JPS6353448A - Coloring absorption analysis - Google Patents

Coloring absorption analysis

Info

Publication number
JPS6353448A
JPS6353448A JP19764586A JP19764586A JPS6353448A JP S6353448 A JPS6353448 A JP S6353448A JP 19764586 A JP19764586 A JP 19764586A JP 19764586 A JP19764586 A JP 19764586A JP S6353448 A JPS6353448 A JP S6353448A
Authority
JP
Japan
Prior art keywords
transmitted light
coloring
coloring reaction
reaction
reaction tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19764586A
Other languages
Japanese (ja)
Other versions
JPH073392B2 (en
Inventor
Ryosuke Fukushima
良助 福嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Horiba Ltd
Original Assignee
Horiba Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Horiba Ltd filed Critical Horiba Ltd
Priority to JP61197645A priority Critical patent/JPH073392B2/en
Publication of JPS6353448A publication Critical patent/JPS6353448A/en
Publication of JPH073392B2 publication Critical patent/JPH073392B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Optical Measuring Cells (AREA)

Abstract

PURPOSE:To achieve a reduction in measuring time in a silica gauge for water quality inspection of boiler water at a thermal power plant, by making a coloring reaction tank serve as an absorption tank measuring cell concurrently to control the step movement monitoring the proceeding of a coloring reaction based on the results of detecting the quantity of transmission light. CONSTITUTION:Valves 7V and 9V are closed and a valve 8V is opened to inject a sample of boiler water or the like into a coloring reaction tank/absorbance measuring cell 3. A pump 10P is started to inject a first reagent such as ammonium molybdate by a specified amount into the reaction tank 3. Then, a coloring reaction is monitored with time through a light source 1 and a quantity of transmission light detector 4 and as an output value of the detector 4 reaches a specified value, a differentiated value is down to roughly zero. At this point, the completion of a coloring reaction is judged and a pump 11P or the like is started through an arithmetic control circuit 6 to automatically shift the operation to the next step by the subsequent reagent. The quantity of final transmission light as given at the end of the final step is taken in as measuring data. This enables a reduction in the coloring absorption analysis measuring time because not depending on fixed time unaboidably requiring a sufficient allowance.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、例えば火力発電所におけるボイラー用水の水
質検査に使用されるシリ力計等におけるように、発色反
応を伴うサンプルを対象として吸光分析を行う方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention is a method for absorbance analysis of samples that involve a color reaction, such as in a siliometer used for testing the water quality of boiler water in thermal power plants. Concerning how to do.

〔従来の技(ネi〕[Traditional technique (nei)]

最近は、上記したような火力発電所におけろう・ステム
管理もコンピューターによる中央集中管理体制に移行し
つつあり、その結果、不必要な運転をできるだけ抑えて
電力需要に見合った効率の良いプロセス管理を行うべく
、旧来の年間起動停止といった大まかなプロセス管理二
「法に代わって、WSS (週間起動停止〕あるいはD
SS (日間起動停止)といったより細かな管理が可能
となり、実際にそのような頚緊な起動停止によるプロセ
ス管理が現在玉流となっている。
Recently, power and stem management at thermal power plants such as those mentioned above has been transitioning to a centralized computer-based management system, and as a result, efficient process management that meets power demand while minimizing unnecessary operations has become possible. In order to carry out rough process management such as the old annual startup/shutdown, WSS (weekly startup/shutdown) or D
More detailed management such as SS (day-to-day start-stop) is now possible, and in fact, process management based on such urgent start-up and stop is now the norm.

従って、そのようなプロセス管理のヘースとなる各種計
測器にも、従来;こもましてより律い応答性が要求され
るようになってきている。それ)よ、上記したシリ力計
等のような発色j′々光分析方法を利用した計測器にお
いても例外では無い。
Accordingly, even more uniform responsiveness than ever has been required of the various measuring instruments that serve as the basis for such process management. There is no exception to this in measuring instruments such as the Siri dynamometer mentioned above, which utilize the chromogenic optical analysis method.

ところで、従来の発色吸光分析方法としては、一般ニ、
JIS指定法(J:S  K−0101またはB−82
24)による手分1斤方法がある。
By the way, conventional color absorption spectrometry methods generally include
JIS designation method (J:S K-0101 or B-82
There is a 1 loaf method according to 24).

即ら、このJ I S指定法において;よ、発色反応槽
における反応環境温度を206C程度に設定維持した状
態で、所定の各種試薬を所定の時間間隔毎に順次発色反
応槽における試料中に導入して、十分に発色反応を起こ
させた後、その発色反応済みのサンプルを吸光量測定セ
ルへ導き、i3過光量検出器によりその透過光量を測定
し、その透過光量検出結果に基いて所定の演算を行うこ
とにより吸光度を検出する、という手段が用いられる。
That is, in this JIS specified method, various predetermined reagents are sequentially introduced into the sample in the color reaction tank at predetermined time intervals while the reaction environment temperature in the color reaction tank is set and maintained at about 206C. After the coloring reaction has occurred sufficiently, the sample that has undergone the coloring reaction is guided to the absorbance measuring cell, the amount of transmitted light is measured by the i3 excess light amount detector, and a predetermined value is determined based on the result of the detected amount of transmitted light. A method of detecting absorbance by performing calculations is used.

