JPS6354127B2 - - Google Patents

Info

Publication number
JPS6354127B2
JPS6354127B2 JP56106804A JP10680481A JPS6354127B2 JP S6354127 B2 JPS6354127 B2 JP S6354127B2 JP 56106804 A JP56106804 A JP 56106804A JP 10680481 A JP10680481 A JP 10680481A JP S6354127 B2 JPS6354127 B2 JP S6354127B2
Authority
JP
Japan
Prior art keywords
oxygen concentration
fuel ratio
reference voltage
air
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56106804A
Other languages
Japanese (ja)
Other versions
JPS588246A (en
Inventor
Nobutoshi Maruyama
Masahiro Watanabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP10680481A priority Critical patent/JPS588246A/en
Publication of JPS588246A publication Critical patent/JPS588246A/en
Publication of JPS6354127B2 publication Critical patent/JPS6354127B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1477Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the regulation circuit or part of it,(e.g. comparator, PI regulator, output)
    • F02D41/1479Using a comparator with variable reference

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

【発明の詳細な説明】 本発明は、酸素濃度センサ(以後O2センサと
言う)を用い自動車用エンジンの空燃比を制御す
る空燃比制御装置に関し、O2センサの活性化の
判定が正確に行える空燃比制御装置を簡単な構成
で提供するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an air-fuel ratio control device that controls the air-fuel ratio of an automobile engine using an oxygen concentration sensor (hereinafter referred to as an O 2 sensor), and the present invention relates to an air-fuel ratio control device that uses an oxygen concentration sensor (hereinafter referred to as an O 2 sensor) to accurately determine whether or not the O 2 sensor is activated. The present invention provides an air-fuel ratio control device with a simple configuration.

第1図は自動車用エンジンの空燃比制御装置の
一例の概略を示している。第1図において、Aは
エンジン、BはエンジンAのシリンダ内に吸入さ
れる空気量と燃料量との重量比(以後空燃比と言
う)を制御する空燃比制御装置、CはエンジンA
の排気ガス中の酸素濃度を検出し、酸素濃度に応
じた起電力を発生するO2センサであり、リツチ
状態(燃料の割合が大きい状態)ではO2センサ
Cの起電力は大きく、リーン状態(燃料の割合が
小さい状態)ではO2センサCの起電力は小さく
なる。第2図に空燃比とO2センサ起電力との関
係を示す。第1図において、DはO2センサCの
起電力をデイジタル信号に変換するアナログ・デ
イジタル変換器(以後A/Dコンバータと言う)、
EはA/DコンバータDから信号を入力し空燃比
を理論空燃比にするための信号を出力するマイク
ロコンピユータ、Fはデイジタル・アナログ変換
器(以後D/A変換器と言う)であり、このD/
A変換器Fの出力によつて空燃比制御装置Bが制
御される。
FIG. 1 schematically shows an example of an air-fuel ratio control device for an automobile engine. In Fig. 1, A is an engine, B is an air-fuel ratio control device that controls the weight ratio between the amount of air taken into the cylinder of engine A and the amount of fuel (hereinafter referred to as the air-fuel ratio), and C is an engine A.
This is an O2 sensor that detects the oxygen concentration in exhaust gas and generates an electromotive force according to the oxygen concentration.In a rich state (state with a large proportion of fuel), the electromotive force of O2 sensor C is large, and in a lean state (in a state where the proportion of fuel is small), the electromotive force of O 2 sensor C becomes small. Figure 2 shows the relationship between the air-fuel ratio and the O 2 sensor electromotive force. In Fig. 1, D is an analog-digital converter (hereinafter referred to as A/D converter) that converts the electromotive force of O 2 sensor C into a digital signal;
E is a microcomputer that inputs a signal from A/D converter D and outputs a signal to bring the air-fuel ratio to the stoichiometric air-fuel ratio, and F is a digital-to-analog converter (hereinafter referred to as D/A converter). D/
The air-fuel ratio control device B is controlled by the output of the A converter F.

