JPS6353173B2 - - Google Patents

Info

Publication number
JPS6353173B2
JPS6353173B2 JP57221994A JP22199482A JPS6353173B2 JP S6353173 B2 JPS6353173 B2 JP S6353173B2 JP 57221994 A JP57221994 A JP 57221994A JP 22199482 A JP22199482 A JP 22199482A JP S6353173 B2 JPS6353173 B2 JP S6353173B2
Authority
JP
Japan
Prior art keywords
hydroquinone
alkyl
reaction
monosubstituted
polysubstituted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57221994A
Other languages
Japanese (ja)
Other versions
JPS59112934A (en
Inventor
Wataru Funakoshi
Shoji Kawase
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP57221994A priority Critical patent/JPS59112934A/en
Publication of JPS59112934A publication Critical patent/JPS59112934A/en
Publication of JPS6353173B2 publication Critical patent/JPS6353173B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はアルキルモノ置換ヒドロキノンの製造
方法に関する。更に詳しくは炭素数5以上のアル
キル基のモノ置換ヒドロキノンを高収率で製造す
る方法に関する。 従来から、炭素数4以下のアルキル基のモノ置
換ヒドロキノンは、ポリエステル特に全芳香族ポ
リエステルのジオール成分として有用であること
が知られている。しかし、炭素数5以上のアルキ
ル基のモノ置換ヒドロキノンをジオール成分とし
たポリエステル、及びこのポリエステルがいかな
る特性を有するかは知られていない。本発明者
は、このアルキル基のモノ置換ヒドロキノンを主
たるジオール成分とする全芳香族ポリエステルが
溶融成形性にすぐれ、且つすぐれた機械的特性,
熱的特性,化学的特性等を有し、繊維,プラスチ
ツク,その他工業用資材として有用であることを
見い出した。 しかし、かかるポリエステルの製造原料として
有用なアルキル基のモノ置換ヒドロキノンを工業
的に有利に且つ高収率で製造する方法は知られて
いない。 炭素数5以上のアルキル基のモノ置換ヒドロキ
ノンを製造する方法としては、例えば低温(約15
℃)に冷却したジイソブチレン含有氷酢酸溶液
を、濃硫酸と氷酢酸の混合溶液と低温(約15℃)
で混合し、得られた溶液を、ヒドロキノンを溶解
した氷酢酸溶液に徐々に滴下、混合し、更に室温
下に数日間放置し、次いで多量の水と混合して一
夜放置してから結晶した第3級オクチルヒドロキ
ノンを得る方法が知られている(J.Am.Chem.
Soc.,Vol55P2571〜2575参照)。しかし、この方
法は目的生成物の収率が低く、また大量の溶媒を
使用し且つ反応生成物を硫酸触媒と一緒に水と接
触させて分離する必要があり、その結果、1)溶
媒を大量の水より回収せねばならない、2)硫酸
の如き強酸を含有する廃液の後処理を要する、
3)目的生成物の収率が高々52%を低く、ヒドロ
キノンの無駄が多い等々工業的製造方法としては
重大な欠点を持つている。 本発明者は、上述のようなアルキル化反応で多
量に生成するアルキルポリ置換ヒドロキノンをア
ルキルモノ置換ヒドロキノンに高い転換率で転換
できれば、上述のような欠点が著しく改善できる
ことに着目しこの転換方法について鋭意検討した
結果、本発明に到達した。 すなわち、本発明はヒドロキノンとアルキルポ
リ置換ヒドロキノンとをリン酸触媒の存在下加熱
反応させることを特徴とするアルキルモノ置換ヒ
ドロキノンの製造方法である。 本発明において用いるアルキルポリ置換ヒドロ
キノンとは、下記一般式 (但し、式中nは2,3または4の数であり、
Xはアルキル基である。) で表わされる化合物である。上記一般式中のXと
しては
The present invention relates to a method for producing alkyl monosubstituted hydroquinones. More specifically, the present invention relates to a method for producing a monosubstituted hydroquinone having an alkyl group having 5 or more carbon atoms in high yield. It has been known that monosubstituted hydroquinones having an alkyl group having 4 or less carbon atoms are useful as diol components of polyesters, particularly wholly aromatic polyesters. However, it is not known whether a polyester containing a monosubstituted hydroquinone having an alkyl group of 5 or more carbon atoms as a diol component and what kind of properties this polyester has are known. The present inventor has discovered that a wholly aromatic polyester containing monosubstituted hydroquinone with an alkyl group as the main diol component has excellent melt moldability and excellent mechanical properties.
It was discovered that it has thermal and chemical properties, and is useful as fibers, plastics, and other industrial materials. However, there is no known method for producing monosubstituted hydroquinone with an alkyl group, which is useful as a raw material for producing such polyester, industrially and in a high yield. As a method for producing monosubstituted hydroquinone having an alkyl group having 5 or more carbon atoms, for example, low temperature (approximately 15
A diisobutylene-containing glacial acetic acid solution cooled to
The resulting solution was gradually added dropwise to a glacial acetic acid solution in which hydroquinone had been dissolved, mixed, and left at room temperature for several days, then mixed with a large amount of water, left overnight, and then crystallized. A method for obtaining tertiary octylhydroquinone is known (J.Am.Chem.
Soc., Vol55P2571-2575). However, this method has a low yield of the desired product, and also requires the use of a large amount of solvent and the separation of the reaction product by contacting it with water together with a sulfuric acid catalyst.As a result, 1) a large amount of solvent is used; 2) Requires post-treatment of waste liquids containing strong acids such as sulfuric acid;
3) It has serious drawbacks as an industrial production method, such as the low yield of the desired product (52% at most) and the waste of hydroquinone. The present inventor has focused on the fact that the above-mentioned drawbacks can be significantly improved if the alkyl polysubstituted hydroquinone produced in large amounts in the above-mentioned alkylation reaction can be converted into alkyl mono-substituted hydroquinone at a high conversion rate, and has developed this conversion method. As a result of intensive study, we have arrived at the present invention. That is, the present invention is a method for producing alkyl monosubstituted hydroquinone, which is characterized by subjecting hydroquinone and alkyl polysubstituted hydroquinone to a heating reaction in the presence of a phosphoric acid catalyst. The alkyl polysubstituted hydroquinone used in the present invention has the following general formula: (However, in the formula, n is a number of 2, 3 or 4,
X is an alkyl group. ) is a compound represented by As X in the above general formula,