例え:よこのJISJ旨定法全定法゛たシリ力計の場合
には、第3図に示すように、発色反応槽における試料中
に、先ず試薬■としてモリブデン酸アンモニウムを所定
量導入してケイモリブデンイエロー反応を起こさせ、そ
のケ・イモリブデンイエロー反応が確実に進行するに十
分な約5分後に、試薬■として酒石酸を所定量導入して
対シリカ障害成分である燐酸を隠蔽させ、その燐酸隠蔽
反応が確実に進行するに十分な約1分後に、試薬■とし
て1アミノ−2ナフトール−4スルボン酸を所定1人し
てモリブデンブルー反応を起こさせ、そのモリブデンブ
ルー反応が確実に進行するに十分な約10分後に、その
発色反応済みのサンプルを吸光量測定セルへ辱き、透過
光量検出器によりその透過光量を測定するのである。
For example, in the case of a silica force meter that uses all the standard methods prescribed by JISJ, as shown in Figure 3, first a predetermined amount of ammonium molybdate is introduced as reagent (2) into the sample in the color reaction tank, and then the silicon molybdate is After approximately 5 minutes, which is sufficient to ensure the progress of the yellow reaction, a predetermined amount of tartaric acid is introduced as a reagent (■) to hide phosphoric acid, which is a component that interferes with silica. After about 1 minute, which is sufficient to ensure that the reaction proceeds, a predetermined amount of 1-amino-2-naphthol-4-sulfonic acid as reagent (2) is added to cause a molybdenum blue reaction, and the molybdenum blue reaction is carried out in a manner sufficient to ensure that the molybdenum blue reaction proceeds. After about 10 minutes, the color-reacted sample is placed in the absorbance measurement cell, and the amount of transmitted light is measured using a transmitted light amount detector.

つまり、多少の安全率を含めてのことにしても、上記従
来のJIS指定法を用いたシリ力計の場合には、その測
定開始から測定完了までに計16分程度という長時間を
要するため、前述した最近の要求く連応性)に沿うこと
ができない、という問題が生じている。
In other words, even if some safety factor is included, it takes a long time, about 16 minutes in total, from the start of measurement to the completion of measurement in the case of a silliform force meter that uses the conventional JIS specified method mentioned above. The problem has arisen that it is not possible to meet the recent demands for connectivity described above.

そこで、本発明者は、種々の実験的研究を通巳て、反応
環境温度を上記JIS指定法の場合よりも高くしても反
応上何ら問題が生じないことを見出し、その結果、反応
環境温度を40℃程度に設定維持した状態で発色反応を
生しさせる改良法(先行技術)を案出するに至った。こ
の先行技術に係る改良法によれば、例えばシリ力計の場
合で、第4図に示すように、モリブデンブルー反応のた
めの時間を約4分に短縮しても十分確実な発色反応が実
現され、従って、その測定開始から測定完了までの時間
を計10分程度に短縮できることが判った。
Therefore, through various experimental studies, the inventors of the present invention have found that no problem occurs in the reaction even if the reaction environment temperature is made higher than in the case of the JIS specified method, and as a result, the reaction environment temperature We have devised an improved method (prior art) in which a coloring reaction occurs while the temperature is set and maintained at about 40°C. According to this improved method of the prior art, in the case of a Siri force meter, for example, as shown in Figure 4, a sufficiently reliable color reaction can be achieved even if the time for the molybdenum blue reaction is shortened to about 4 minutes. Therefore, it was found that the time from the start of the measurement to the completion of the measurement could be shortened to about 10 minutes in total.

(発明が解決しようとする問題屯〕 しかしながら、上記した本発明者による先行技術(改良
法)に係る発色吸光分析方法においても、前述した従来
のJIS指定法の場合と同様に、やはり各ステップ毎の
反応時間を固定的に設定する方式を採用しているために
、それら各ステップ毎の固定的反応時間の設定の際Oこ
シよ、良!lYな測定精度を確保すべく十分かつ確実な
発色反応が保証されるように、夫々にある程度余裕のあ
る安全時間を含めざるを得ず、従って、ごの?j、を考
慮すれば、つまり、発色反応の終点を確実に検知するこ
とにより無駄な安全時間の付加をli力少なくすれば、
まだまだ測定時p″A短縮化の余地が残されているもの
と考察し得る。とはいうものの、発色反応の終点は試#
−1/農度等の条件によって左右されるため、一元的に
その発色反応の終点を予゛測設定することは不可能であ
る。
(Problem to be Solved by the Invention) However, in the chromogenic absorption spectrometry method according to the prior art (improved method) by the present inventors, as well as in the case of the conventional JIS designated method described above, each step is Since the method of setting the reaction time in a fixed manner is adopted, when setting the fixed reaction time for each step, sufficient and reliable measures must be taken to ensure good measurement accuracy. In order to guarantee the color reaction, it is necessary to include a certain amount of safety time in each case, and therefore, if we take into account the If you reduce the amount of safety time added,
It can be considered that there is still room for shortening p″A during measurement. However, the end point of the color reaction is
-1/It is impossible to centrally predict and set the end point of the color reaction because it depends on conditions such as agricultural yield.