第2図に示すO2センサ起電力と空燃比との関
係は、O2センサCが活性状態に達した後のもの
であり、O2センサCが活性状態になる前、すな
わちO2センサ温度が一定値以下の時には、第3
図に示すように、O2センサ起電力は低く、また
応答性も悪い。
The relationship between the O 2 sensor electromotive force and the air-fuel ratio shown in Figure 2 is after the O 2 sensor C reaches the active state, and before the O 2 sensor C becomes the active state, that is, the O 2 sensor temperature is below a certain value, the third
As shown in the figure, the O 2 sensor electromotive force is low and the response is also poor.

従つて正常な空燃比制御を行うためには、O2
センサが一定温度に達したか否か、即ち活性化し
たか否かの判定を行い、活性化したと判断した場
合において、はじめて理論空燃比となるように帰
還制御を開始するように構成し、又未活性のとき
は、活性時と異なつた制御を行うよう装置を構成
する必要がある。
Therefore, in order to perform normal air-fuel ratio control, O 2
It is configured to determine whether or not the sensor has reached a certain temperature, that is, whether or not it has been activated, and when it is determined that it has been activated, to start feedback control so that the stoichiometric air-fuel ratio is reached for the first time, Furthermore, when it is inactive, it is necessary to configure the device to perform different control than when it is activated.

ここでO2センサの内部抵抗は第4図に示す如
く温度に大きく依存し、O2センサ温度が低い場
合にはその内部抵抗は大きい。
Here, the internal resistance of the O 2 sensor largely depends on the temperature as shown in FIG. 4, and when the O 2 sensor temperature is low, the internal resistance is large.

従来O2センサが活性化したか否かの判定は、
上記O2センサの内部抵抗の温度依存性を利用し、
例えば第5図に示す回路を用いて行なつていた。
第5図において、マイクロコンピユータ2でスイ
ツチSをONすることにより抵抗R1とO2センサ1
の内部抵抗R0及びO2センサの起電力V0で決まる
電流をO2センサに流し、この電流によつて発生
する電圧とO2センサ起電力V0の和の電圧V02を、
一定電圧VBを抵抗R2,R3で分圧して得られる基
準電圧VSとコンパレータ3で比較し、VS>V02
なりコンパレータ3の出力が“L”→“H”にな
つたときO2センサは、活性化したと判定するも
のであつた。また上記従来例では空燃比のリー
ン、リツチを判定する回路を別途接続しなければ
ならないものであつた。
Conventionally, determining whether or not the O 2 sensor has been activated is as follows:
Utilizing the temperature dependence of the internal resistance of the above O 2 sensor,
For example, this has been done using a circuit shown in FIG.
In Fig. 5, by turning on switch S using microcomputer 2, resistor R1 and O2 sensor 1
A current determined by the internal resistance R 0 and the electromotive force V 0 of the O 2 sensor is passed through the O 2 sensor, and the voltage V 02 is the sum of the voltage generated by this current and the O 2 sensor electromotive force V 0 ,
When the comparator 3 compares the reference voltage V S obtained by dividing the constant voltage V B with the resistors R 2 and R 3 , and when V S > V 02 and the output of the comparator 3 changes from “L” to “H” The O 2 sensor was determined to be activated. Furthermore, in the conventional example described above, a circuit for determining whether the air-fuel ratio is lean or rich must be separately connected.

この従来の方式では、空燃比がリーンの場合と
リツチの場合でO2センサ起電力が異なることも
無視して活性、未活性の判定を行なつているた
め、正確な判定が行なえず、空燃比がリツチの場
合に比べリーンの場合の方がO2センサ内部抵抗
が高いときに、いいかえるとO2センサ温度が低
いとき、活性化と判定してしまう欠点があつた。
This conventional method ignores the difference in O2 sensor electromotive force when the air-fuel ratio is lean and rich, and makes a determination as to whether the O2 sensor is activated or not. When the fuel ratio is lean compared to when the fuel ratio is rich, when the internal resistance of the O 2 sensor is higher, or in other words, when the O 2 sensor temperature is lower, it is judged as activated.

本発明は上記従来の欠点を除去するものであ
り、以下に本発明の一実施例について図面ととも
に説明する。
The present invention eliminates the above-mentioned conventional drawbacks, and one embodiment of the present invention will be described below with reference to the drawings.