【式】(ここで、R1,R2及びR3はそ れぞれ水素,脂肪族炭化水素基,脂環族炭化水素
基または芳香族炭化水素基である。但しR1,R2
及びR3の合計炭素数は少なくとも4であるが、
R1〜R3のいずれか2つ以上が芳香族炭化水素基
であることはない)で表わされるアルキルが好ま
しい。かかるアルキルの好ましいものとしては、
第3級アミル,1―メチルブチル,シクロヘキシ
ル,1,1―ジメチルブチル,1,1―ジメチル
ペンチル,1―エチル1―メチルブチル,1,
1,3,3―テトラメチルブチル,ベンジル,α
―メチルベンジル,α,α―ジメチルベンジル等
があげられる。 本発明においてアルキルポリ置換ヒドロキノン
は、単独でも良く、また2種以上の混合物であつ
ても良い。更に当然の事ながら上記アルキルポリ
置換ヒドロキノン中にはヒドロキノンやアルキル
モノ置換ヒドロキノンを少量含まれていてもかま
わない。 かかるアルキルポリ置換ヒドロキノンのnの平
均値をとすると、該アルキルポリ置換ヒドロキ
ノンの分子式は
[Formula] (where R 1 , R 2 and R 3 are each hydrogen, aliphatic hydrocarbon group, alicyclic hydrocarbon group or aromatic hydrocarbon group. However, R 1 , R 2
and R 3 have a total carbon number of at least 4, but
Any two or more of R 1 to R 3 are preferably aromatic hydrocarbon groups. Preferred examples of such alkyl include:
tertiary amyl, 1-methylbutyl, cyclohexyl, 1,1-dimethylbutyl, 1,1-dimethylpentyl, 1-ethyl 1-methylbutyl, 1,
1,3,3-tetramethylbutyl, benzyl, α
-Methylbenzyl, α,α-dimethylbenzyl, etc. In the present invention, the alkylpolysubstituted hydroquinone may be used alone or in a mixture of two or more. Furthermore, it goes without saying that the alkyl polysubstituted hydroquinone may contain a small amount of hydroquinone or alkyl monosubstituted hydroquinone. If the average value of n of such alkyl polysubstituted hydroquinone is taken as, the molecular formula of this alkyl polysubstituted hydroquinone is

【式】と表され る。 本発明におけるアルキルポリ置換ヒドロキノン
の使用量は、
It is expressed as [Formula]. The amount of alkyl polysubstituted hydroquinone used in the present invention is:

【式】1モル当りヒ ドロキノンが(−1)×0.5〜(−1)×3モ
ルとなる割合で使用するのが好ましく、特にヒド
ロキノンを無駄に失なわないためにはヒドロキノ
ンが(−1)×0.7〜(−1)×1.5モル,更に
は(−1)×0.85〜(−1)×1.25モルとなる
割合で使用するのが好ましい。 本発明において用いるリン酸触媒は、アルキル
ポリ置換ヒドロキノンとヒドロキノンの合計重量
の1〜10重量倍、更には2〜7重量倍、特に3〜
5重量倍の量であることが好ましい。リン酸触媒
の濃度は、通常H3PO4の含量に換算して75―110
重量%のものである。リン酸触媒は、特別に濃厚
なものを使用する必要はなく、反応中の操作性か
らは100%あるいはそれ以下の濃度のものが好ま
しい。あまりに希薄なリン酸触媒を使用すると、
反応温度をあげることができなくなり反応が長時
間かかるようになるので、あまり好ましくない。
したがつて両因子を考えに入れるとリン酸濃度は
80―100%のものが好ましい。 反応温度としては反応がスムースに進行し、酸
化等の好ましくない副反応があまり進行しない温
度、すなわち115〜160℃、更には120―150℃が好
ましい。更に反応時間は例えば150℃の反応温度
で約1〜3時間,120℃の反応温度で約10時間〜
15時間とするのが好ましく、他の温度については
当業者はこれらの例示を参照して適宜選択するこ
とができよう。 このようにして反応を行つたのち、反応混合物
を静置すると、該反応混合物は二層に分離し、上
層にアルキルモノ置換ヒドロキノンを含む層がで
きる。この時温度は任意の温度で良く、例えば反
応温度とほぼ同じか、これより若干高いかあるい
は低い温度で良い。この上層を分離し、好ましく
は熱水でほゞ中性になるまで洗浄したのち再結晶
存び/又は蒸留することによつて目的とするアル
キル置換ヒドロキノンを得ることができる。 以下、実施例を掲げて本発明を説明する。 実施例 1 ヒドロキン110g,2,5―ジ第3級アミルヒ
ドロキノン250g及び89%リン酸500gを3つ口フ
ラスコに仕込み、140℃で3時間反応せしめ、そ
の後30分間同じ温で静置した。この静置で反応混
合物が二層に分離した。上層を分別し、熱水500
mlで3回洗浄した後乾燥し、更にキシレン200ml
を用いて再結したところモノアミルヒドロキノン
126gを得た。 実施例 2〜4 2,5―ジ第3級アミルヒドロキノンの代りに
表1に示すアルキルポリ置換ヒドロキノンを使用
する以外は、実施例―1と同様に行つて表1に示
すアルキルモノ置換ヒドロキノンを得た。
[Formula] Hydroquinone is preferably used at a ratio of (-1) x 0.5 to (-1) x 3 moles per mole. In particular, in order not to waste hydroquinone, hydroquinone is (-1) x It is preferably used in a ratio of 0.7 to (-1) x 1.5 mol, more preferably (-1) x 0.85 to (-1) x 1.25 mol. The phosphoric acid catalyst used in the present invention is 1 to 10 times the total weight of the alkyl polysubstituted hydroquinone and hydroquinone, more preferably 2 to 7 times, particularly 3 to 7 times the total weight of the alkyl polysubstituted hydroquinone and hydroquinone.
Preferably, the amount is 5 times the weight. The concentration of phosphoric acid catalyst is usually 75-110 in terms of H 3 PO 4 content.
% by weight. It is not necessary to use a particularly concentrated phosphoric acid catalyst, and a concentration of 100% or less is preferred from the viewpoint of operability during the reaction. Using too dilute a phosphoric acid catalyst will result in
This is not very preferable because it becomes impossible to raise the reaction temperature and the reaction takes a long time.
Therefore, taking both factors into consideration, the phosphate concentration is
80-100% is preferred. The reaction temperature is preferably a temperature at which the reaction proceeds smoothly and at which undesirable side reactions such as oxidation do not proceed significantly, that is, from 115 to 160°C, more preferably from 120 to 150°C. Further, the reaction time is, for example, about 1 to 3 hours at a reaction temperature of 150°C, and about 10 hours to at a reaction temperature of 120°C.
It is preferable to set the temperature to 15 hours, and those skilled in the art will be able to appropriately select other temperatures with reference to these examples. After carrying out the reaction in this manner, when the reaction mixture is allowed to stand still, the reaction mixture separates into two layers, and a layer containing alkyl monosubstituted hydroquinone is formed in the upper layer. The temperature at this time may be any temperature, for example, approximately the same as, slightly higher or lower than the reaction temperature. The desired alkyl-substituted hydroquinone can be obtained by separating this upper layer, washing it preferably with hot water until it becomes almost neutral, and then recrystallizing and/or distilling it. The present invention will be described below with reference to Examples. Example 1 110 g of hydroquine, 250 g of 2,5-di-tertiary amylhydroquinone, and 500 g of 89% phosphoric acid were charged into a three-necked flask, reacted at 140° C. for 3 hours, and then allowed to stand at the same temperature for 30 minutes. Upon standing, the reaction mixture separated into two layers. Separate the upper layer and add 500 ml of hot water.
ml three times, then dry, and then add 200ml of xylene.
Monoamylhydroquinone was obtained by reconsolidation using
Obtained 126g. Examples 2 to 4 The alkyl monosubstituted hydroquinones shown in Table 1 were prepared in the same manner as in Example 1, except that the alkyl polysubstituted hydroquinones shown in Table 1 were used instead of 2,5-ditertiary amylhydroquinone. Obtained.

