JPS6352574B2 - - Google Patents

Info

Publication number
JPS6352574B2
JPS6352574B2 JP15519480A JP15519480A JPS6352574B2 JP S6352574 B2 JPS6352574 B2 JP S6352574B2 JP 15519480 A JP15519480 A JP 15519480A JP 15519480 A JP15519480 A JP 15519480A JP S6352574 B2 JPS6352574 B2 JP S6352574B2
Authority
JP
Japan
Prior art keywords
copper foil
tension
printed wiring
copper
flexible printed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15519480A
Other languages
Japanese (ja)
Other versions
JPS5779694A (en
Inventor
Yutaka Nomi
Masahisa Kato
Itsuo Matsuda
Kichinosuke Soma
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Chemical Products Co Ltd
Original Assignee
Toshiba Chemical Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Chemical Products Co Ltd filed Critical Toshiba Chemical Products Co Ltd
Priority to JP15519480A priority Critical patent/JPS5779694A/en
Publication of JPS5779694A publication Critical patent/JPS5779694A/en
Publication of JPS6352574B2 publication Critical patent/JPS6352574B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Printed Wiring (AREA)
  • Laminated Bodies (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はフレキシブル印刷配線用銅張板の製造
方法に関し、さらに詳しくは特殊な巻取り法を行
うことによつてカールの小さいフレキシブル印刷
配線用銅張板の製造方法に関する。 従来より、フレキシブル印刷配線用銅張板の製
造方法にはプレス方式とラミネータ方式がある。
プレス方式は一般の硬質銅張積層板と同様に、プ
ラスチツクフイルムと銅箔とを接着剤を介して重
合し、熱プレス機によつて加熱加圧して一体化す
る方法である。またラミネータ方式はロール状プ
ラスチツクフイルムとロール状銅箔とを接着剤を
介して加熱ロールにより連続的に張合せた後加熱
硬化させる方法である。プレス方式の場合は通常
高圧、長時間の加熱を必要とするため、プラスチ
ツクフイルムと銅箔のように熱膨張係数の差や熱
収縮率の差の大きいもの同士の張合せを行うと出
来上つた銅張板はカールが大きい。またラミネー
タ方式の場合は通常、加熱ロールでは低圧、短時
間で加熱が終るので、この段階ではカールの発生
は小さいが、これをロール状に巻取つてから加熱
硬化させる工程でカールが大きくなる。すなわち
加熱ロールで張合せた後、銅箔面を外側にして巻
取つてから加熱硬化させると、プラスチツクフイ
ルムと銅箔との熱収縮率の差によるカールに巻き
ぐせカールが加味されて銅箔面を外側としたカー
ル(以下(+)カールと称する)が大となる。
(第1図参照)一方加熱ロールで張合せた後、銅
箔面を内側に巻取つてから加熱硬化させると、プ
ラスチツクフイルムと銅箔との熱収縮率の差によ
るカールは消えて、逆に巻きぐせカールが出て銅
箔面を内側としたカール(以下(−)カールと称
する)となる。(第2図参照) 本発明の目的は上記従来方法によるフレキシブ
ル印刷配線用銅張板製造方法の欠点を解決し、カ
ールの小さいフレキシブル印刷配線用銅張板を連
続的に製造する方法を提供するにある。本発明者
らはこの目的を達成するために鋭意検討した結
果、接着剤を介してプラスチツクフイルムと銅箔
を加熱ロールによつて連続的に張合せた後、張力
0.03〜0.20Kg/mm2で銅箔面を内側にして巻取つて
から加熱硬化を行い、次いで張力0.03〜0.20Kg/
mm2で銅箔面を外側にして巻直すことによつてカー
ルの小さいフレキシブル印刷配線用銅張板を連続
的に製造できることを見出し本発明を完成した。 本発明は接着剤を介してプラスチツクフイルム
と銅箔とを加熱ロールによつて連続的に張合せた
後、張力0.03〜0.20Kg/mm2で銅箔面を内側にして
巻取つてから加熱硬化を行うことによつて熱収縮
による(+)カールが防止でき、若干の巻きぐせ
による(−)カールとなつたものを、張力0.03〜
0.20Kg/mm2で銅箔面を外側にして巻直すことによ
つてカールの小さいフレキシブル印刷配線用銅張
板が得られることになる。 本発明に用いられるプラスチツクフイルムとし
ては、ポリイミド、ポリアミドイミド、ポリパラ
バン酸、ポリエチレンテレフタレート、フツ素樹
脂等のフイルムが挙げられ、必要に応じて表面処
理を施すこともある。 本発明に用いられる接着剤として種々のものが
使用可能であり、特に限定されない。 本発明に用いられる銅箔としては電解銅箔また
は圧延銅箔があり、厚さは通常0.015〜0.105mm
で、必要に応じて表面処理を施すこともある。 本発明に用いられる加熱ロールとしては通常市
販のゴム/ゴム、ゴム/金属、金属/金属等の組
合せで加圧機構を備えたものであればよい。 本発明において、加熱ロールによる張合せ後、
巻取るときの張力は0.03〜0.20Kg/mm2、好ましく
は0.05〜0.15Kg/mm2である。張力が0.03Kg/mm2
満では蛇行して巻取られるため、シワ等の変形が
生じやすく、また0.20Kg/mm2を越えれば巻きぐせ
のためのカールや変形が強く出るので好ましくな
い。また加熱硬化後の巻直しのときの張力は0.03
〜0.20Kg/mm2であり、好ましくは0.05〜0.15Kg/
mm2である。0.03Kg/mm2未満では蛇行しやすく、ま
た巻直し前のカールが解消出来ず、0.20Kg/mm2
越えれば新たな巻きぐせが付きやすいので好まし
くない。 本発明における加熱硬化条件は特に限定なく、
使用する接着剤に合せて適宜設定すればよい。 次に実施例および比較例を挙げて本発明を説明
する。 実施例 1 接着面に表面処理を施した厚さ0.035mmの圧延
銅箔と厚さ0.025mmのポリパラバン酸フイルムと
をエポキシ系接着剤を介して加熱ロールで連続的
に張合せた後、銅箔面を内側にして張力0.12Kg/
mm2で巻取つてから乾燥機中で140℃、10時間加熱
硬化し、冷却してから、銅箔面を外側にして張力
0.08Kg/mm2で巻直してポリパラバン酸ベースフレ
キシブル印刷配線用銅張板を得た。 実施例 2 接着面に表面処理を施した厚さ0.035mmの電解
銅箔と厚さ0.050mmのポリイミドフイルムとをエ
ポキシ系接着剤を介して加熱ロールで連続的に張
合せた後、銅箔面を内側にして張力0.08Kg/mm2
