JPS6352630A - Overload dete tion system for power converter - Google Patents

Overload dete tion system for power converter

Info

Publication number
JPS6352630A
JPS6352630A JP19674586A JP19674586A JPS6352630A JP S6352630 A JPS6352630 A JP S6352630A JP 19674586 A JP19674586 A JP 19674586A JP 19674586 A JP19674586 A JP 19674586A JP S6352630 A JPS6352630 A JP S6352630A
Authority
JP
Japan
Prior art keywords
overload
thyristor
power converter
value
order lag
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19674586A
Other languages
Japanese (ja)
Other versions
JPH0681415B2 (en
Inventor
山添 勝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP19674586A priority Critical patent/JPH0681415B2/en
Publication of JPS6352630A publication Critical patent/JPS6352630A/en
Publication of JPH0681415B2 publication Critical patent/JPH0681415B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Protection Of Static Devices (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、スイッチング素子としてサイリスタを用いた
電力変換装置の過負荷検出方式に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an overload detection method for a power conversion device using a thyristor as a switching element.

〔従来の技術とその問題点〕[Conventional technology and its problems]

サイリスタはスイッチング素子として例えば第4図に示
したような無整子電動機駆動装置など、電力を制御する
種々の装置に適用されているが、通流電流による熱的破
壊を防止することがこれらの装置の保護機能の重要な1
つに挙げられる。図中1は電源側変換器、2はモータ側
変換器、3は同期電動機を示す。従来この保護機能、過
負荷検出は反限時特性を有する過電流継電器によってい
たが、検出精度等に問題があった。
Thyristors are used as switching elements in various devices that control electric power, such as non-aligned motor drive devices as shown in Fig. One important protection function of equipment
It is listed as one of the In the figure, 1 is a power supply side converter, 2 is a motor side converter, and 3 is a synchronous motor. Conventionally, this protective function and overload detection have been performed using overcurrent relays with inverse time-limiting characteristics, but there have been problems with detection accuracy and the like.

一方、電動機3の過負荷検出方式として従来使われてい
るのが第5図に示した方式である。この方式は検出電流
Idを乗算器4により2乗値を求め、これを一次遅れフ
ィルタ5を通し、この出力を比較器6により設定値と比
較し、一次遅れフィルタ5の出力がこの設定値を越えた
時に過負荷として検出するようにしている。これは検出
電流Idの2乗値は電動機3内で発生する損失となり、
電動機の熱系を一次遅れで表し温度上昇を算出している
On the other hand, the method shown in FIG. 5 is conventionally used as an overload detection method for the electric motor 3. In this method, the detected current Id is squared by a multiplier 4, passed through a first-order lag filter 5, and this output is compared with a set value by a comparator 6, and the output of the first-order lag filter 5 is equal to this set value. When the limit is exceeded, it is detected as an overload. This means that the square value of the detected current Id is the loss generated within the motor 3,
The motor's thermal system is expressed as a first-order lag and the temperature rise is calculated.

ところが、この方式を変換器1,2に対して適用した場
合、通流電流による発生損失を華に電流の2乗値で表す
と大きな誤差が生じる。
However, when this method is applied to the converters 1 and 2, a large error occurs when the loss caused by the flowing current is expressed as the square value of the current.

これはサイリスタ素子のえん層重圧を無視できないため
である。
This is because the pressure on the thyristor element cannot be ignored.

