JPS6352666B2 - - Google Patents

Info

Publication number
JPS6352666B2
JPS6352666B2 JP3261181A JP3261181A JPS6352666B2 JP S6352666 B2 JPS6352666 B2 JP S6352666B2 JP 3261181 A JP3261181 A JP 3261181A JP 3261181 A JP3261181 A JP 3261181A JP S6352666 B2 JPS6352666 B2 JP S6352666B2
Authority
JP
Japan
Prior art keywords
concentrate
diluent
refrigerant
injected
injection amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3261181A
Other languages
Japanese (ja)
Other versions
JPS57147522A (en
Inventor
Yukio Inoe
Tsuneo Hironaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP3261181A priority Critical patent/JPS57147522A/en
Publication of JPS57147522A publication Critical patent/JPS57147522A/en
Publication of JPS6352666B2 publication Critical patent/JPS6352666B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Other Resins Obtained By Reactions Not Involving Carbon-To-Carbon Unsaturated Bonds (AREA)
  • Phenolic Resins Or Amino Resins (AREA)

Description

【発明の詳細な説明】 本発明は、熱硬化性樹脂の濃縮方法にかかわ
り、特に濃縮物たる樹脂の異常反応による固化あ
るいは変質の発生を予防し、長時間連続して安定
した製品樹脂を得ることを可能ならしめる熱硬化
性樹脂の濃縮方法に関するものである。 フエノール樹脂に代表される熱硬化性樹脂は、
多くのすぐれた特徴のゆえに従来より多量に生産
されており、今後ともその需要は増加する傾向に
ある。 これらの樹脂は、重合反応終了時に懸濁剤(主
として水が使われる)や未反応モノマー等の不純
物を含有しており、このままでは製品樹脂とはな
り得ず上記不純物を除く工程が必要となる。 一般に、熱硬化性樹脂はその反応速度がきわめ
て速いものが多く、特に不純物を除く最終工程で
は、異常反応を生じて固化したり変質したりする
不都合が生じやすいものである。このため、従来
技術では主として回分式蒸発缶を用い、きわめて
緩慢な速度で上記不純物を蒸発濃縮する方法が採
られているが、この回分式蒸発缶による方法は、
処理時間が長くかかる、樹脂品種の切替えが容易
でない、濃縮終了時の缶内清掃等の後処理に多大
の労力と時間を必要とするなどの欠点を有してい
る。 本発明は上述の欠点を解消し、高い蒸発濃縮速
度を確保しながら安定した製品樹脂を得ることが
可能な熱硬化性樹脂の濃縮方法を提供することに
ある。しかして、本発明の要点は、濃縮装置とし
てかき下げ翼および専用の希釈剤入口を有する薄
膜蒸発機と、濃縮物冷却用ジヤケツトを有する濃
縮物抜出しポンプを組合せて蒸発濃縮を行い、処
理すべき樹脂の種類あるいは性状、反応の進行状
態にあわせて希釈剤注入量、樹脂温度などを制御
することが可能な点にある。 以下図面を用いて本発明の実施例を説明する。
各図面において共通する部分には同一の符号をつ
けてある。 第1図は本発明に用いる蒸発濃縮装置の一実施
例を示したものである。本図面により薄膜蒸発機
11および抜出しポンプ20の構成および作用を
説明する。40は円筒状の伝熱胴で、この内部に
回転翼2およびかき下げ翼10を有する回転軸1
を設け、この回転軸1は前記伝熱胴40およびケ
ーシング45と回転翼2およびかき下げ翼10と
の間隙41が適当な値に保持されるように上部軸
受42と下部軸受4によつて支持され、駆動プー
リー43を介してモーター(図示せず)によつて
回転できるように構成されている。伝熱胴40の
外部には熱媒入口8および熱媒出口9を有する加
熱用ジヤケツト3が設けてあり、加熱用熱媒によ
つて加熱される。また、伝熱胴40には、上下半
分以下の適当な部分に希釈剤入口44が設けてあ
る。 薄膜蒸発機11の下部には、ケーシング45、
濃縮物冷媒入口21、濃縮物冷媒出口22および
冷媒ジヤケツト23を設けた抜出しポンプ20
が、可及的に近接して取付けてある。 蒸発濃縮すべき原料は、原料入口5より連続的
に薄膜蒸発機11の内部に注入され、回転してい
る回転翼2の作用によつて薄膜を形成し、間隙4
1を下方に移行する。伝熱胴40は加熱用ジヤケ
ツト3によつて加熱されているから原料中の蒸発
成分が蒸発し、濃縮物となつてかき下げ翼10の
作用により間隙41を下方に移行し、抜出しポン
20に押し込まれその作用によつて濃縮物出口
6より抜出される。 一方、蒸発気体は伝熱胴40の空間を上方に移
動し、蒸発気体出口7より抜出される。 希釈剤入口44からは希釈剤が連続的あるいは
間欠的に注入され、濃縮物の異常反応などを防止
しあるいは粘度調整などの作用をする。前記希釈
剤の一部は、上述の蒸発作用によつて蒸発して蒸
発気体と合一し、残りは濃縮物と合一する。冷媒
ジヤケツト23には濃縮物冷媒が連続的あるいは
間欠的に注入され、濃縮物の温度上昇による異常
反応を防止すると共に、一定温度に保持して抜出
す作用をなす。 上記のような作用によつて、熱硬化性樹脂原料
を蒸発濃縮して製品樹脂を得ることができる。 一般に、熱硬化性樹脂は、不純物を除去する過
程においてその最終時に急速に異常反応などの不
都合を生じるものであるから、異常が発生する微
侯があれば直ちに希釈剤を注入してそれを防止す
ること、また、濃縮を完了したら、可及的速やか
にかつ流動性を有するかぎりできるだけ低い温度
で抜出すことが有効である。 本発明による薄膜蒸発機11と抜出しポンプ
0を組合せた蒸発濃縮装置を用いれば、希釈剤を
使用しかつ冷媒ジヤケツトを設けているので上述
の要求が達成でき、熱硬化性樹脂原料を効率よく
濃縮して安定した製品樹脂を得ることが可能であ
る。 以下、第1図の蒸発濃縮装置を使用した濃縮方
法について説明する。 実施例 1 第2図に本発明の一実施例を示す。原料31を
薄膜蒸発機11に連続的に注入し、ここで蒸発す
べき成分を蒸発させて濃縮し、抜出しポンプ20
に導き濃縮物35として抜出す。蒸発気体36は
凝縮物冷媒38によつて冷却されている冷却器3
7に導かれ、凝縮液39となつて抜出される。 希釈剤34は薄膜蒸発機11の下部に注入さ
れ、前記濃縮物35の異常反応などを防止しある
いは粘度調整などの作用をなし、一部は蒸発気体
36と合一し残りは濃縮物35と合一する。濃縮
物冷媒33は抜出しポンプ20のジヤケツトに注
入され、前記濃縮物35の温度上昇による異常反
応を防止すると共に一定温度に保持して抜出すた
めの作用をなし、排出される。 以上のような構成および作用により、短時間に
効率よく、安価でかつ装置の運転を停止して清掃
を行う必要なく連続運転することが可能な熱硬化
性樹脂の濃縮が行なえる。 実施例 2 第3図に本発明の他の実施例を示す。この実施
例は、濃縮物35の温度検知計51によつて検知
し、その温度に応じて希釈剤34の注入量および
注入ひん度ならびに濃縮物冷媒33の注入量およ
び注入ひん度を制御することを特徴としており、
他は実施例1の場合と同様である。前記注入量お
よび注入ひん度は希釈剤制御弁52および濃縮物
冷媒制御弁53によつて制御される。 実験の結果、熱硬化性樹脂の反応速度は樹脂の
温度が大きく影響することが判明しており、安定
した製品樹脂を得るためには樹脂の温度を一定に
制御すればよいことになる。したがつて、このよ
うに構成することによつて、常に安定した製品樹
脂を得ることができる。 実施例 3 第4図に本発明のさらに他の実施例を示す。こ
の実施例は、濃縮物35の粘度を粘度検知計54
によつて検知し、その粘度に応じて希釈剤34の