巻取つてから乾燥機中で140℃、10時間加熱硬化
し冷却してから、銅箔面を外側にして張力0.10
Kg/mm2で巻直してポリイミドベースフレキシブル
印刷配線用銅張板を得た。 実施例 3 接着面に表面処理を施した厚さ0.035mmの電解
銅箔と厚さ0.075mmのポリエチレンテレフタレー
トフイルムとをエポキシ系接着剤を介して加熱ロ
ールで連続的に張合せた後、銅箔面を内側にして
張力0.08Kg/mm2で巻取つてから乾燥機中で140℃、
10時間加熱硬化し冷却してから、銅箔面を外側に
して張力0.12Kg/mm2で巻直してポリエステルベー
スフレキシブル印刷配線用銅張板を得た。 比較例 1 接着面に表面処理を施した厚さ0.035mmの圧延
銅箔と厚さ0.025mmのポリパラバン酸フイルムを
エポキシ系接着剤を介して加熱ロールで連続的に
張合せた後、銅箔面を外側にして張力0.10Kg/mm2
で巻取つてから乾燥機中で140℃、10時間加熱硬
化し冷却してポリパラバン酸ベースフレキシブル
印刷配線用銅張板を得た。 比較例 2 接着面に表面処理を施した厚さ0.035mmの電解
銅箔と厚さ0.050mmのポリイミドフイルムとをエ
ポキシ系接着剤を介して加熱ロールで連続的に張
合せた後、銅箔面を外側にして張力0.30Kg/mm2
巻取つてから乾燥機中で140℃、10時間加熱硬化
し冷却してから、銅箔面を内側にして張力0.30
Kg/mm2で巻直してポリイミドベースフレキシブル
印刷配線用銅張板を得た。 比較例 3 接着面に表面処理を施した厚さ0.035mmの電解
銅箔と厚さ0.075mmのポリエチレンテレフタレー
トフイルムとをエポキシ系接着剤を介して加熱ロ
ールで連続的に張合せた後、銅箔面を内側にして
張力0.10Kg/mm2で巻取つてから乾燥機中で140℃、
10時間加熱硬化し冷却してポリエステルベースフ
レキシブル印刷配線用銅張板を得た。 以上の実施例および比較例で得られたフレキシ
ブル印刷配線用銅張板のカールの状況は下表の如
くであつた。 ここでカールは200×200mmの試験片を20℃65%
湿度の雰囲気中で定盤の上に第3図のように凹面
が上向きになるように静置して四角のうちの最大
浮き上りをハイトゲージにてmm単位で測定した。
The present invention relates to a method of manufacturing a copper clad board for flexible printed wiring, and more particularly to a method of manufacturing a copper clad board for flexible printed wiring with small curl by performing a special winding method. Conventionally, methods for manufacturing copper clad boards for flexible printed wiring include a press method and a laminator method.
The pressing method is similar to general hard copper-clad laminates, in which a plastic film and a copper foil are polymerized via an adhesive, and then heated and pressed using a hot press machine to integrate them. The laminator method is a method in which a roll of plastic film and a roll of copper foil are continuously laminated together with an adhesive using a heated roll, and then heated and cured. Pressing methods usually require high pressure and long heating times, so it is possible to create a product by laminating materials with large differences in thermal expansion coefficient and thermal contraction rate, such as plastic film and copper foil. Copper clad boards have large curls. In addition, in the case of a laminator method, heating is normally completed in a short time using a heating roll at low pressure, so curling is small at this stage, but curling becomes larger in the step of winding it into a roll and heating and curing it. In other words, if the plastic film is pasted with a heating roll, then rolled up with the copper foil side facing outward, and then heated and cured, the curl due to the difference in thermal shrinkage between the plastic film and the copper foil will be added to the curl caused by the copper foil side. The curl with the outer side (hereinafter referred to as (+) curl) is large.
(See Figure 1) On the other hand, after laminating with a heated roll, if the copper foil side is rolled up inside and heated to harden, the curl caused by the difference in thermal shrinkage rate between the plastic film and the copper foil will disappear, and on the contrary, A curl appears and the copper foil surface becomes a curl (hereinafter referred to as a (-) curl). (See Figure 2) The purpose of the present invention is to solve the drawbacks of the above-mentioned conventional method for producing copper clad boards for flexible printed wiring, and to provide a method for continuously producing copper clad boards for flexible printed wiring with small curls. It is in. As a result of intensive studies to achieve this objective, the inventors of the present invention found that after continuously bonding plastic film and copper foil with an adhesive using a heated roll, the tension