本発明の目的は、サイリスタ素子特有の熱系及び発生損
失を考慮して電力変換装置に適した精度のよい過負荷検
出方式を提供することにある。
An object of the present invention is to provide an accurate overload detection method suitable for a power converter device, taking into consideration the heat system and generated losses specific to thyristor elements.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は前記目的を達成するため、スイッチング素子と
してサイリスタを用いた電力変換装置において、サイリ
スタ素子の通流電流の2乗値とこの通流電流の電力変換
装置のゲイン倍の値とを加算し、この加算した値を一次
遅れフィルタの入力とし、該一次遅れフィルタの出力を
比較器で設定値と比較して一次遅れフィルタの出力が設
定値を越えたことで過負荷と判定することを要旨とする
ものである。
In order to achieve the above object, the present invention, in a power conversion device using a thyristor as a switching element, adds the square value of the current flowing through the thyristor element and the value multiplied by the gain of the power conversion device of this current flowing. , this added value is input to a first-order lag filter, and the output of the first-order lag filter is compared with a set value using a comparator, and when the output of the first-order lag filter exceeds the set value, it is determined that an overload has occurred. That is.

〔作用〕[Effect]

本発明によれば、サイリスタ素子に通流する電流の2乗
値と、電流のに倍値を加算したものをサイリスタ素子内
で発生ずる損失とし、熱時定数を冷却体の持つ時定数で
代表させ、かつその時定数を持つ一次遅れ系で近似して
サイリスタの温度上昇を算出するようにした。
According to the present invention, the sum of the square value of the current flowing through the thyristor element and the double value of the current is defined as the loss generated within the thyristor element, and the thermal time constant is represented by the time constant of the cooling body. The temperature rise of the thyristor is calculated by approximating it using a first-order lag system that has the same time constant.

〔実施例〕〔Example〕

以下、図面について本発明の実施例を詳細に説明する。 Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図は本発明の電力変換装置の過負荷検出方式の実施
例を示すブロック図で、図中4は乗算器、7は係数kが
変換装置によって決まるゲイン、8は加算点を示す。ま
た、図中5は一次遅れフィルタ、6は比較器であるが、
これらの時定数tcと比較レベルQcはサイリスタ素子
や冷却方法等に依存する値である。
FIG. 1 is a block diagram showing an embodiment of the overload detection method for a power converter according to the present invention, in which 4 represents a multiplier, 7 represents a gain whose coefficient k is determined by the converter, and 8 represents an addition point. Also, in the figure, 5 is a first-order lag filter, and 6 is a comparator.
These time constant tc and comparison level Qc are values that depend on the thyristor element, cooling method, etc.

サイリスタ素子の熱モデルを通流電流idの2乗値12
とこの通流電流idを変換装置によって決まるゲインに
倍した値kiとを加算した値を、サイリスタ素子の発生
する損失と考え、冷却体の時定数によって決まる一次遅
れフィルタ5を通すことによりサイリスタ素子の温度上
昇θを算出する。
Thermal model of the thyristor element is the square value of the passing current id 12
The value obtained by adding this current id to the value ki multiplied by the gain determined by the converter is considered to be the loss generated in the thyristor element, and the thyristor element is Calculate the temperature rise θ.

サイリスタに一定の損失Pを与えた時に各部の構成要素
の熱容量により温度上昇は時間の関数になる。しかし変
換装置の過負荷を考える時サイリスタ接合部←ケース間
の温度は、ケース←冷却体の温度時定数に比べて接合部
←ケース間の温度時定数は無視できるほど小さいので、
ケース←冷却体の温度時定数に依存するとしてよい。
When a constant loss P is given to the thyristor, the temperature rise becomes a function of time due to the heat capacity of each component. However, when considering the overload of the converter, the temperature between the thyristor junction and the case is negligibly small compared to the temperature time constant of the case and the cooling body.
Case←It may be assumed that it depends on the temperature time constant of the cooling body.

