
Publication of JPS6354287B2 publication Critical patent/JPS6354287B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明はアフイニテイクロマトグラフイー用坦
体、生理活性物質固体化用坦体、クロマトグラフ
イー用充填材等に極めて好適な多孔質粒状N―ア
シル化キトサンの製造法に関するものである。
The present invention relates to a method for producing porous granular N-acylated chitosan which is extremely suitable for use as a carrier for affinity chromatography, a carrier for solidifying physiologically active substances, a filler for chromatography, and the like.

【従来の技術】[Conventional technology]

キトサンは、蟹、海老等の甲殻類の外皮構成物
質であるキチンを苛性ソーダ水溶液と強熱処理し
て得られるD―グルコサミンを単位としたβ―
(1,4)結合の多糖類である。 このキトサンを原料としてN―アセチルキトサ
ンを得る方法については特公昭59−30163号公報
に開示されているが、この方法はキトサンを酸性
溶液中に溶解し、特に有利な方法として非イオン
性界面活性剤を添加し分散乳化させた乳化液とし
て、該溶液をアルカリ性水溶液と接触させ粉粒体
とし、水洗後不活性溶剤中に分散させ、アシル化
剤でN―アシル化処理する方法が挙げられてい
る。 即ち、実施例の記載から明らかな如くN―アシ
ル化処理を行う前の粉粒体キトサンの成形方法
は、キトサンの酸性水溶液に界面活性剤を含有す
るベンゼン溶液を加え、充分に撹拌して乳化液と
し、次いでこの乳化液をアルカリ水溶液中に激し
く掻き混ぜながら注入し濾過し、キトサンの粉粒
体沈澱物の凝固再生品を得るもので、キトサンの
酸性水溶液に過剰の乳化剤含有疎水性溶液を加え
て高分子量キトサン溶液の粘度低下を計ることと
して居り、該溶液のキトサン濃度は0.5〜2.0%の
範囲にすぎない。 そして、高分子量キトサンを用いているため
に、キトサン本来の性質から酢酸、蟻酸等の酸性
水溶液に溶解させると、数%濃度でもその溶液の
粘度が極端に高くなつてゲル化状態となるので、
特に粒状物を得るためにはゲル化状態を避けるた
めに相当の分散を行う必要が生ずる。このために
懸濁剤、細孔調節剤、乳化剤、界面活性剤等を用
いて分散させて低濃度のキトサン溶液としてい
る。 しかしながら、このような添加剤を用いると、
その使用割合によつて得られる多孔性粒状体の粒
径、微小孔の状態が変化して、均一な粘度分布の
ものが得られず、又強度度的にも脆くなる。この
ような粒状体キトサンを用いてN―アシル化処理
をしても、粒状体キトサンそのものの性能が欠点
として残り、坦体、充填材等として使用するとN
―アシル化キトサンを破壊し、目塞り等の問題を
生ずる欠点があつた。
Chitosan is a β-based compound of D-glucosamine obtained by treating chitin, which is a component of the outer skin of crustaceans such as crabs and shrimp, with an aqueous solution of caustic soda.
It is a polysaccharide with (1,4) bonds. A method for obtaining N-acetyl chitosan using chitosan as a raw material is disclosed in Japanese Patent Publication No. 59-30163, but this method involves dissolving chitosan in an acidic solution and using a nonionic surfactant as a particularly advantageous method. A method is mentioned in which an emulsion is obtained by adding an agent and dispersing and emulsifying the solution, which is made into powder by contacting it with an alkaline aqueous solution, which is then washed with water, dispersed in an inert solvent, and then subjected to N-acylation treatment with an acylating agent. There is. That is, as is clear from the description of the examples, the method for molding powdered chitosan before N-acylation treatment is to add a benzene solution containing a surfactant to an acidic aqueous solution of chitosan, and emulsify it by stirring thoroughly. This emulsion is then injected into an alkaline aqueous solution with vigorous stirring and filtered to obtain a coagulated regenerated product of chitosan powder and granule precipitates. In addition, the viscosity reduction of the high molecular weight chitosan solution is measured, and the chitosan concentration of the solution is only in the range of 0.5 to 2.0%. Since high molecular weight chitosan is used, due to the inherent properties of chitosan, when dissolved in an acidic aqueous solution such as acetic acid or formic acid, the viscosity of the solution becomes extremely high even at a concentration of a few percent, resulting in a gelatinous state.
Particularly in order to obtain granules, considerable dispersion becomes necessary in order to avoid gelling conditions. For this purpose, a low-concentration chitosan solution is obtained by dispersing the chitosan using a suspending agent, pore control agent, emulsifier, surfactant, etc. However, when such additives are used,
Depending on the proportion used, the particle size and the state of micropores of the porous granules obtained change, making it impossible to obtain a uniform viscosity distribution and making the porous granules brittle in terms of strength. Even if such granular chitosan is subjected to N-acylation treatment, the performance of the granular chitosan itself remains as a drawback, and when used as a carrier, filler, etc.
- It had the disadvantage of destroying the acylated chitosan and causing problems such as clogging.