After winding with the copper foil side inside at a tension of 0.03 to 0.20Kg/ mm2 , heat curing is performed, and then the tension is 0.03 to 0.20Kg/mm2.
The inventors discovered that it is possible to continuously produce a copper clad board for flexible printed wiring with minimal curl by rewinding the copper foil with the copper foil side facing outward, thereby completing the present invention. In the present invention, a plastic film and a copper foil are continuously pasted together using an adhesive using a heated roll, and then wound up with the copper foil side inside at a tension of 0.03 to 0.20 kg/mm 2 and then heated and cured. By doing this, you can prevent (+) curls due to heat shrinkage, and (-) curls due to slight curling can be prevented by applying a tension of 0.03~
By rewinding at 0.20 Kg/mm 2 with the copper foil side facing outward, a copper clad board for flexible printed wiring with less curl can be obtained. Examples of the plastic film used in the present invention include films made of polyimide, polyamideimide, polyparabanic acid, polyethylene terephthalate, fluororesin, etc., and may be surface-treated if necessary. Various adhesives can be used in the present invention, and there are no particular limitations. The copper foil used in the present invention includes electrolytic copper foil or rolled copper foil, and the thickness is usually 0.015 to 0.105 mm.
Surface treatment may also be applied if necessary. The heating roll used in the present invention may be a commonly available combination of rubber/rubber, rubber/metal, metal/metal, etc. and provided with a pressure mechanism. In the present invention, after lamination using a heating roll,
The tension during winding is 0.03 to 0.20 Kg/mm 2 , preferably 0.05 to 0.15 Kg/mm 2 . If the tension is less than 0.03 Kg/mm 2 , the material is wound in a meandering manner, which tends to cause deformations such as wrinkles, and if it exceeds 0.20 Kg/mm 2 , the material is undesirably curled and deformed due to curling. Also, the tension when rewinding after heat curing is 0.03
~0.20Kg/ mm2 , preferably 0.05~0.15Kg/
mm2 . If it is less than 0.03 Kg/mm 2 , it tends to meander and curls before rewinding cannot be eliminated, and if it exceeds 0.20 Kg/mm 2 , new curls tend to form, which is not preferable. The heat curing conditions in the present invention are not particularly limited.
It may be set appropriately according to the adhesive used. Next, the present invention will be explained with reference to Examples and Comparative Examples. Example 1 A rolled copper foil with a thickness of 0.035 mm and a polyparabanic acid film with a thickness of 0.025 mm, which had been surface-treated on the adhesive side, were laminated continuously using a heated roll via an epoxy adhesive, and then the copper foil was Tension 0.12Kg/with the surface inside
After winding it to a size of mm 2 , heat it in a dryer at 140℃ for 10 hours to harden it, cool it, and then put it under tension with the copper foil side outside.