第6図は本発明の一実施例を示している。第6
図において、1はジルコニア焼結体に多孔質電極
を設けてなるO2センサ、2は空燃比制御装置の
中心をなすマイクロコンピユータ、5は、一定電
圧VBを抵抗R4,R5によつて分圧して基準電圧VS
を出力抵抗R6を介して出力する基準電圧発生回
路であり、上記O2センサ1はこの基準電圧発生
回路5に並列に接続されている。4は、O2セン
サ出力端子電圧ViNをデイジタル変換し、マイク
ロコンピユータ2に入力するアナログ・デイジタ
ル変換器(以後A/Dコンバータと云う)であ
る。
FIG. 6 shows an embodiment of the invention. 6th
In the figure, 1 is an O 2 sensor made of a zirconia sintered body with a porous electrode, 2 is a microcomputer that forms the center of the air-fuel ratio control device, and 5 is a constant voltage V B applied through resistors R 4 and R 5 . and divide the voltage into the reference voltage V S
The O 2 sensor 1 is connected in parallel to the reference voltage generating circuit 5 . Reference numeral 4 denotes an analog-to-digital converter (hereinafter referred to as A/D converter) which digitally converts the O 2 sensor output terminal voltage V iN and inputs it to the microcomputer 2 .

第7図は第6図の中の基準電圧発生回路5およ
びO2センサ1の等価回路を示す。但しO2センサ
は内部抵抗R0、起電力V0とする。又抵抗R4,R5
の抵抗値は抵抗R6に比べて実質的に無視できる
ほど小さく、又、A/Dコンバータ入力抵抗は、
R6,R0に比べて無視できるほど大きいとする。
FIG. 7 shows an equivalent circuit of the reference voltage generating circuit 5 and the O 2 sensor 1 in FIG. However, the O 2 sensor has an internal resistance R 0 and an electromotive force V 0 . Also resistance R 4 , R 5
The resistance value of R6 is practically negligible compared to the resistance R6 , and the A/D converter input resistance is
Suppose that it is negligibly large compared to R 6 and R 0 .

第7図において、A/Dコンバータ4への入力
電圧ViNは、 ViN=V0+(VS−V0)×R0/R0+R6=R6V0+R0VS/R0+R
6 ……(1) となる。
In FIG. 7, the input voltage V iN to the A/D converter 4 is V iN = V 0 + (V S −V 0 )×R 0 /R 0 +R 6 =R 6 V 0 +R 0 V S /R 0 +R
6 ...(1) becomes.

ここで、R6を、O2センサが未活性から活性に
到達したときのO2センサ内部抵抗値付近の値と
すると、(1)式において、 ΓR0≫R6の場合(即ちO2センサ温度が低く未活
性の時) ViN≒VS ……(2) ΓR0≒R6の場合(未活性状態から活性状態に到
達したとき) ViN≒V0+VS/2 ……(3) ΓR0≪R6の場合(O2センサが完全に活性状態の
場合) ViN≒V0 ……(4) となる。
Here, if R 6 is a value near the O 2 sensor internal resistance value when the O 2 sensor reaches activation from inactivity, then in equation (1), if ΓR 0 ≫ R 6 (that is, the O 2 sensor When temperature is low and inactive) V iN ≒V S ……(2) When ΓR 0 ≒ R 6 (when reaching active state from inactive state) V iN ≒V 0 +V S /2 ……(3 ) ΓR 0 <<R 6 (when the O 2 sensor is fully activated) V iN ≒V 0 ...(4).

従つて基準電圧VSをO2センサ活性化後のリー
ン、リツチ判定レベル(約0.4V)付近に設定し
た場合の上記(2)、(3)、(4)式に示すA/Dコンバー
タ4への入力電圧ViNとO2センサ温度の関係は第
8図の如くなる。
Therefore, when the reference voltage V S is set near the lean/rich judgment level (approximately 0.4V) after O 2 sensor activation, the A/D converter 4 shown in equations (2), (3), and (4) above The relationship between the input voltage V iN and the O 2 sensor temperature is shown in FIG.