本発明は、かかる従来実情ならびにそれに対する考察結
果に鑑みてなされたものであって、その目的は、発色反
応の終点を確実に検知できる技術を開発することによっ
て、良好な吸光度測定精度を十分に維持しながらも一層
の測定時間短縮化を達成できる発色吸光分析方法を提供
せんとすることにある。
The present invention has been made in view of the above-mentioned conventional situation and the results of consideration thereof, and its purpose is to sufficiently achieve good absorbance measurement accuracy by developing a technology that can reliably detect the end point of a color reaction. It is an object of the present invention to provide a colorimetric absorption analysis method that can further shorten the measurement time while maintaining the same characteristics.

〔問題点を解決するための手段] 上記目的を達成するために、本発明による発色吸光分析
方法は、所定の複数ステップから成る測定シーケンスに
基いて試料および試薬が導入される発色反応槽として透
過光量検出器に対応する吸光量測定セルを共用すると共
に、前記透過光量検出結果による透過光量検出結果に拮
いて前記発色反応槽を構成する吸光景氾11定セルζこ
おける発色反応の進行状態を経時的にモニターさせ、そ
の発色反応が設定された基準状世に達したことが検知さ
れたときに自動的に現ステップから次のステノブヘ移行
させる・という手段によることを特徴を有する。
[Means for Solving the Problems] In order to achieve the above object, the chromogenic absorption spectrometry method according to the present invention uses a chromogenic reaction tank in which a sample and a reagent are introduced based on a measurement sequence consisting of a plurality of predetermined steps. In addition to sharing an absorbance measurement cell corresponding to the light amount detector, the progress state of the color reaction in the absorption light flood 11 constant cell ζ constituting the color reaction tank is determined based on the transmitted light amount detection result. It is characterized in that it is monitored over time and automatically moves from the current step to the next step when it is detected that the color reaction has reached a set standard level.

〔作用〕[Effect]

上記特徴ある手段を用いることにより発揮される作用は
下記の通りである。
The effects achieved by using the above-mentioned characteristic means are as follows.

即ち、上記本発明による発色吸光分析方法によれば、後
述する具体的実施例の記載からも一層明らかとなるとこ
ろであるが、前述した従来のJIS指定法および先行技
術に係る改良法におけるように各ステップ毎の反応時間
を固定的に設定するのでは無く、透過光量検出器による
検出透過光量変化の経時的モニター結果から発色反応が
設定された基準状態に達したとき(発色反応の終点)を
自動的に判定すると共に、その時点で現ステップから次
のステップへ移行させるようにしたことにより、各ステ
ップに従来のような壌駄な安全時間が含まれることが無
く、発色反応を所望通り十分確実に終結させることがで
きながら、しかも、各ステップを必要最小限の時間に短
縮させることができ、従って、良好な測定精度を十分に
確保できながらも、吸光度測定に要する時間を従来に比
べて大幅に(実験によれば、従来のJIS指定法の約1
15.前記改良法の約1/3に)短縮できるようになっ
た。
That is, according to the above-mentioned color absorption spectrometry method according to the present invention, as will become clearer from the description of the specific examples described below, each Instead of setting a fixed reaction time for each step, it is automatically determined when the color reaction reaches a set reference state (the end point of the color reaction) based on the results of monitoring changes in the amount of transmitted light detected by the transmitted light amount detector over time. By making a judgment based on the current step and moving from the current step to the next step at that point, each step does not include the long safety time required in the past, and the color reaction is fully ensured as desired. In addition, each step can be shortened to the minimum necessary time. Therefore, while ensuring good measurement accuracy, the time required for absorbance measurement is significantly reduced compared to conventional methods. (According to experiments, approximately 1
15. The process can now be reduced to about 1/3 of the improved method described above.

また、本発明方法においては、透過光量検出器に対応す
る吸光量測定セルを発色反応槽として共用するようにし
ているから、吸光度測定において本来的に必要とされる
光源、測定セル、通過光量検出器をそのまま有効利用で
きて、他に付加すべき特別な構成部材数を可及的に少な
くできると共に、各種試薬力身盲実に4入されたか否か
ということやデータの異常の有無等を、前記検出透過光
量の経時的モニターを通じてU’ll UEできる、と
いう利点もある。
In addition, in the method of the present invention, the absorbance measurement cell corresponding to the transmitted light amount detector is shared as a coloring reaction tank, so the light source, measurement cell, and transmitted light amount detection that are originally required for absorbance measurement are The container can be used effectively as it is, and the number of special components to be added can be reduced as much as possible, and it is also possible to check whether various reagents have been put in 4 times blindly, whether there are any abnormalities in the data, etc. There is also an advantage that U'll UE can be performed by monitoring the amount of detected transmitted light over time.

〔実施例〕〔Example〕

以下、本発明に係る発色吸光分析方法の具体的実施例を
図面(第1図および第2図)に基いて説明する。
Hereinafter, specific examples of the colorimetric absorption analysis method according to the present invention will be described based on the drawings (FIGS. 1 and 2).

第1図は、本発明方法を適用して構成された発色吸光自
動分析計の構造を模式的に示したものであり、ここでは
シリ力計として利用する場合を例に挙げて説明する。
FIG. 1 schematically shows the structure of an automatic color-developing absorption analyzer constructed by applying the method of the present invention, and the case where it is used as a Siri force meter will be explained here as an example.