【発明が解決しようとする問題点】 本発明は上記した従来法における欠点を解決
し、非常に粒度の揃つたしかも球状割断面に均一
な微細孔を具備した、強度に優れた多孔質粒状キ
トサンを用いてN―アセチル化することにより、
従来法の如く各種添加剤を用いず工程を簡略化し
て、良質な多孔質粒状N―アセチル化キトサンを
得ることを目的とする。
Problems to be Solved by the Invention The present invention solves the drawbacks of the conventional methods described above, and provides porous granular chitosan with excellent strength, which has extremely uniform particle size and uniform micropores on the spherical cut surface. By N-acetylation using
The purpose of this method is to simplify the process without using various additives as in conventional methods, and to obtain porous granular N-acetylated chitosan of good quality.

【問題点を解決するための手段】[Means to solve the problem]

本発明は、低分子量キトサンを酸性水溶液中に
溶解し、該溶液を塩基性溶液中に落下して凝固さ
せ多孔質粒状キトサンとし、これを有機溶媒中で
アシル化剤と接触反応させて多孔質粒状N―アシ
ル化キトサンを得るものである。 高分子量キトサンは、本発明者が先に出願した
特願昭59−161191号の方法によつて低分子量キト
サンとすることができ、又、同じく本発明者の出
願に係る特願昭60−161192号の方法により、低分
子量キトサンを用いて多孔質粒状キトサンを得る
ことができる。即ち、高分子量キトサンは過硼酸
ソーダ水溶液中で加温処理することにより任意の
分子量の低分子量キトサンとすることができ、本
発明に用いられる低分子量キトサンの平均分子量
は10000〜230000、好ましくは30000〜200000であ
り、その脱アセチル化度は、酸性水溶液に溶解さ
せる時の容易性とアシル化処理によるアシル化度
を高める点から、70%以上であることが好まし
い。低分子量キトサンは酢酸、ジクロル酢酸、蟻
酸、酪酸等の単独又は混合物の水溶液に溶解させ
る。キトサンは低分子量化されているためキトサ
ン溶液の濃度を上昇せしめ、しかも溶液の粘度を
低く保つことが可能であり、該溶液の濃度を2〜
20%とすることができる。該酸性溶液は水酸化ナ
トリウム、水酸化カリウム、炭酸ナトリウム、炭
酸カリウム、アンモニア、エチレンジアミン等の
アルカリ性物質を含み、必要に応じてメタノー
ル、エタノール等の極性を有するアルコールを加
えた塩基性水溶液よりなる凝固浴中に落下させ、
多孔質粒状キトサンを凝固再生せしめる。このよ
うにして得られた多孔質粒状キトサンは、アシル
化剤を用いてN―アシル化反応をさせ、多孔質粒
状N―アシル化キトサンを得る。アシル化度を向
上させるためには、アシル化に供せられる多孔性
粒状キトサンの比表面積は、15〜90m2/g位が好
ましい。アシル化剤としては無水酢酸、無水モノ
クロル酢酸、無水ジクロル酢酸、無水プロピオン
酸、無水安息香酸、無水n―カプロン酸、無水n
―酪酸等が用いられる。アシル化する時の有機溶
媒はアシル化反応で、アシル化剤や反応生成物に
対して不活性で、アシル化反応に対し何らの影響
を与えることのない不活性溶剤で、例えばジメチ
ルホルムアミド、ジメチルアセトアミド、ベンゼ
ン、ジオキサン、メタノール、エタノール、n―
ブタノール等を単独又は混合して使用出来る。
The present invention involves dissolving low molecular weight chitosan in an acidic aqueous solution, dropping the solution into a basic solution and solidifying it to form porous granular chitosan, which is then brought into contact reaction with an acylating agent in an organic solvent to form porous granular chitosan. Particulate N-acylated chitosan is obtained. High-molecular-weight chitosan can be made into low-molecular-weight chitosan by the method of Japanese Patent Application No. 161191/1989, which was previously