注入量および注入ひん度ならびに濃縮物冷媒33
の注入量および注入ひん度を制御することを特徴
としており、他は実施例1の場合と同様である。
前記注入量および注入ひん度は希釈剤制御弁52
および濃縮物冷媒制御弁53によつて制御され
る。 実験の結果、熱硬化性樹脂の異常反応等の現象
は粘度変化として最も敏感にあらわれることが判
明しており、粘度の変化に即応して前記の制御を
行えば安定した製品樹脂が得られる。 なお、希釈剤34の注入量および注入ひん度な
らびに濃縮物冷媒33の注入量および注入ひん度
を、濃縮物の温度と粘度に応じて制御することも
できる。 以上述べたように、本発明によれば次のような
効果を得ることができる。 (1) 従来技術に比較して、短時間に効率よくかつ
連続的に熱硬化性樹脂中の不純物を蒸発除去で
き、運転経費、人件費などの諸経費が節約でき
る。 (2) 装置の運転開始および停止が容易であるか
ら、必要に応じて処理することができ経済的で
ある。 (3) 装置をひん繁に清掃する必要がないから、清
掃作業にともなう経費が節約できるのみでな
く、清掃による有害環境への出入りが少なくて
すみ安全性が高い。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for concentrating a thermosetting resin, and in particular, to prevent solidification or deterioration of the concentrated resin due to abnormal reactions, and to obtain a stable product resin continuously for a long period of time. The present invention relates to a method for concentrating thermosetting resins that makes it possible to do so. Thermosetting resins such as phenolic resins are
Because of its many excellent features, it has been produced in larger quantities than ever before, and its demand is likely to continue to increase. These resins contain impurities such as suspending agents (mainly water is used) and unreacted monomers at the end of the polymerization reaction, and cannot be used as product resins as they are, so a process to remove the impurities is required. . In general, many thermosetting resins have an extremely fast reaction rate, and particularly in the final step of removing impurities, they tend to cause abnormal reactions, resulting in solidification or deterioration. For this reason, the conventional technology mainly uses a batch-type evaporator to evaporate and concentrate the impurities at an extremely slow rate.
It has drawbacks such as long processing time, difficulty in changing resin types, and post-processing such as cleaning the inside of the can at the end of concentration, which requires a great deal of labor and time. An object of the present invention is to provide a method for concentrating a thermosetting resin, which eliminates the above-mentioned drawbacks and makes it possible to obtain a stable product resin while ensuring a high evaporation concentration rate. Therefore, the main point of the present invention is to perform evaporative concentration by combining a thin film evaporator having a drafting blade and a dedicated diluent inlet as a concentrating device with a concentrate extraction pump having a jacket for cooling the concentrate. The advantage is that it is possible to control the diluent injection amount, resin temperature, etc. according to the type or property of the resin and the progress state of the reaction. Embodiments of the present invention will be described below with reference to the drawings.
Common parts in each drawing are given the same reference numerals. FIG. 1 shows an embodiment of the evaporation concentration apparatus used in the present invention. The configuration and operation of the thin film evaporator 11 and extraction pump 20 will be explained with reference to this drawing. Reference numeral 40 denotes a cylindrical heat transfer shell, inside which a rotating shaft 1 has rotary blades 2 and scraping blades 10.
The rotating shaft 1 is supported by an upper bearing 42 and a lower bearing 4 so that a gap 41 between the heat transfer shell 40 and casing 45 and the rotary blade 2 and the scraping blade 10 is maintained at an appropriate value. It is configured so that it can be rotated by a motor (not shown) via a drive pulley 43. A heating jacket 3 having a heating medium inlet 8 and a heating medium outlet 9 is provided outside the heat transfer cylinder 40, and is heated by the heating medium. Further, the heat transfer cylinder 40 is provided with a diluent inlet 44 at an appropriate portion below the upper and lower halves. At the bottom of the thin film evaporator 11 , a casing 45,