It was re-wound at 0.08 Kg/mm 2 to obtain a polyparabanic acid-based copper clad board for flexible printed wiring. Example 2 Electrolytic copper foil with a thickness of 0.035 mm and polyimide film with a thickness of 0.050 mm, which had been surface-treated on the adhesive side, were laminated continuously using a heated roll via an epoxy adhesive, and then the copper foil surface was Wind it up with the copper foil side on the inside at a tension of 0.08Kg/mm 2 , heat harden it in a dryer at 140℃ for 10 hours, cool it, and then turn it with the copper foil side outside at a tension of 0.10.
It was re-wound at kg/mm 2 to obtain a copper clad board for polyimide-based flexible printed wiring. Example 3 An electrolytic copper foil with a thickness of 0.035 mm and a polyethylene terephthalate film with a thickness of 0.075 mm, which had been surface-treated on the adhesive side, were laminated continuously using a heated roll via an epoxy adhesive, and then the copper foil was Roll it up with the surface inside at a tension of 0.08Kg/ mm2 , then dry it in a dryer at 140℃.
After heating and curing for 10 hours and cooling, the material was re-wound with the copper foil side facing outward at a tension of 0.12 Kg/mm 2 to obtain a polyester-based copper clad board for flexible printed wiring. Comparative Example 1 A rolled copper foil with a thickness of 0.035 mm and a polyparabanic acid film with a thickness of 0.025 mm, which had been surface-treated on the adhesive side, were laminated continuously using a heated roll via an epoxy adhesive, and then the copper foil surface Tension is 0.10Kg/mm 2 with
After winding it up, it was cured by heating at 140°C for 10 hours in a dryer and cooled to obtain a polyparabanic acid-based copper clad board for flexible printed wiring. Comparative Example 2 Electrolytic copper foil with a thickness of 0.035 mm and polyimide film with a thickness of 0.050 mm, which had been surface-treated on the adhesive side, were laminated continuously with a heated roll via an epoxy adhesive, and then the copper foil surface Wind it up with the copper foil side on the outside at a tension of 0.30Kg/mm 2 , heat harden it in a dryer at 140℃ for 10 hours, cool it, and then turn it with the copper foil side inside at a tension of 0.30Kg/mm2.
It was re-wound at kg/mm 2 to obtain a copper clad board for polyimide-based flexible printed wiring. Comparative Example 3 An electrolytic copper foil with a thickness of 0.035 mm and a polyethylene terephthalate film with a thickness of 0.075 mm, which had been surface-treated on the adhesive side, were laminated continuously with a heated roll via an epoxy adhesive, and then the copper foil was Roll it up with the surface inside at a tension of 0.10Kg/ mm2 , then dry it in a dryer at 140℃.
It was cured by heating for 10 hours and cooled to obtain a polyester-based copper clad board for flexible printed wiring. The curling conditions of the copper clad boards for flexible printed wiring obtained in the above Examples and Comparative Examples were as shown in the table below. Here, curl is a 200 x 200 mm test piece at 20℃65%.
It was placed on a surface plate in a humid atmosphere with the concave side facing upward as shown in Figure 3, and the maximum elevation of the squares was measured in mm using a height gauge.