即ち、図示しているように、へ足先照射用の光源1.干
渉フィルター2.吸光量測定セル3.透過光量検出器4
が、その順に光学的直線関係が成立するように配置され
、前記通過光量検出器4からの検出出力がプリアンプ5
を介して6iin制御ロ回路6へ人力されるように構成
されている。
That is, as shown in the figure, a light source 1 for illuminating the toe. Interference filter 2. Absorption measurement cell 3. Transmitted light amount detector 4
are arranged in that order so that an optical linear relationship is established, and the detection output from the transmitted light amount detector 4 is sent to the preamplifier 5.
It is configured to be manually inputted to the 6in control circuit 6 via the 6in control circuit 6.

そして、前記吸光量測定セル3は、前記演算制御回路6
により決定される所定のネM数ステップから成る測定シ
ーケンスに基いて洗浄水、試料および試薬が自1」的に
導入される発色反[F]槽としても共用するように構成
され、そのために、図示しているように、第1電磁間閉
弁7■を備えた洗浄水供給流路7および第2電(n開閉
弁8■を備えた試料供給流路8が夫々導入接続されると
共に、第3電磁開閉弁9■を備えたiJF出流路9が導
出接続され、かつ、第1試薬槽1.OTおよび第1液送
ポンプIOPを備えた第1試薬供給流路10.第2試薬
槽11Tおよび第2液送ポンプI 1. Pを備え1こ
第2試薬供給流路11ならびに第3試薬槽12Tおよび
第3液送ポンプ12Pfc備えた第3試薬供給流路12
が夫々導入接続されている。なお、前記第1電磁開閉弁
7V、第2電磁開閉弁8V、第3電磁開閉弁9V、第1
液送ポンプIOP、第2液送ポンプIIP、第3液送ポ
ンプ12P等は、所定の測定シーケンスを実現するため
に、夫々前記演算制御回路6によってその動作を制御さ
れるように構成されている。更に、前記発色反応槽を兼
ねる吸光量測定セル3は、発色反応温度が常時40℃程
度に設定維持されるように、前記演算制御回路6により
温度制御される恒温室13内に配置されている。
The absorbance measuring cell 3 is configured to include the arithmetic and control circuit 6.
The tank is configured to also be used as a color development tank into which wash water, samples, and reagents are automatically introduced based on a measurement sequence consisting of a predetermined number of steps determined by As shown in the figure, a cleaning water supply channel 7 equipped with a first electromagnetic closing valve 7■ and a sample supply channel 8 equipped with a second electromagnetic closing valve 8■ are introduced and connected, respectively. A first reagent supply channel 10.A first reagent supply channel 10.A first reagent supply channel 10.A first reagent supply channel 10.A first reagent supply channel 10.A first reagent supply channel 10.A first reagent supply channel 10.A first reagent supply channel 10.A first reagent supply channel 10.A first reagent supply channel 10.An iJF outlet channel 9 equipped with a third electromagnetic on-off valve 9. A second reagent supply channel 11 including a tank 11T and a second liquid feed pump I1.P, and a third reagent supply channel 12 including a third reagent tank 12T and a third liquid feed pump 12Pfc.
are connected to each other. In addition, the first electromagnetic on-off valve 7V, the second electromagnetic on-off valve 8V, the third electromagnetic on-off valve 9V, the first electromagnetic on-off valve
The liquid feed pump IOP, the second liquid feed pump IIP, the third liquid feed pump 12P, etc. are configured so that their operations are controlled by the calculation control circuit 6, respectively, in order to realize a predetermined measurement sequence. . Further, the absorbance measurement cell 3, which also serves as the color reaction tank, is placed in a thermostatic chamber 13 whose temperature is controlled by the arithmetic control circuit 6 so that the color reaction temperature is always set and maintained at about 40°C. .

また、同第1図中、14はl1ii記演算制御回路6に
接続された出力装置であり、CRTディスプレイやレコ
ーダーを含んでいる。
Further, in FIG. 1, 14 is an output device connected to the calculation control circuit 6, which includes a CRT display and a recorder.

次に、前記演算制御回路6により実現されるところの、
所定の複数ステップから成る1−測定シーケンスについ
て、第2図の模式的タイムヒストリー例を参照しながら
説明する。
Next, as realized by the arithmetic control circuit 6,
A 1-measurement sequence consisting of a plurality of predetermined steps will be described with reference to the schematic time history example shown in FIG.

前回の1=測定シーケンスが完了した後、先ず前処理ス
テップとして、前記第1および第2電磁開閉弁7V、8
Vを閉じた状態で第3電磁開閉弁9■を開いて、前面の
測定に供された発光反応済みのサンプルを吸光量測定セ
ル3 (発色反応槽)から排出し、次に、前記第2およ
び第3電磁開閉弁8V、9Vを閉じた状態で第)、’;
?111開閉弁7■を開いて、吸光量測定セル3 (発
色反応)旧内へ洗浄液を黒人し、しかる後、前記第1お
よび第2電磁開閉弁7V、8Vを閉した杖!鏝で第3電
磁開閉弁9vを問いて、その洗浄液を吸光h+、 り+
+11定セル3 (発色反応槽)から排出する、という
洗浄動作を2〜3回繰り返す。以上の前処理ステップに
要する時間は通常2〜3分程度である。
After the previous 1=measurement sequence is completed, first, as a pre-processing step, the first and second electromagnetic on-off valves 7V, 8
With V closed, the third electromagnetic on-off valve 9■ is opened to discharge the luminescence-reacted sample used for front measurement from the absorbance measurement cell 3 (color reaction tank), and then and with the third electromagnetic on-off valves 8V and 9V closed), ';
? Open the 111 on-off valve 7■, pour the cleaning liquid into the absorbance measurement cell 3 (color reaction), and then close the first and second electromagnetic on-off valves 7V and 8V! Check the third electromagnetic on-off valve 9v with a trowel and absorb the cleaning liquid.
The cleaning operation of discharging from +11 constant cell 3 (coloring reaction tank) is repeated 2 to 3 times. The time required for the above pretreatment step is usually about 2 to 3 minutes.