第8図において、O2センサ温度が活性化温度
(第8図のTA;O2センサが活性とみなせる最低
温度)に達した時点のViN即ちリツチ時において
は(VS+ΔV2)、リーン時においては(VS
ΔV1)を越えた場合(ViN>VS+ΔV2又はViN
VS−ΔV1……(5))O2センサが活性化したと判定
し、 (VS−ΔV1)<ViN<(VS+ΔV2) ……(6) のときのO2センサは、未活性と判定すればよい
ことが判る。そして外来雑音等による誤判定を防
止するためには、ViNのレベルが一定期間以上継
続して(5)、(6)式を満足したときはじめて上記判定
を行う方がよい。又活性化後のリーン、リツチの
判定レベルは、前記レベル(0.4V)としてもよ
いし、又適当なΔV1′、ΔV2′を選定し、ViN=VS
+ΔV2′をリーンからリツチの判定レベルとし、
ViN=VS−ΔV1′をリツチからリーンの判定レベル
とすることもできる。又、ΔV1=ΔV1′≠ΔV2
ΔV2′あるいは、ΔV1′=ΔV1′=ΔV2=ΔV2′として
もよい。又第6図の構成例においては、ViN
A/Dコンバータ4に入力し、ViN>VS+ΔV2
ViN<VS−ΔV1等の判定はマイクロコンピユータ
2で行つているが、これに変えて(VS+ΔV2)、
(VS−ΔV1)を各々比較基準レベルとする2つの
比較器に入力し、前記比較器出力をマイクロコン
ピユータに入力してもよいことは云うまでもな
い。又この場合O2センサ活性化後のO2センサに
よる空燃比のリーン、リツチ判定レベルは、リー
ンからリツチ時(VS+ΔV2)、リツチからリーン
時(VS−ΔV1)とすれば、前記、活性、未活性
判定用のコンパレータ出力がそのままリーン、リ
ツチ判定用に使えることになり、新たに比較器を
付加する必要がなく有利である。
In Fig. 8, when the O 2 sensor temperature reaches the activation temperature (TA in Fig. 8; the lowest temperature at which the O 2 sensor can be considered active), V iN , that is, in the rich state (V S +ΔV 2 ), is lean. Sometimes (V S
ΔV 1 ) is exceeded (V iN > V S + ΔV 2 or V iN <
V S −ΔV 1 ...(5)) It is determined that the O 2 sensor is activated, and the O 2 sensor when (V S −ΔV 1 )<V iN <(V S +ΔV 2 ) ...(6) It turns out that it is sufficient to judge that it is inactive. In order to prevent erroneous determination due to external noise or the like, it is better to perform the above determination only when the level of V iN continues for a certain period or more and satisfies equations (5) and (6). The lean/rich judgment level after activation may be set to the above level (0.4V), or by selecting appropriate ΔV 1 ′ and ΔV 2 ′, V iN =V S
+ΔV 2 ′ is the judgment level from lean to rich,
It is also possible to set V iN =V S −ΔV 1 ' as the determination level from rich to lean. Also, ΔV 1 = ΔV 1 ′≠ΔV 2 =
ΔV 2 ′ or ΔV 1 ′=ΔV 1 ′=ΔV 2 =ΔV 2 ′. In the configuration example shown in FIG. 6, V iN is input to the A/D converter 4, and V iN >V S +ΔV 2 ,
The determination of V iN <V S −ΔV 1, etc. is performed by the microcomputer 2, but instead of this, (V S +ΔV 2 ),
It goes without saying that (V S -ΔV 1 ) may be input to two comparators each having a reference level for comparison, and the comparator output may be input to a microcomputer. In this case, the air-fuel ratio lean/rich determination level determined by the O 2 sensor after activation of the O 2 sensor is from lean to rich (V S +ΔV 2 ) and from rich to lean (V S −ΔV 1 ). The above-mentioned comparator output for determining activation/inactivation can be used as is for determining lean/rich, which is advantageous since there is no need to add a new comparator.