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 ヒドロキノンとアルキルポリ置換ヒドロキノ
ンとをリン酸触媒の存在下加熱反応させることを
特徴とするアルキルモノ置換ヒドロキノンの製造
方法。
1. A method for producing alkyl monosubstituted hydroquinone, which comprises subjecting hydroquinone and alkyl polysubstituted hydroquinone to a heating reaction in the presence of a phosphoric acid catalyst.
JP57221994A 1982-12-20 1982-12-20 Preparation of alkyl-monosubstituted hydroquinone Granted JPS59112934A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57221994A JPS59112934A (en) 1982-12-20 1982-12-20 Preparation of alkyl-monosubstituted hydroquinone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57221994A JPS59112934A (en) 1982-12-20 1982-12-20 Preparation of alkyl-monosubstituted hydroquinone

Publications (2)

Publication Number Publication Date
JPS59112934A JPS59112934A (en) 1984-06-29
JPS6353173B2 true JPS6353173B2 (en) 1988-10-21

Family

ID=16775416

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57221994A Granted JPS59112934A (en) 1982-12-20 1982-12-20 Preparation of alkyl-monosubstituted hydroquinone

Country Status (1)

Country Link
JP (1) JPS59112934A (en)

Also Published As

Publication number Publication date
JPS59112934A (en) 1984-06-29

Similar Documents

Publication Publication Date Title
CA1083600A (en) Continuous production of 2-ethyl-hexyl acrylate free from dioctylether
JPS6146465B2 (en)
JPS5970639A (en) Manufacture of dicarboxylic acid diaryl ester
JPS61291543A (en) Manufacture of methyl metacrylate
JPS63156731A (en) Production of di(aryloxy)alkane
JPS6353173B2 (en)
EP0044510B1 (en) Process for the preparation of diaryl esters
JP2004532845A5 (en)
US2948756A (en) Terephthalaldehyde preparation
US4751318A (en) Method of making organic solvent soluble zinc alkoxy alkoxides
CA1299200C (en) Preparation of diaryl sulfones
JPH03169845A (en) 2, 4-pentanedionmonosulfonic acid and its preparation
JPH0825935B2 (en) 1,3-Dihydroxy-4,6-bis [α-methyl-α- (4'-hydroxyphenyl) ethyl] benzene and method for producing the same
JPS645581B2 (en)
JPS63303937A (en) Manufacture of propynol
US2635114A (en) Polyalkylbenzene carboxylic acid and process of preparing it
JPH05508416A (en) Method for producing diketones and keto acids
JPS60500091A (en) Method for producing dihydrocarbyl oxalate
JPS58140035A (en) Preparation of aralkyl monosubstituted hydroquinone
JP2535742B2 (en) Method for synthesizing aromatic dialdehyde
US3303212A (en) Synthesis of aromatic plasticizers from ditolylmethane
US3622637A (en) Method of producing 2,2{40 -methylene bis(3,4,6-trichlorophenol)
JP4011364B2 (en) Method for producing 2,4'-dihydroxydiphenylsulfone
SU956447A1 (en) Process for producing diphenylol propane
JPS59137431A (en) Production of trimethylolheptane