前記前処理ステップが終了すると、演算制御回路6は、
測定ステップに入る。
When the pre-processing step is completed, the arithmetic control circuit 6
Enter the measurement step.

即ち、先ず、その前処理ステップにおいて前記透過光量
検出器4により検出された透過光量変化の全モニターデ
ータに対するパターン認識を行うことによって、その前
処理ステップが正常に行われたか否かを確認してから、
前記第1および第3電磁開閉弁7V、9Vを閉した状態
で第2電磁開閉弁aVを開いて、吸光量測定セル3(発
色反応槽)内へ試ギーIを導入する。そして、その際に
モニターしている透過光量変化データの微分値(変化率
)が設定された所定の値(0またはOに近い微少設定値
)に落ち着いてから、そのときの初期透過光量(to)
を測定してデータとして取り込む。
That is, first, in the preprocessing step, pattern recognition is performed on all the monitor data of the change in the amount of transmitted light detected by the transmitted light amount detector 4, thereby confirming whether or not the preprocessing step has been performed normally. from,
With the first and third electromagnetic on-off valves 7V and 9V closed, the second electromagnetic on-off valve aV is opened to introduce test ghee I into the absorbance measurement cell 3 (coloring reaction tank). Then, after the differential value (rate of change) of the transmitted light amount change data being monitored at that time settles down to a predetermined value (0 or a minute setting value close to O), the initial transmitted light amount (to )
Measure and import as data.

この初期透過光N c + e )データの取り込みス
テップに要する時間は通常2分程度である。
The time required for this initial transmitted light N c + e ) data acquisition step is usually about 2 minutes.

その後、全ての電磁開閉弁7V、8V、9Vを閉じた状
態で、先ず第1液送ポンプIOPのみを所定量動作させ
ることにより、第1試薬供給流路10を介して吸光量測
定セル3 (発色反応槽)内へ、第1試薬■(モリブデ
ン酸アンモニウム)を所定量導入してケイモリブデンイ
エロー反応を起こさせる。そして、その際にモニターし
ている透過光量変化データの微分値(変化率)が設定さ
れた所定の値(0または0に近い微少設定値)に落ち着
いたことを検知したときに、そのケイモリブデンイエロ
ー反応が十分確実に進行して終点に達したとして、次の
ステップへ移行すべく、第2液送ポンプ11Pのみを所
定量動作させることにより、第2試薬供給流路11を介
して吸光量測定セル3(発色反応槽ン内へ、第2試薬■
(fi石酸)を所定量導入して対シリカ障害成分である
F4Hを隠蔽させる。なお、この燐酸上、蔽反応はほぼ
瞬間的に行われることが判明しているので、ここではそ
の約20秒後に、その次のステップへ移行すべく、第3
液送ポンプ1.2 Pのみを所定量動作させることによ
り、第3試薬供給流路12を介して吸光量測定セル3(
発色反応槽)内へ、第3試薬■(1アミノ−2ナフトー
ル−4スルホンfi)を所定量導入してモリブデンブル
ー反応を起こさせ、その際にモニターしているl光量変
化データの微分値(変化率)が設定された所定の値(0
または0に近い微少設定値)に落ち着いたことを検知し
たときに、そのモリブデンブルー反応が十分確実に進行
して終点に達したとして、そのときの最終透過光■(1
)を測定してデータとして取り込む。
Thereafter, with all the electromagnetic on-off valves 7V, 8V, and 9V closed, first, only the first liquid feeding pump IOP is operated by a predetermined amount, so that the absorbance measurement cell 3 ( A predetermined amount of the first reagent (1) (ammonium molybdate) is introduced into the coloring reaction tank (coloring reaction tank) to cause a silicon molybdenum yellow reaction. When it is detected that the differential value (rate of change) of the transmitted light amount change data monitored at that time has settled down to a predetermined value (0 or a minute setting value close to 0), the Assuming that the yellow reaction has progressed sufficiently and reached the end point, in order to move on to the next step, only the second liquid feed pump 11P is operated by a predetermined amount to increase the amount of light absorbed through the second reagent supply channel 11. Measurement cell 3 (into the coloring reaction tank, the second reagent ■
A predetermined amount of (fi-taric acid) is introduced to hide F4H, which is a component that interferes with silica. It is known that this reaction on phosphoric acid occurs almost instantaneously, so in this case, about 20 seconds later, in order to proceed to the next step, the third step is performed.
By operating only the liquid feed pump 1.2P by a predetermined amount, the absorbance measurement cell 3 (
A predetermined amount of the third reagent (1-amino-2-naphthol-4-sulfone fi) is introduced into the coloring reaction tank) to cause a molybdenum blue reaction, and the differential value of the l light intensity change data monitored at that time ( change rate) is set to a predetermined value (0
When it is detected that the molybdenum blue reaction has progressed sufficiently and reached the end point, the final transmitted light ■ (1
) and import it as data.