本発明は上記のような構成であり、本発明によ
れば、従来例のような活性化判定用のスイツチ、
電流源等は必要でなく、構成が簡単になるととも
に、出力電圧が所定レベル又は所定レベルを含む
所定範囲にあるか否かを検出することにより容易
に活性化の有無が判定できる利点を有する。
The present invention has the above-described configuration, and according to the present invention, a switch for determining activation as in the conventional example,
There is no need for a current source, the configuration is simple, and the presence or absence of activation can be easily determined by detecting whether the output voltage is at a predetermined level or within a predetermined range including the predetermined level.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は空燃比制御方式の概略図、第2図は空
燃比とO2センサ起電力との関係を示す図、第3
図はO2センサ温度とO2センサ起電力およびO2
ンサ応答時間との関係を示す図、第4図はO2
ンサ温度とO2センサの内部抵抗との関係を示す
図、第5図は従来の空燃比制御方式の要部の電気
回路図、第6図は本発明の一実施例における空燃
比制御方式の要部の電気回路図、第7図は第6図
の一部の等価回路図、第8図は本発明方式におけ
る特性を示す図である。 1……酸素濃度センサ(O2センサ)、2……マ
イクロコンピユータ、5……基準電圧発生回路。
Figure 1 is a schematic diagram of the air-fuel ratio control method, Figure 2 is a diagram showing the relationship between the air-fuel ratio and the O 2 sensor electromotive force, and Figure 3 is a diagram showing the relationship between the air-fuel ratio and the O 2 sensor electromotive force.
Figure 4 shows the relationship between O 2 sensor temperature, O 2 sensor electromotive force, and O 2 sensor response time, Figure 4 shows the relationship between O 2 sensor temperature and O 2 sensor internal resistance, and Figure 5 6 is an electrical circuit diagram of a main part of a conventional air-fuel ratio control system, FIG. 6 is an electrical circuit diagram of a main part of an air-fuel ratio control system according to an embodiment of the present invention, and FIG. 7 is a partial equivalent of FIG. 6. The circuit diagram, FIG. 8, is a diagram showing characteristics in the system of the present invention. 1...Oxygen concentration sensor ( O2 sensor), 2...Microcomputer, 5...Reference voltage generation circuit.

Claims (1)

【特許請求の範囲】 1 エンジンの排気ガス中の酸素濃度を検出し酸
素濃度に応じた起電力を発生する酸素濃度センサ
と、この酸素濃度センサの起電力に基づいてエン
ジンの空燃比を制御する制御手段と、上記酸素濃
度センサに並列に接続され、上記酸素濃度センサ
活性時のリーン、リツチ判定レベル付近の基準電
圧を発生する基準電圧発生回路と、上記酸素濃度
センサと上記基準電圧発生回路との接続点の電圧
値を検出しこの電圧値より上記酸素濃度センサの
活性化の有無を判定する判定手段とを具備してな
る空燃比制御装置。 2 判定手段は、基準電圧発生回路と酸素濃度セ
ンサとの接続点の電圧値が、上記基準電圧発生回
路の基準電圧を含む規定の範囲内にあるか否かで
上記酸素濃度センサの活性化の有無を判定する特
許請求の範囲第1項記載の空燃比制御装置。 3 判定手段は、基準電圧発生回路と酸素濃度セ
ンサとの接続点の電圧値が、上記基準電圧発生回
路の基準電圧を含む規定の範囲を越えた状態が一
定時間継続した場合に上記酸素濃度センサが活性
化したと判定する特許請求の範囲第1項記載の空
燃比制御装置。 4 酸素濃度センサ活性時の酸素濃度センサによ
る空燃比のリーン、リツチ判定レベルを、リーン
からリツチ時においては、基準電圧発生回路の基
準電圧より所定レベル高い電圧値とし、リツチか
らリーン時においては、上記基準電圧発生回路の
基準値より所定レベル低い電圧値とした特許請求
の範囲第1項記載の空燃比制御装置。
[Claims] 1. An oxygen concentration sensor that detects the oxygen concentration in exhaust gas of the engine and generates an electromotive force according to the oxygen concentration, and controls the air-fuel ratio of the engine based on the electromotive force of the oxygen concentration sensor. a control means, a reference voltage generation circuit connected in parallel to the oxygen concentration sensor and generating a reference voltage near a lean/rich determination level when the oxygen concentration sensor is activated; and the oxygen concentration sensor and the reference voltage generation circuit. an air-fuel ratio control device comprising determining means for detecting a voltage value at a connection point of and determining whether or not the oxygen concentration sensor is activated based on the voltage value. 2. The determining means determines whether or not the voltage value at the connection point between the reference voltage generation circuit and the oxygen concentration sensor is within a prescribed range that includes the reference voltage of the reference voltage generation circuit. The air-fuel ratio control device according to claim 1, which determines the presence or absence of the air-fuel ratio. 3. The determining means detects the oxygen concentration sensor when the voltage value at the connection point between the reference voltage generation circuit and the oxygen concentration sensor exceeds a specified range including the reference voltage of the reference voltage generation circuit for a certain period of time. The air-fuel ratio control device according to claim 1, which determines that the air-fuel ratio control device is activated. 4. When the oxygen concentration sensor is active, the lean/rich air-fuel ratio determination level by the oxygen concentration sensor is set to a voltage value that is a predetermined level higher than the reference voltage of the reference voltage generation circuit when going from lean to rich, and when from rich to lean, The air-fuel ratio control device according to claim 1, wherein the voltage value is set to be a predetermined level lower than the reference value of the reference voltage generation circuit.
JP10680481A 1981-07-07 1981-07-07 Air-fuel ratio control system Granted JPS588246A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10680481A JPS588246A (en) 1981-07-07 1981-07-07 Air-fuel ratio control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10680481A JPS588246A (en) 1981-07-07 1981-07-07 Air-fuel ratio control system