【表】 以上のように本発明の実施例1〜3で得られた
フレキシブル印刷配線用銅張板はいずれもカール
が小さいことがわかる。
[Table] As described above, it can be seen that the copper clad boards for flexible printed wiring obtained in Examples 1 to 3 of the present invention all have small curls.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はフレキシブル銅張板のカールのうち銅
箔面を外側としたカール、すなわち(+)カール
の場合、第2図はカールのうち銅箔面を内側とし
たカール、すなわち(−)カールの場合の各断面
図を示す。第3図はフレキシブル銅張板のカール
測定方法を示す。 1……銅箔、2……接着剤、3……プラスチツ
クフイルム、4……定盤、5……ハイトゲージ、
6……フレキシブル銅張板試験片。
Figure 1 shows the curl of a flexible copper clad board with the copper foil side outside, i.e. (+) curl, and Figure 2 shows the curl with the copper foil side inside, i.e. (-) curl. Each cross-sectional view is shown in the case of . FIG. 3 shows a method for measuring curl of a flexible copper clad board. 1... Copper foil, 2... Adhesive, 3... Plastic film, 4... Surface plate, 5... Height gauge,
6...Flexible copper clad plate test piece.

Claims (1)

【特許請求の範囲】[Claims] 1 接着剤を介してプラスチツクフイルムと銅箔
を加熱ロールによつて連続的に張合せた後、加熱
硬化させるフレキシブル印刷配線用銅張板の製造
方法において、加熱ロールによる張合せの後、張
力0.03〜0.20Kg/mm2で銅箔面を内側にして巻取つ
てから加熱硬化を行い、次いで張力0.03〜0.20
Kg/mm2で銅箔面を外側にして巻直すことを特徴と
するフレキシブル印刷配線用銅張板の製造方法。
1 In a method for manufacturing a copper clad board for flexible printed wiring, in which a plastic film and a copper foil are continuously laminated with an adhesive using a heating roll and then cured by heating, the tension is 0.03 after lamination with the heating roll. ~0.20Kg/mm 2 is rolled up with the copper foil side inside, then heated and hardened, then the tension is 0.03~0.20.
A method for manufacturing a copper clad board for flexible printed wiring, characterized by rewinding the copper clad board with the copper foil side facing outward at a weight of Kg/mm 2 .
JP15519480A 1980-11-06 1980-11-06 Method of producing copper-coated board for flexible printed circuit Granted JPS5779694A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15519480A JPS5779694A (en) 1980-11-06 1980-11-06 Method of producing copper-coated board for flexible printed circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15519480A JPS5779694A (en) 1980-11-06 1980-11-06 Method of producing copper-coated board for flexible printed circuit

Publications (2)

Publication Number Publication Date
JPS5779694A JPS5779694A (en) 1982-05-18
JPS6352574B2 true JPS6352574B2 (en) 1988-10-19

Family

ID=15600541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15519480A Granted JPS5779694A (en) 1980-11-06 1980-11-06 Method of producing copper-coated board for flexible printed circuit

Country Status (1)

Country Link
JP (1) JPS5779694A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6353015A (en) * 1986-08-22 1988-03-07 Mitsubishi Plastics Ind Ltd Preparation of single-sided copper-clad plastic film
JP2010030756A (en) * 2008-07-30 2010-02-12 Nippon Shokubai Co Ltd Optical film roll manufacturing method
JP5704450B2 (en) * 2011-04-13 2015-04-22 大日本印刷株式会社 Manufacturing method of color filter
JP6039867B1 (en) * 2015-03-06 2016-12-07 京セラ株式会社 Winding body and substrate sheet

Also Published As

Publication number Publication date
JPS5779694A (en) 1982-05-18

Similar Documents

Publication Publication Date Title
US3969177A (en) Laminating method
JPS6352574B2 (en)
JP4500773B2 (en) Method for producing flexible laminate
JP2003311882A (en) Manufacturing method for heat-resistant flexible laminated sheet
JP4144660B2 (en) Manufacturing method of heat-resistant flexible substrate
JP2003200496A (en) Method for manufacturing heat resistant flexible laminate
JP2002052614A (en) Method for manufacturing laminated sheet
JP2001310344A (en) Method for manufacturing laminated sheet
JPS6353015A (en) Preparation of single-sided copper-clad plastic film
JPS58114921A (en) Manufacture of laminate
JP2002064259A (en) Method of manufacturing heat-resistant flexible board
JP2003001709A (en) Method for manufacturing heat-resistant flexible laminate plate
JP2931069B2 (en) Manufacturing method of laminated board
JP2001129918A (en) Manufacturing method of laminated sheet
JPH08139436A (en) Cover lay film
JP2002192615A (en) Laminated sheet manufacturing method
JPS60109835A (en) Manufacture of metallic foil lined laminated board
JP3234543B2 (en) Plate for forming metal foil-clad laminate, method for producing metal-foil-clad laminate, method for producing metal-foil-clad laminate
JP2003001750A (en) Method for manufacturing heat-resistant flexible laminated sheet
JPH0542555A (en) Continuous production of laminated sheet
JPS60109836A (en) Manufacture of lainated board
JPH0367618B2 (en)
JPH0478448B2 (en)
JPS5822166A (en) Manufacture of laminated board
JPH0320917B2 (en)