そして最後に、前記演算制御回路6は、上記のようにし
て取り込まれたふたつの透過光量測定データ(■。>、
  (1)に基いて、下記の式%式%) (ただし、kは校正時に求められたモル吸光係数であり
、また、I、は校正時 に求められた光学系ダークである) により、試料の吸光度Cを算出するのである。
Finally, the arithmetic control circuit 6 receives the two transmitted light amount measurement data (■.>,
Based on (1), the following formula (% formula %) (where k is the molar extinction coefficient determined at the time of calibration, and I is the optical system dark determined at the time of calibration) is used to calculate the The absorbance C is calculated.

なお、前記i3過光量検出器4により検出された透過光
量変化のモニターデータシよ、1−測定シーケンスを通
じて全て前記出力装置414に出力され、また、前記演
算制御回路6に取り込まれたふたつの透過光量測定デー
タ(10)、  (1)および算出された試料の吸光度
Cも前記出力装置14に出力されることは言うまでもな
い。
The monitor data of the change in the amount of transmitted light detected by the i3 excess light amount detector 4 is all outputted to the output device 414 through the 1-measurement sequence, and the two transmitted light data taken into the arithmetic control circuit 6 are It goes without saying that the light amount measurement data (10), (1) and the calculated absorbance C of the sample are also output to the output device 14.

ところで、実験によれば、上記の測定ステップにおいて
、試薬■の黒人から試薬■の導入(ケイモリブデンイエ
ロー反応の終結)までに要する時間は杓1分程度であり
、また、試薬■の導入から最終透過光i1 (+)の改
り込み〈モリブデンブルー反応の終結)までに要する時
間は約1分40秒程度であった。
By the way, according to experiments, in the above measurement step, the time required from the introduction of reagent (black) to the introduction of reagent (2) (completion of the Keimolybdenum yellow reaction) is about 1 minute using a ladle, and the time required from the introduction of reagent (2) to the final The time required for the transmitted light i1 (+) to change (completion of the molybdenum blue reaction) was about 1 minute and 40 seconds.

従って、上記の測定ステップに要した合計時間は、 〔ケイモリブデンイエロー反応に要した約1分〕+〔燐
酸隠蔽反応のために設定した約20秒〕+〔モリブデン
ブルー反応に要した約1分40秒〕−杓3分 ということになり、良好な測定精度を十分に確保できな
がら、従来のJI3指定法の場合の約16分の約】15
、前記改良法の場合の約10分の約1/3というように
、前処理ステップを含めて考えても、吸光度検出時間を
大幅に短縮できることが判った。
Therefore, the total time required for the above measurement step is: [approximately 1 minute required for the molybdenum yellow reaction] + [approximately 20 seconds set for the phosphoric acid concealment reaction] + [approximately 1 minute required for the molybdenum blue reaction] 40 seconds] - 3 minutes per ladle, which is about 16 minutes compared to the conventional JI3 specified method, while still ensuring good measurement accuracy.15
It has been found that the absorbance detection time can be significantly shortened to about 1/10th of that in the case of the above-mentioned improved method, even when considering the pretreatment step.

ところで、上記の実施例においては、1−測定シーケン
スにおける現ステップから次のステップへの移行制御を
、透過光量検出器4により検出された透過光量のモニタ
ーデータ自体の変化率を利用して行う例を示したが、そ
の透過光量を吸光度に変換したあとのモニターデータの
変化率を利用して行ってもよいことは勿論である。
By the way, in the above embodiment, the transition control from the current step to the next step in the 1-measurement sequence is performed using the rate of change of the monitor data itself of the amount of transmitted light detected by the amount of transmitted light detector 4. However, it is of course possible to use the rate of change of monitor data after converting the amount of transmitted light into absorbance.

また、前記ステップ移行制御の基準となる変化率の設定
値は、高い測定精度を要求される場合にはてきるだけO
に近い小さな値に設定し、また、それほど高い測定精度
は要求されないが素早い測定を要求されるという場合に
は、比較的大きな値に設定する、というように状況に応
じて任意に決定すればよい。
In addition, the set value of the rate of change, which is the standard for the step transition control, should be set as low as possible when high measurement accuracy is required.
It can be arbitrarily determined depending on the situation, such as setting it to a small value close to , or setting it to a relatively large value if very high measurement accuracy is not required but quick measurement is required. .