filed by the present inventor, and also by the method of Japanese Patent Application No. 161191/1987, which was also filed by the present inventor. Porous granular chitosan can be obtained using low molecular weight chitosan by the method of No. That is, high molecular weight chitosan can be made into low molecular weight chitosan of any molecular weight by heating in an aqueous sodium perborate solution, and the average molecular weight of the low molecular weight chitosan used in the present invention is 10,000 to 230,000, preferably 30,000. ~200,000, and the degree of deacetylation is preferably 70% or more from the viewpoint of ease of dissolving in an acidic aqueous solution and increasing the degree of acylation by acylation treatment. Low molecular weight chitosan is dissolved in an aqueous solution of acetic acid, dichloroacetic acid, formic acid, butyric acid, etc. alone or in a mixture. Since chitosan has a low molecular weight, it is possible to increase the concentration of the chitosan solution and keep the viscosity of the solution low.
It can be 20%. The acidic solution contains alkaline substances such as sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, ammonia, and ethylenediamine, and is coagulated from a basic aqueous solution to which polar alcohol such as methanol and ethanol is added as necessary. drop it into the bath,
Porous granular chitosan is coagulated and regenerated. The porous particulate chitosan thus obtained is subjected to an N-acylation reaction using an acylating agent to obtain porous particulate N-acylated chitosan. In order to improve the degree of acylation, the specific surface area of the porous granular chitosan to be subjected to acylation is preferably about 15 to 90 m 2 /g. As the acylating agent, acetic anhydride, monochloroacetic anhydride, dichloroacetic anhydride, propionic anhydride, benzoic anhydride, n-caproic anhydride, n-anhydride
-Butyric acid etc. are used. The organic solvent used during acylation is an inert solvent that is inert to the acylating agent and the reaction product and does not have any effect on the acylation reaction, such as dimethylformamide, dimethyl Acetamide, benzene, dioxane, methanol, ethanol, n-
Butanol etc. can be used alone or in combination.