Publications (2)

Publication Number Publication Date
JPS588246A JPS588246A (en) 1983-01-18
JPS6354127B2 true JPS6354127B2 (en) 1988-10-26

Family

ID=14443040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10680481A Granted JPS588246A (en) 1981-07-07 1981-07-07 Air-fuel ratio control system

Country Status (1)

Country Link
JP (1) JPS588246A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0733790B2 (en) * 1985-12-11 1995-04-12 富士重工業株式会社 Air-fuel ratio controller for automobile engine
JPS63182257U (en) * 1987-05-14 1988-11-24
JP2630372B2 (en) * 1988-03-18 1997-07-16 本田技研工業株式会社 Activation determination method for exhaust gas component concentration detector of internal combustion engine
JPH02277942A (en) * 1989-04-19 1990-11-14 Mitsubishi Motors Corp Air-fuel ratio control device of internal combustion engine
JP2824311B2 (en) * 1990-03-08 1998-11-11 日本特殊陶業株式会社 Oxygen sensor heater control device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5382928A (en) * 1976-12-28 1978-07-21 Nissan Motor Co Ltd Air-fuel ratio controlling apparatus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5382928A (en) * 1976-12-28 1978-07-21 Nissan Motor Co Ltd Air-fuel ratio controlling apparatus

Also Published As

Publication number Publication date
JPS588246A (en) 1983-01-18

Similar Documents

Publication Publication Date Title
US6295862B1 (en) Gas concentration measuring apparatus compensating for error component of output signal
US6383354B1 (en) Gas concentration sensing apparatus
JPS59163556A (en) Oxygen concentration detecting apparatus
JPH1038845A (en) Nitrogen oxides measuring method
JP2004069547A (en) Control device of air/fuel ratio sensor
JP3846058B2 (en) Gas concentration detector
JP4415771B2 (en) Gas concentration detector
JP3310274B2 (en) Gas concentration detector and gas concentration sensor used for it
JPH10111271A (en) Oxygen concentration detector
JP3487161B2 (en) Control device for gas concentration sensor
JP4872198B2 (en) Gas concentration detector
JPS6354127B2 (en)
JP3736921B2 (en) Air-fuel ratio sensor
JP5041488B2 (en) Sensor control device
EP0974835B1 (en) Gas concentration measuring apparatus producing current signal as a function of gas concentration
JPH0114917Y2 (en)
JP2006053126A (en) Gas concentration detector
JPH07104324B2 (en) Air-fuel ratio detector
JPH0114918Y2 (en)
JPH11271264A (en) Temperature control unit for gas concentration sensor
JP2000356620A (en) Gas concentration detection device
JPH0750070B2 (en) Oxygen concentration detector
JPS61200457A (en) Air/fuel ratio detector
JPS59230155A (en) Detecting apparatus of oxygen concentration
JP4051742B2 (en) Gas component concentration measuring device