第3図はケース←冷却体間の過渡熱抵抗Ra (t)の
特性を示したものである。実際のRa  (t)は実線
のような関数になっているが、サイリスタ素子にとって
安全側になるように点線のような一次遅れと仮定しても
実用上何ら問題はない。従って接合部←冷却体間の過渡
熱抵抗Rja(t)を次式%式%(1) Rca:ケース←冷却体間定常熱砥抗 tC:冷却体の時定数 サイリスタ素子から発生する損失をPoとすると接合部
の温度上昇θjは次式で求まる。
Figure 3 shows the characteristics of the transient thermal resistance Ra (t) between the case and the cooling body. Although the actual Ra (t) is a function as shown by the solid line, there is no problem in practice even if it is assumed to be a first-order lag as shown by the dotted line so as to be on the safe side for the thyristor element. Therefore, the transient thermal resistance Rja(t) between the junction ← cooling body is expressed by the following formula % Formula % (1) Rca: Steady thermal abrasive resistance between case ← cooling body tC: Time constant of the cooling body The loss generated from the thyristor element is Po Then, the temperature rise θj at the junction can be found by the following equation.

θj=Po Rja (t) =Po Rca (1−
e−te−)−・−・・・−・(2) 一方、サイリスタ素子の電圧降下と平均順電流■、の関
係は一般に第4図のように近似できる。
θj=Po Rja (t) = Po Rca (1-
(2) On the other hand, the relationship between the voltage drop of the thyristor element and the average forward current (2) can generally be approximated as shown in FIG.

VD−Vi+r、I、    Vi :えん層電圧rp
 :微分抵抗 従って順方向損失Poは Po =V i I、 +r、  (f i IF )
 ”−−−−−−(3)fi:波形率 (3)式を(2)式に代入して、 θj−(V i IF +rp f 12−I、” )
  ・Rca・(1−e一部) ゆえに θj’:L(1,2+に+  Ip)(1−eズ花)・
−・・−(4) 但しに、=V i/ (rGl f i” )例えば3
相純ブリツジ構成のサイリスタ変換器においてはr i
= 汀、直流電流をIdとするとId=3’L、となり
 (4)式を整理するとθJ 2 (Iy ” +kl
  IF )  (1e−”)但しkz −Vi/rI
VD-Vi+r, I, Vi: Enlayer voltage rp
: Differential resistance Therefore, forward loss Po is Po = V i I, +r, (f i IF )
``--------(3) fi: Waveform factor Substituting equation (3) into equation (2), θj-(V i IF + rp f 12-I," )
・Rca・ (1-e part) Therefore θj': L (+ Ip to 1, 2+) (1-e flower)・
−・・−(4) However, =V i/(rGl f i”) For example, 3
In a thyristor converter with phase-pure bridge configuration, r i
= If the DC current is Id, then Id = 3'L, and rearranging equation (4), θJ 2 (Iy ” +kl
IF ) (1e-”) However, kz −Vi/rI
.

上式をId、。。(定格直流電流)によってユニット化
すると θ j;(id”  +に3 id)  (1−e−−
ac)−−−−−−・ (5) 但しk 3 ” V i / r p  ・I d +
 o。
The above formula is Id. . When unitized by (rated DC current), θ j; (id” + 3 id) (1-e--
ac) --------・ (5) However, k 3 ” V i / r p ・I d +
o.

従って、(5)式で求めたθと過負荷率と過負荷時間に
よって決まる比較レベルθCとを比較器6で比較するこ
とにより変換装置の過負荷を検出することができる。
Therefore, by comparing θ obtained by equation (5) with the comparison level θC determined by the overload rate and overload time using the comparator 6, it is possible to detect an overload of the converter.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明の電力変換装置の過負荷検出方
式は、スイッチング素子としてサイリスタを用いた電力
変換装置において、過負荷をサイリスタ素子特有の熱系
及び発生損失を考慮して精度良く検出することができる
ものである。
As described above, the overload detection method for a power conversion device of the present invention accurately detects overload in a power conversion device using a thyristor as a switching element, taking into consideration the heat system and generated loss specific to the thyristor element. It is something that can be done.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の電力変換装置の過負荷検出方式の実施
例を示すブロック図、第2図はサイリスタ素子の順電圧
特性を示す図、第3図は冷却体の過渡熱抵抗特性を示す
図、第4図はサイリスタ変換器の適用例を示す回路図、
第5図は、従来の過負荷検出方式を示すブロック図であ
る。
Fig. 1 is a block diagram showing an embodiment of the overload detection method of the power conversion device of the present invention, Fig. 2 is a diagram showing the forward voltage characteristics of the thyristor element, and Fig. 3 is a diagram showing the transient thermal resistance characteristics of the cooling body. 4 is a circuit diagram showing an example of application of a thyristor converter,
FIG. 5 is a block diagram showing a conventional overload detection method.