【実施例】【Example】

本発明方法における多孔質粒状キトサン及び多
孔質粒状N―アシル化キトサンの比表面積は、試
料を液体窒素中で急冷凍結し10トール、−40℃、
8時間真空乾燥し、140℃、40分間脱ガス後比表
面積自動測定装置(島津マイクロメリテイツクス
2200型)にてBET法で測定する。本発明の方法
により得られた多孔質粒状N―アシル化キトサン
のアシル基の置換度は、元素分析で炭素元素に対
する窒素元素の組成比(N/C値)を求め算出す
る。例えば、アセチル化キトサンについてのアセ
チル化度(DS)は、DS={0.5831/(N/C)}
−3、プロピオニル化キトサンのアセチル化度
(DS)は、DS{0.3889/(N/C)}―2から算
出され、式の数値はアシル化剤により決定され
る。又、アシル化キトサンの0―アシル化度を赤
外線吸収スペクトルを用いて確認出来(D1750/
D1670)値から推定出来る。以下、本発明を実施
例を挙げて詳細に説明する。 ◇ 実施例1 平均分子量38000で脱アセチル化度80%のキト
サン74gを酢酸37gを含む水926gに溶解した、
この溶液の粘度は20℃で2500cpであつた。この
溶液を10%NaOH、30%メタノール、60%水の
塩基性溶液に、0.25m/mφのノズルから球状に
なる如く落下せしめて、凝固再生させた後、中性
になる迄水洗をした。 得られた多孔質粒状キトサンの平均粒径は0.8
m/mでその比表面積は78.6m2/gであつた。 この多孔質粒状キトサンを50mlのジメチルホル
ムアミド中でキトサンのグルコサミン残基1モル
に対し、アシル化剤として無水酢酸を3モル入
れ、室温で24時間N―アシル化反応させた。 これを50mlのジメチルホルムアミドで3回洗浄
後充分水洗し多孔質粒状アセチル化キトサンを得
た。同様な方法でアシル化剤としてグルコサミン
残基1モルに3モルの無水プロピオン酸、n―無
水酪酸、無水安息香酸、無水モノクロル酢酸を用
いて多孔質粒状N―アシル化キトサンを得た。こ
れらのアシル化度、比表面積、(D1750/D1670)
値を第1表に示した。
The specific surface area of porous granular chitosan and porous granular N-acylated chitosan in the method of the present invention was determined by rapidly freezing the sample in liquid nitrogen at 10 torr, -40°C,
After vacuum drying for 8 hours and degassing at 140°C for 40 minutes, automatic specific surface area measuring device (Shimadzu Micromeritics)
2200 model) using the BET method. The degree of substitution of acyl groups in the porous particulate N-acylated chitosan obtained by the method of the present invention is calculated by determining the composition ratio of nitrogen element to carbon element (N/C value) by elemental analysis. For example, the degree of acetylation (DS) for acetylated chitosan is DS={0.5831/(N/C)}
-3. The degree of acetylation (DS) of propionylated chitosan is calculated from DS {0.3889/(N/C)}-2, and the numerical value of the formula is determined by the acylating agent. In addition, the degree of 0-acylation of acylated chitosan can be confirmed using infrared absorption spectrum (D1750/
D1670) can be estimated from the value. Hereinafter, the present invention will be explained in detail by giving examples. ◇ Example 1 74 g of chitosan with an average molecular weight of 38,000 and a degree of deacetylation of 80% was dissolved in 926 g of water containing 37 g of acetic acid.
The viscosity of this solution was 2500 cp at 20°C. This solution was allowed to fall into a basic solution of 10% NaOH, 30% methanol, and 60% water through a nozzle of 0.25 m/mφ in a spherical shape, solidified and regenerated, and then washed with water until it became neutral. The average particle size of the obtained porous granular chitosan is 0.8
Its specific surface area in m/m was 78.6 m 2 /g. This porous granular chitosan was mixed with 3 moles of acetic anhydride as an acylating agent per mole of glucosamine residue in chitosan in 50 ml of dimethylformamide, and N-acylation reaction was carried out at room temperature for 24 hours. This was washed three times with 50 ml of dimethylformamide and thoroughly washed with water to obtain porous granular acetylated chitosan. In a similar manner, porous granular N-acylated chitosan was obtained using 3 moles of propionic anhydride, n-butyric anhydride, benzoic anhydride, and monochloroacetic anhydride per mole of glucosamine residue as acylating agents. These acylation degrees, specific surface areas, (D1750/D1670)
The values are shown in Table 1.