C発明の効果〕 以上詳述したところから明らかなように、本発明に係る
発色吸光分析方法によれば、所定の複数ステップから成
る測定シーケンスに基いて試料および試薬が5大される
発色反応ifとして透過光量検出器に対応する吸光量測
定セルを共用すると共に、前記透過光量検出器による通
過光景検出結果に基いて前記発色反応槽を構成する吸光
量測定セルにおける発色反応の進行状態を経時的にモニ
ターさせ、その発色反応が設定された基準状態に達した
ことが検知されたときに自動的に現ステップから次のス
テップへ移行させる、という手段を採用したことにより
、前述した従来のJIS指定法および先行技術に係る改
良法におけるように各ステツブ毎の反応時間を固定的に
設定するのでは無く、透過光量検出器による検出透過光
ヱ変化(あるいは、それにより算出される吸光度変化)
の経時的モニター結果から発色反応が設定された4+4
状態に達したとき(発色反応の終へ)を自動的にかつ確
実に判定すると共に、その時点で現ステップから次のス
テップへ自動的に移行さゼるようにでき、従って、各ス
テップに従来のような無駄な安全時間が含まれることが
無(、発色反応を所望通り十分確実に終結させることが
できながら、しかも、各ステップを必要最小!形の時間
に短縮させることができ、もって、良好な測定精度を十
分に確保できながらも、吸光度測定2こ要する時間を従
来に比べて大幅に短縮させ得るようになり、更に、透過
光量検出器に対応する吸光量測定セルを発色反応槽とし
て共用するようにしたこ七によつ、吸光度測定において
本来的に必要とさてしろ光源、 atl定セル、透過光
量検出器をそのまま有効利用できて、他に付加すべき特
別な構成部材数を可及的に少なくできると共に、各種試
薬が確実に導入されたか否かということやデータの異常
の存無等を、前記検出透過光量の経時的モニターを通じ
て確認できる、という種々の優れた効果が発揮されるに
至った。
C. Effects of the Invention] As is clear from the above detailed description, according to the colorimetric absorption analysis method of the present invention, a sample and a reagent are subjected to a colorimetric reaction if In addition to sharing the absorbance measurement cell corresponding to the transmitted light amount detector, the progress state of the color reaction in the absorbance measurement cell constituting the color reaction tank is monitored over time based on the detection result of the passing scene by the transmitted light amount detector. By adopting a method that automatically moves from the current step to the next step when it is detected that the color reaction has reached a set reference state, the conventional JIS specification mentioned above has been achieved. Instead of setting a fixed reaction time for each step as in the method and the improved method related to the prior art, the change in transmitted light detected by a transmitted light amount detector (or the change in absorbance calculated thereby) is
4+4 color reaction was set based on the results of monitoring over time.
It is possible to automatically and reliably determine when a state has been reached (towards the end of the color reaction), and to automatically move from the current step to the next step at that point, so that each step can be There is no need for wasted safety time such as (), the color reaction can be completed as desired, and each step can be shortened to the minimum necessary time. While ensuring good measurement accuracy, the time required for two absorbance measurements can be significantly shortened compared to conventional methods.Furthermore, the absorbance measurement cell corresponding to the transmitted light amount detector can be used as a coloring reaction tank. By sharing this feature, the light source, ATL constant cell, and transmitted light amount detector that are originally required for absorbance measurement can be used effectively as they are, and the number of special components that need to be added can be reduced. It has various excellent effects such as being able to reduce the amount of light as much as possible, as well as being able to check whether various reagents have been introduced reliably and whether there are any abnormalities in the data by monitoring the amount of detected transmitted light over time. It has come to pass.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は、本発明に係る発色吸光分析方法
の具体的な一実施例を説明するためのものであって、第
1図は本発明方法を適用して校正された発色吸光自動分
析計の模式的構成図を示し、また、第2図はその1−測
定シーケンスにおける動作例を示す模式的タイムヒスト
リーである。 また、第3図および第4図は、本発明の技術的背景を説
明するためのものであって、第3図は従来のJIS指定
法による場合の測定に要する時間を表した図であり、ま
た、第4図は先行技術(改良法)による場合の測定に要
する時間を表した図である。 3・・・・・・・・・吸光量測定セル(発色反応槽とし
て共用される)、 4・・・・・・・・・透過光量検出器、6・・・・・・
・・・演算制御回路。 出願人 株式会社 堀 場 製 作 所代理人 弁理士
  藤 木 英  人 垣1 図 ム 料     !? m−δ 桐(8)べ解 曽←縞
FIG. 1 and FIG. 2 are for explaining a specific example of the method for colorimetric absorption analysis according to the present invention, and FIG. 1 shows the colorimetric absorbance calibrated by applying the method of the present invention. A schematic configuration diagram of the automatic analyzer is shown, and FIG. 2 is a schematic time history showing an example of its operation in the 1-measurement sequence. Further, FIGS. 3 and 4 are for explaining the technical background of the present invention, and FIG. 3 is a diagram showing the time required for measurement according to the conventional JIS specified method. Further, FIG. 4 is a diagram showing the time required for measurement using the prior art (improved method). 3... Absorption measurement cell (shared as a coloring reaction tank), 4... Transmitted light amount detector, 6...
...Arithmetic control circuit. Applicant Horiba Manufacturing Co., Ltd. Representative Patent Attorney Hide Fujiki Hitogaki 1 Figure 1 Fee! ? m−δ Paulownia (8) bekaiso ← striped

Claims (1)