A withdrawal pump 20 with a concentrate refrigerant inlet 21, a concentrate refrigerant outlet 22 and a refrigerant jacket 23
are mounted as close as possible. The raw material to be evaporated and concentrated is continuously injected into the thin film evaporator 11 from the raw material inlet 5, and is formed into a thin film by the action of the rotating rotor blades 2.
1 downwards. Since the heat transfer shell 40 is heated by the heating jacket 3, the evaporated components in the raw material evaporate, become a concentrate, move downward through the gap 41 by the action of the scraping blades 10, and are transferred to the extraction pump 20. It is pushed in and is pulled out from the concentrate outlet 6 by its action. On the other hand, the evaporated gas moves upward in the space of the heat transfer cylinder 40 and is extracted from the evaporated gas outlet 7. A diluent is continuously or intermittently injected from the diluent inlet 44 to prevent abnormal reactions of the concentrate or to adjust the viscosity. A part of the diluent is evaporated and combined with the evaporated gas by the above-mentioned evaporation effect, and the rest is combined with the concentrate. Concentrate refrigerant is continuously or intermittently injected into the refrigerant jacket 23 to prevent abnormal reactions due to a rise in the temperature of the concentrate and to maintain the temperature at a constant level before drawing it out. By the above-mentioned action, the thermosetting resin raw material can be evaporated and concentrated to obtain a product resin. In general, thermosetting resins rapidly cause problems such as abnormal reactions at the end of the process of removing impurities, so if there is a slight abnormality that occurs, a diluent is immediately injected to prevent it. It is also effective to extract the liquid as soon as possible and at the lowest possible temperature as long as it maintains fluidity after the concentration is completed. Thin film evaporator 11 and extraction pump 2 according to the invention
By using an evaporation concentration device combining 0, the above requirements can be achieved because a diluent is used and a refrigerant jacket is provided, and thermosetting resin raw materials can be efficiently concentrated to obtain stable product resin. It is possible. Hereinafter, a concentration method using the evaporation concentration apparatus shown in FIG. 1 will be explained. Example 1 FIG. 2 shows an example of the present invention. The raw material 31 is continuously injected into the thin film evaporator 11 , where the components to be evaporated are evaporated and concentrated, and then the extracting pump 20
and extracted as a concentrate 35. Evaporated gas 36 is cooled by condensate refrigerant 38 in cooler 3
7 and is extracted as a condensate 39. The diluent 34 is injected into the lower part of the thin film evaporator 11 to prevent abnormal reactions of the concentrate 35 or to adjust the viscosity. A part of the diluent 34 is combined with the evaporated gas 36 and the rest is combined with the concentrate 35. unite. The concentrate refrigerant 33 is injected into the jacket of the withdrawal pump 20 , serves to prevent abnormal reactions due to temperature rise of the concentrate 35, and to maintain the concentrate at a constant temperature before being discharged. With the above-described configuration and operation, thermosetting resin can be concentrated in a short time, efficiently, at low cost, and in continuous operation without the need to stop and clean the device. Embodiment 2 FIG. 3 shows another embodiment of the present invention. In this embodiment, the temperature of the concentrate 35 is detected by the temperature detector 51, and the injection amount and injection frequency of the diluent 34 and the injection amount and injection frequency of the concentrate refrigerant 33 are controlled according to the temperature. It is characterized by