【表】 ◇ 実施例2 平均分子量91000、脱アセチル化度95%のキト
サン30gを、蟻酸15gを含む水、970gに溶解さ
せたこの溶液の粘度は4000cpであつた。該溶液
を10%NaOH、50%エタノール、40%水の塩基
性溶液に0.25m/mφのノズルより落下させ、凝
固再生させ、これを充分中性になる迄水洗し多孔
質粒状キトサンを得た。得られた多孔質粒状キト
サンの粒径は250〜194μmの範囲にあり、比表面
積は62.0m2/gであつた。 この多孔質粒状キトサンを50mlのジメチルホル
ムアミド中でグルコサミン残基1モル当り2モル
の無水n―カプロン酸を加え、室温で24時間反応
させた後、50mlのジメチルホルムアミドで3回洗
浄し、更に水で充分洗浄し多孔質粒状カプロイル
化キトサンを得た。 このアシル化度は0.75、比表面積は76.4m2
g、(D1750/D1670)値は0であつた。 ◇ 比較例 比較例として平均分子量230000、脱アセチル化
度78%の高分子量キトサンと、これを低分子化し
た平均分子量28000のキトサンを用いて、それぞ
れ多孔質粒状カプロイル化キトサンを製造して両
者を比較した。 高分子量キトサン13gを酢酸6.5を含む水987g
に溶解し、キトサン濃度1.3%の溶液とした。こ
の20℃における粘度は3400cpであつた。又、低
分子量キトサン65gを酢酸32.5gを含む水935g
に溶解し、キトサン濃度6.5%の溶液とした。こ
のものの20℃における粘度は830cpであつた。両
溶液をそれぞれNaOH10%、CH OH30%、水60
%からなる塩基性溶液中にノズルより落下せし
め、粒状キトサンを凝固再生させて中性になる迄
充分に水洗し、多孔質粒状キトサンを得た。これ
ら粒状キトサンの平均粒径は1.0m/mで、比表
面積は高分子量キトサンより得られたものが38.7
m2/gで低分子量キトサンより得られたもの67.3
m2/gであつた。 これら粒状キトサンをそれぞれ50mlずつとり、
ジメチルホルムアミド50ml中でグルコサミン残基
1モル当り2モルの無水―n―カプロン酸を入
れ、室温で24時間反応させ、ジメチルホルムアミ
ド50mlで3回洗浄後水で充分洗浄してそれぞれの
多孔質粒状カプロイル化キトサンを得た。それら
のアシル化度、比表面積(D1750/D1670)値は
第2表の通りであつた。又、高分子量キトサンと
低分子量キトサンを用いて粒状体をそれぞれ2ml
とつて、これに2mlの燐酸バツフアー溶液にα―
アミラーゼを蛋白質として38mgを含む様に調節し
た溶液を加えて遠心管に入れ、室温で2時間反応
させた後、吸着度からその吸着量を調べ、その結
果を同じく第2表に示した。
[Table] ◇ Example 2 30 g of chitosan having an average molecular weight of 91000 and a degree of deacetylation of 95% was dissolved in 970 g of water containing 15 g of formic acid. The viscosity of this solution was 4000 cp. The solution was dropped into a basic solution of 10% NaOH, 50% ethanol, and 40% water through a nozzle of 0.25 m/mφ, solidified and regenerated, and washed with water until it became sufficiently neutral to obtain porous granular chitosan. . The particle size of the obtained porous granular chitosan was in the range of 250 to 194 μm, and the specific surface area was 62.0 m 2 /g. This porous granular chitosan was reacted with 2 mol of n-caproic anhydride per 1 mol of glucosamine residue in 50 ml of dimethylformamide at room temperature for 24 hours, washed three times with 50 ml of dimethylformamide, and further washed with water. After washing thoroughly with water, porous granular caproylated chitosan was obtained. The degree of acylation is 0.75 and the specific surface area is 76.4m 2 /
g, (D1750/D1670) value was 0. ◇ Comparative Example As a comparative example, porous granular caproylated chitosan was produced using high molecular weight chitosan with an average molecular weight of 230,000 and a degree of deacetylation of 78%, and chitosan with an average molecular weight of 28,000 obtained by reducing the molecular weight of this chitosan. compared. 13g of high molecular weight chitosan and 987g of water containing 6.5% acetic acid
The chitosan concentration was 1.3%. The viscosity at 20°C was 3400 cp. In addition, 65 g of low molecular weight chitosan was mixed with 935 g of water containing 32.5 g of acetic acid.
to make a solution with a chitosan concentration of 6.5%. The viscosity of this product at 20°C was 830 cp. Both solutions were mixed with 10% NaOH, 30% CHOH, and 60% water, respectively.
% through a nozzle, the granular chitosan was coagulated and regenerated, and thoroughly washed with water until it became neutral, yielding porous granular chitosan. The average particle size of these granular chitosan is 1.0 m/m, and the specific surface area of the one obtained from high molecular weight chitosan is 38.7.
m 2 /g obtained from low molecular weight chitosan 67.3
m 2 /g. Take 50ml of each of these granular chitosan,
Add 2 mol of n-caproic anhydride per 1 mol of glucosamine residue in 50 ml of dimethylformamide, react at room temperature for 24 hours, wash 3 times with 50 ml of dimethylformamide, and thoroughly wash with water to obtain each porous granular caproyl. Chemical chitosan was obtained. Their acylation degree and specific surface area (D1750/D1670) values were as shown in Table 2. In addition, 2 ml of granules were prepared using high molecular weight chitosan and low molecular weight chitosan.
To this, add α- to 2 ml of phosphoric acid buffer solution.
A solution adjusted to contain 38 mg of amylase as a protein was added, placed in a centrifuge tube, and allowed to react at room temperature for 2 hours.The amount of adsorption was determined from the degree of adsorption, and the results are also shown in Table 2.