【特許請求の範囲】 〔1〕所定の複数ステップから成る測定シーケンスに基
いて試料および試薬が導入される発色反応槽として透過
光量検出器に対応する吸光量測定セルを共用すると共に
、前記透過光量検出器による透過光量検出結果に基いて
前記発色反応槽を構成する吸光量測定セルにおける発色
反応の進行状態を経時的にモニターさせ、その発色反応
が設定された基準状態に達したことが検知されたときに
自動的に現ステップから次のステップへ移行させること
を特徴とする発色吸光分析方法。 〔2〕前記発色反応槽を構成する吸光量測定セルにおけ
る発色反応温度を40℃または略40℃に設定維持させ
る特許請求の範囲第〔1〕項に記載の発色吸光分析方法
[Scope of Claims] [1] An absorbance measurement cell corresponding to a transmitted light amount detector is commonly used as a coloring reaction tank into which a sample and a reagent are introduced based on a measurement sequence consisting of a plurality of predetermined steps, and the amount of transmitted light is The progress state of the coloring reaction in the absorbance measuring cell constituting the coloring reaction tank is monitored over time based on the amount of transmitted light detected by the detector, and it is detected that the coloring reaction has reached a set reference state. A chromogenic absorption spectrometry method characterized by automatically shifting from the current step to the next step when the current step is detected. [2] The colorimetric absorption analysis method according to claim [1], wherein the colorimetric reaction temperature in the absorbance measuring cell constituting the colorimetric reaction tank is set and maintained at 40°C or approximately 40°C.
JP61197645A 1986-08-23 1986-08-23 Color development absorption method Expired - Lifetime JPH073392B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61197645A JPH073392B2 (en) 1986-08-23 1986-08-23 Color development absorption method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61197645A JPH073392B2 (en) 1986-08-23 1986-08-23 Color development absorption method

Publications (2)

Publication Number Publication Date
JPS6353448A true JPS6353448A (en) 1988-03-07
JPH073392B2 JPH073392B2 (en) 1995-01-18

Family

ID=16377935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61197645A Expired - Lifetime JPH073392B2 (en) 1986-08-23 1986-08-23 Color development absorption method

Country Status (1)

Country Link
JP (1) JPH073392B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003076913A1 (en) * 2002-03-13 2003-09-18 Matsushita Electric Industrial Co., Ltd. Method of judging homogenization/reaction completion and method of measuring solution concentration using the same
EP3058347A4 (en) * 2013-10-03 2017-03-22 Rosemount Analytical Inc. Photometric measurement cell
WO2019229830A1 (en) * 2018-05-29 2019-12-05 株式会社日立ハイテクソリューションズ Water quality meter and water quality management system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5861456A (en) * 1981-10-07 1983-04-12 Nippon Mining Co Ltd Detection for end point of reaction
JPH073392A (en) * 1993-06-18 1995-01-06 Nkk Corp Steel for nitriding

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5861456A (en) * 1981-10-07 1983-04-12 Nippon Mining Co Ltd Detection for end point of reaction
JPH073392A (en) * 1993-06-18 1995-01-06 Nkk Corp Steel for nitriding

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003076913A1 (en) * 2002-03-13 2003-09-18 Matsushita Electric Industrial Co., Ltd. Method of judging homogenization/reaction completion and method of measuring solution concentration using the same
US7476544B2 (en) 2002-03-13 2009-01-13 Panasonic Corporation Method of judging homogenization/reaction completion and method of measuring solution concentration using the same
EP3058347A4 (en) * 2013-10-03 2017-03-22 Rosemount Analytical Inc. Photometric measurement cell
WO2019229830A1 (en) * 2018-05-29 2019-12-05 株式会社日立ハイテクソリューションズ Water quality meter and water quality management system

Also Published As

Publication number Publication date
JPH073392B2 (en) 1995-01-18

Similar Documents

Publication Publication Date Title
US5230863A (en) Method of calibrating an automatic chemical analyzer
CA1327509C (en) Titrating apparatus
US3874794A (en) Method and apparatus for photometric analysis of substantially colorless components of sample
US5550053A (en) Method of calibrating an automatic chemical analyzer
US11353470B2 (en) Spectral-potentiometric-thermometric multi-dimensional titration analysis instrument and use method thereof
US10788416B2 (en) Multiple wavelength light source for colorimetric measurement
TWI555898B (en) Detection and Control of Washing Procedure for Dyeing Machine
EP2995709A1 (en) Detecting and controlling method for rinsing procedure of dyeing machine
WO1991017305A1 (en) Liquid composition analyzer and method
JPS6353448A (en) Coloring absorption analysis
JPS61281532A (en) Concentration adjustment of washing liquid for semiconductor and its device
US3969626A (en) Method and apparatus for detecting total reduced sulfur
JPS628040A (en) Washing apparatus
CA2518581A1 (en) Hydrogen sulfide monitoring system
US20150369831A1 (en) Automatic analysis apparatus
KR100421105B1 (en) Validation method of single or mixed dye solution comprising single or mixed dye
EP1031023B1 (en) Determination of anionic species concentration by near infrared spectroscopy
KR20010042271A (en) Methods and apparatus for monitoring water process equipment
EP3775875B1 (en) Method and device for the determination of film forming amines in a liquid
JPS6316901B2 (en)
CN115201130A (en) Method and equipment for detecting cement mixing amount in inorganic binder
CN118010657A (en) Method for measuring total nitrogen content in water body
JPH0720052A (en) Concentration measuring instrument
KR200228708Y1 (en) Double Beam Type Silica On-Line Analyzer
JPH0539492Y2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term