The rest is the same as in the first embodiment. The injection volume and frequency are controlled by diluent control valve 52 and concentrate refrigerant control valve 53. As a result of experiments, it has been found that the reaction rate of thermosetting resin is greatly influenced by the temperature of the resin, and in order to obtain a stable product resin, it is necessary to control the temperature of the resin at a constant level. Therefore, with this configuration, a stable product resin can be obtained at all times. Embodiment 3 FIG. 4 shows still another embodiment of the present invention. In this embodiment, the viscosity of the concentrate 35 is measured using a viscosity detector 54.
and the injection amount and injection frequency of the diluent 34 and the concentrate refrigerant 33 depending on its viscosity.
This embodiment is characterized by controlling the injection amount and frequency of injection, and other aspects are the same as in Example 1.
The injection amount and injection frequency are controlled by the diluent control valve 52.
and concentrate refrigerant control valve 53. As a result of experiments, it has been found that phenomena such as abnormal reactions in thermosetting resins are most sensitively manifested as changes in viscosity, and if the above-mentioned control is performed in immediate response to changes in viscosity, stable product resins can be obtained. Note that the injection amount and injection frequency of the diluent 34 and the injection amount and injection frequency of the concentrate refrigerant 33 can also be controlled depending on the temperature and viscosity of the concentrate. As described above, according to the present invention, the following effects can be obtained. (1) Compared to conventional technology, impurities in the thermosetting resin can be removed by evaporation efficiently and continuously in a short time, and miscellaneous expenses such as operating costs and personnel costs can be saved. (2) Since the equipment is easy to start and stop, processing can be done as needed, making it economical. (3) Since there is no need to frequently clean the equipment, not only can expenses associated with cleaning work be saved, but there is also less need to enter and exit the hazardous environment due to cleaning, resulting in high safety.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に使用する薄膜蒸発機および抜
出しポンプの内部構造を示す断面図、第2,3お
よび4図はそれぞれ本発明の異なる実施例を示す
系統図である。 1……回転軸、2……回転翼、3……加熱用ジ
ヤケツト、5……原料入口、6……濃縮物出口、
7……蒸発気体出口、10……かき下げ翼、11
……薄膜蒸発機、20……抜出しポンプ、23…
…冷媒ジヤケツト、37……冷却器、40……伝
熱胴、44……希釈剤入口、51……温度検知
計、52……希釈剤制御弁、53……濃縮物冷媒
制御弁、54……粘度検知計。
FIG. 1 is a sectional view showing the internal structure of a thin film evaporator and a withdrawal pump used in the present invention, and FIGS. 2, 3, and 4 are system diagrams showing different embodiments of the present invention. 1... Rotating shaft, 2... Rotating blade, 3... Heating jacket, 5... Raw material inlet, 6... Concentrate outlet,
7... Evaporated gas outlet, 10... Scraping blade, 11
... thin film evaporator, 20 ... extraction pump, 23...
... Refrigerant jacket, 37 ... Cooler, 40 ... Heat transfer cylinder, 44 ... Diluent inlet, 51 ... Temperature detector, 52 ... Diluent control valve, 53 ... Concentrate refrigerant control valve, 54 ... ...Viscosity detector.