【表】【table】

【発明の効果】【Effect of the invention】

本発明方法においては、低分子量キトサンを用
いて多孔質粒状体を製造するので、キトサン酸性
溶液の濃度を高くすることができるため、粒状体
の強度が増加し、N―アシル化キトサンとして坦
体、充填材等に使用する場合も粒状体が使用に際
して破壊するようなことがない。又、参考例に記
載のように、高分子量キトサンを使用してN―ア
シル化キトサン粒状体を製造すると、単位容量当
りのキトサン濃度が低いので、吸着に関与するカ
プロイル基の導入度も当然低く、従つて吸着量も
低分子量キトサンを用いて高濃度で製造されたも
のに比較して低下していることがわかる。このよ
うに高性能の坦体を製造するには低分子量のキト
サンを用い、高濃度の多孔質粒状N―アシル化キ
トサンとすることが有利である。 本発明の方法により、多孔質粒状キトサンに反
応性を有した、例えばモノクロルアセチル基、ジ
クロルアセチル基、サクシニル基、或いは疎水性
基として、アセチル基、ピロピオニル基、ブチル
基、カプロイル基等、用途に適したアシル化剤を
選択導入することによりアフイニテイクロマトグ
ラフイー用坦体、生理活性物質固定化用坦体、ク
ロマトグラフイー用充填材等の用途に供すること
が出来る。
In the method of the present invention, since porous granules are produced using low molecular weight chitosan, the concentration of the acidic chitosan solution can be increased, so the strength of the granules increases and N-acylated chitosan can be used as a carrier. When used as a filler, etc., the granules do not break during use. Furthermore, as described in the reference example, when N-acylated chitosan granules are produced using high molecular weight chitosan, the concentration of chitosan per unit volume is low, so naturally the degree of introduction of caproyl groups involved in adsorption is also low. Therefore, it can be seen that the amount of adsorption is also lower than that produced using low molecular weight chitosan at a high concentration. In order to produce such a high-performance carrier, it is advantageous to use chitosan with a low molecular weight and form porous particulate N-acylated chitosan with a high concentration. By the method of the present invention, reactive groups such as monochloroacetyl groups, dichloroacetyl groups, succinyl groups, or hydrophobic groups such as acetyl groups, propionyl groups, butyl groups, caproyl groups, etc., can be added to porous particulate chitosan. By selectively introducing an acylating agent suitable for this purpose, it can be used as a carrier for affinity chromatography, a carrier for immobilizing physiologically active substances, a packing material for chromatography, and the like.