Claims (1)

【特許請求の範囲】[Claims] スイッチング素子としてサイリスタを用いた電力変換装
置において、サイリスタ素子の通流電流の2乗値とこの
通流電流の電力変換装置のゲイン倍の値とを加算し、こ
の加算した値を一次遅れフィルタの入力とし、該一次遅
れフィルタの出力を比較器で設定値と比較して一次遅れ
フィルタの出力が設定値を越えたことで過負荷と判定す
ることを特徴とする電力変換装置の過負荷検出方式。
In a power converter using a thyristor as a switching element, the square value of the current flowing through the thyristor element and the value multiplied by the gain of the power converter for this current are added, and this added value is applied to the first-order lag filter. An overload detection method for a power conversion device, characterized in that the output of the first-order lag filter is compared with a set value by a comparator, and an overload is determined when the output of the first-order lag filter exceeds the set value. .
JP19674586A 1986-08-21 1986-08-21 Power converter overload detection method Expired - Lifetime JPH0681415B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19674586A JPH0681415B2 (en) 1986-08-21 1986-08-21 Power converter overload detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19674586A JPH0681415B2 (en) 1986-08-21 1986-08-21 Power converter overload detection method

Publications (2)

Publication Number Publication Date
JPS6352630A true JPS6352630A (en) 1988-03-05
JPH0681415B2 JPH0681415B2 (en) 1994-10-12

Family

ID=16362898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19674586A Expired - Lifetime JPH0681415B2 (en) 1986-08-21 1986-08-21 Power converter overload detection method

Country Status (1)

Country Link
JP (1) JPH0681415B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012208652A (en) * 2011-03-29 2012-10-25 Furukawa Electric Co Ltd:The Power supply device and power supply method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012208652A (en) * 2011-03-29 2012-10-25 Furukawa Electric Co Ltd:The Power supply device and power supply method

Also Published As

Publication number Publication date
JPH0681415B2 (en) 1994-10-12

Similar Documents

Publication Publication Date Title
US7035064B2 (en) Method and circuit arrangement with adaptive overload protection for power switching devices
US8926174B2 (en) Controller of power converter
US20140239741A1 (en) Thermal Model
EP1583197B1 (en) Protection of power semiconductor components
JP6844725B2 (en) Power converter
JP3889450B2 (en) Current sense MOSFET in parallel MOSFET power circuit
US20140124498A1 (en) Battery management systems and methods
JP2000228882A (en) Protective device for variable speed inverter
JP5482484B2 (en) Power converter control device
JPS6352630A (en) Overload dete tion system for power converter
JP3198543B2 (en) Inverter switching element temperature rise detection circuit
JP2020141457A (en) Power conversion device and temperature detection method for power conversion device
JP2004173347A (en) Overload detection methodology of pulse width overload detecting method for pwm inverter
JPH0638544A (en) Servocontroller for ac motor
JPS60245493A (en) Protecting device of inverter for air conditioner
JP2892825B2 (en) Inverter with configurable overload protection
JP2509614B2 (en) Protection circuit
JP3196790B2 (en) Overload detection method for servo controller
EP3763027B1 (en) Power factor converter
JPS58151879A (en) Control circuit for alternating current/direct current converting circuit
SU1029309A1 (en) Device for overheat protection of electric machine
JPS6395813A (en) Missing pkase detection circuit for inverter
JPH079088U (en) Compound resistor
JPH0617333U (en) Phase-advancing capacitor and series reactor protection device
JPS61132086A (en) Protecting circuit of servo motor