Claims (1)

【特許請求の範囲】 1 原料入口、原料の加熱によつて発生する蒸発
気体の出口および希釈剤入口を有し、外部に加熱
用ジヤケツト、内部に回転翼およびかき下げ翼を
有する薄膜蒸発機と、外部に濃縮物冷却用ジヤケ
ツトおよび濃縮物出口を有する濃縮物抜出しポン
プと、前記蒸発気体を冷却凝縮する冷却器よりな
る蒸発濃縮装置において、前記濃縮物出口の濃縮
物の温度又は粘度の少なくとも一方の値に応じ
て、希釈剤を希釈剤入口より連続的あるいは間欠
的に注入すると共に、濃縮物冷却用ジヤケツトに
濃縮物冷媒を連続的あるいは間欠的に注入するよ
うにしたことを特徴とする熱硬化性樹脂の濃縮方
法。 2 前記希釈剤入口に注入する希釈剤の注入量お
よび注入ひん度と、濃縮物冷却用ジヤケツトに注
入する濃縮物冷媒の注入量および注入ひん度と
を、濃縮物出口の濃縮物の温度に応じて制御する
ようにした特許請求の範囲第1項記載の熱硬化性
樹脂の濃縮方法。 3 前記希釈剤入口に注入する希釈剤の注入量お
よび注入ひん度と、濃縮物冷却用ジヤケツトに注
入する濃縮物冷媒の注入量および注入ひん度と
を、濃縮物出口の濃縮物の粘度に応じて制御する
ようにした特許請求の範囲第1項記載の熱硬化性
樹脂の濃縮方法。 4 前記希釈剤入口に注入する希釈剤の注入量お
よび注入ひん度と、濃縮物冷却用ジヤケツトに注
入する濃縮物冷媒の注入量および注入ひん度と
を、濃縮物出口の濃縮物の温度および粘度に応じ
て制御するようにした特許請求の範囲第1項記載
の熱硬化性樹脂の濃縮方法。
[Claims] 1. A thin film evaporator having a raw material inlet, an outlet for evaporated gas generated by heating the raw material, and a diluent inlet, an external heating jacket, and an internal rotary blade and scraping blade. , an evaporative concentrator comprising a concentrate extraction pump having an external concentrate cooling jacket and a concentrate outlet, and a cooler for cooling and condensing the evaporated gas, at least one of the temperature or viscosity of the concentrate at the concentrate outlet; The diluent is continuously or intermittently injected from the diluent inlet depending on the value of , and the concentrate refrigerant is continuously or intermittently injected into the concentrate cooling jacket. Method for concentrating curable resin. 2 The injection amount and injection frequency of the diluent injected into the diluent inlet and the injection amount and injection frequency of the concentrate refrigerant injected into the concentrate cooling jacket are adjusted according to the temperature of the concentrate at the concentrate outlet. A method for concentrating a thermosetting resin according to claim 1, wherein the concentration method is controlled by: 3. The injection amount and injection frequency of the diluent injected into the diluent inlet and the injection amount and injection frequency of the concentrate refrigerant into the concentrate cooling jacket are adjusted according to the viscosity of the concentrate at the concentrate outlet. A method for concentrating a thermosetting resin according to claim 1, wherein the concentration method is controlled by: 4. The injection amount and injection frequency of the diluent injected into the diluent inlet and the injection amount and injection frequency of the concentrate refrigerant into the concentrate cooling jacket are determined based on the temperature and viscosity of the concentrate at the concentrate outlet. A method for concentrating a thermosetting resin according to claim 1, wherein the method is controlled according to the following.
JP3261181A 1981-03-09 1981-03-09 Method for concentrating thermosetting resin Granted JPS57147522A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3261181A JPS57147522A (en) 1981-03-09 1981-03-09 Method for concentrating thermosetting resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3261181A JPS57147522A (en) 1981-03-09 1981-03-09 Method for concentrating thermosetting resin