Claims (1)

【特許請求の範囲】[Claims] 1 低分子量キトサンを酸性水溶液中に溶解し、
該溶液を塩基性溶液中に落下して凝固させ多孔質
粒状キトサンとし、これを有機溶媒中でアシル化
剤と接触反応させることを特徴とする多孔質粒状
N―アシル化キトサンの製造法。
1 Dissolve low molecular weight chitosan in an acidic aqueous solution,
A method for producing porous granular N-acylated chitosan, which comprises dropping the solution into a basic solution and solidifying it to form porous granular chitosan, which is then subjected to a contact reaction with an acylating agent in an organic solvent.
JP60218980A 1985-10-01 1985-10-01 Production of porous granular n-acylated chitosan Granted JPS6279201A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60218980A JPS6279201A (en) 1985-10-01 1985-10-01 Production of porous granular n-acylated chitosan

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60218980A JPS6279201A (en) 1985-10-01 1985-10-01 Production of porous granular n-acylated chitosan

Publications (2)

Publication Number Publication Date
JPS6279201A JPS6279201A (en) 1987-04-11
JPS6354287B2 true JPS6354287B2 (en) 1988-10-27

Family

ID=16728378

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60218980A Granted JPS6279201A (en) 1985-10-01 1985-10-01 Production of porous granular n-acylated chitosan

Country Status (1)

Country Link
JP (1) JPS6279201A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02141904U (en) * 1989-05-02 1990-11-30

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0643447B2 (en) * 1988-05-30 1994-06-08 忠一 平山 Method for producing granular porous chitosan
US6252003B1 (en) 1998-06-04 2001-06-26 Kao Corporation Polymer emulsion and process for producing the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5633401A (en) * 1979-08-23 1981-04-03 Tdk Corp Manufacture of metal fine grain
JPS56106901A (en) * 1980-01-30 1981-08-25 Mitsubishi Rayon Co Ltd Production of formed product of chitosan
JPS5930163A (en) * 1982-08-10 1984-02-17 Yokogawa Hokushin Electric Corp Numbering circuit
JPS5930722A (en) * 1982-08-12 1984-02-18 Japan Storage Battery Co Ltd Manufacture of silver peroxide plate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5633401A (en) * 1979-08-23 1981-04-03 Tdk Corp Manufacture of metal fine grain
JPS56106901A (en) * 1980-01-30 1981-08-25 Mitsubishi Rayon Co Ltd Production of formed product of chitosan
JPS5930163A (en) * 1982-08-10 1984-02-17 Yokogawa Hokushin Electric Corp Numbering circuit
JPS5930722A (en) * 1982-08-12 1984-02-18 Japan Storage Battery Co Ltd Manufacture of silver peroxide plate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02141904U (en) * 1989-05-02 1990-11-30

Also Published As

Publication number Publication date
JPS6279201A (en) 1987-04-11

Similar Documents

Publication Publication Date Title
Rathke et al. Review of chitin and chitosan as fiber and film formers
Kurita Chemical modifications of chitin and chitosan
JPS6228697B2 (en)
JPH0151481B2 (en)
JPS6157335B2 (en)
JP4356289B2 (en) Polysaccharide complex and method for producing the same
EP0345017B1 (en) Method for preparing granular porous chitosan
JPS6354285B2 (en)
JPS5857401A (en) Production of particulate porous chitosan
JPS61133143A (en) Heavy metal adsorbent
JPH0611810B2 (en) Porous chitin molding and method for producing the same
JPS6354287B2 (en)
MXPA05002252A (en) Method for producing temporarily cross-linked cellulose ethers.
JPH0455609B2 (en)
JPS5829801A (en) Production of n-acylated chitosan
WO2021024900A1 (en) Porous cellulose particles and production method therefor
JP5110046B2 (en) Polysaccharide complex and method for producing the same
JP2754162B2 (en) Manufacturing method of chitin sponge, chitin paper and chitin film
JPH0116420B2 (en)
JPS59142201A (en) High-molecular polysaccharide of improved hydrophilicity and its preparation
JP4255289B2 (en) Composite and production method thereof
JP4411847B2 (en) Method for producing polyuronic acid
JPH0139443B2 (en)
Kubota et al. Characterization of blend films of chitin regenerated from porous chitosan with poly (vinyl alcohol)
JPS6311361B2 (en)