Publications (2)

Publication Number Publication Date
JPS57147522A JPS57147522A (en) 1982-09-11
JPS6352666B2 true JPS6352666B2 (en) 1988-10-19

Family

ID=12363643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3261181A Granted JPS57147522A (en) 1981-03-09 1981-03-09 Method for concentrating thermosetting resin

Country Status (1)

Country Link
JP (1) JPS57147522A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03112469U (en) * 1990-03-06 1991-11-18

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03112469U (en) * 1990-03-06 1991-11-18

Also Published As

Publication number Publication date
JPS57147522A (en) 1982-09-11

Similar Documents

Publication Publication Date Title
US4406745A (en) Device for high speed production of aromatic essential oils from perfume-generating plants or parts thereof
US3423293A (en) Apparatus for vapor compression distillation of impure water
KR930012025B1 (en) Low pressure distillation apparatus
CN1028966C (en) Process for extracting solid material using solvent and apparatus for implementing same
JPH06500049A (en) Apparatus and method for processing emulsions
US11141694B2 (en) System and process of capturing carbon dioxide from flue gases
US3020211A (en) Film-forming and wiping distillation process and apparatus for carrying out the same
US3837491A (en) Liquid purification apparatus and process
CN207286724U (en) A kind of Chinese medicine flash distillation extraction element
RU97114998A (en) METHOD FOR DISCHARGING A MULTICOMPONENT MIXTURE AND INSTALLATION FOR ITS IMPLEMENTATION
US3640330A (en) Heat exchangers
US3717554A (en) Device for reclaiming sweet water from sea water or brackish water
US2308008A (en) High vacuum distillation apparatus
US3252502A (en) Centrifugal wiped film evaporation process for viscous materials
JPS6352666B2 (en)
US3242969A (en) Polymer desolventizer of the rotary wiped falling film type
CN212282923U (en) Novel molecular distiller
US2427718A (en) Vacuum distillation with circulation of gas
US3129132A (en) Treatment of latex
FI80480C (en) UTKONDENSERING AV ZINKAONGA.
Biehler et al. Small laboratory centrifugal molecular still
US3079993A (en) Scraper-condenser unit
JPS5919721B2 (en) Method for concentrating adhesive substances
Najder Thin film evaporation
JPH11199204A (en) Treatment of waste hydrochloric acid