JPS635256A - Uranyl ion selective electrode - Google Patents

Uranyl ion selective electrode

Info

Publication number
JPS635256A
JPS635256A JP61150559A JP15055986A JPS635256A JP S635256 A JPS635256 A JP S635256A JP 61150559 A JP61150559 A JP 61150559A JP 15055986 A JP15055986 A JP 15055986A JP S635256 A JPS635256 A JP S635256A
Authority
JP
Japan
Prior art keywords
ion
uranyl
electrode
membrane
ion exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61150559A
Other languages
Japanese (ja)
Other versions
JPH0629875B2 (en
Inventor
Shujiro Shiga
志賀 周二郎
Hideo Nagata
永田 英雄
Kenichiro Shigeoka
重岡 憲一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP61150559A priority Critical patent/JPH0629875B2/en
Publication of JPS635256A publication Critical patent/JPS635256A/en
Publication of JPH0629875B2 publication Critical patent/JPH0629875B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

PURPOSE:To obtain an electrode having a potential difference gradient larger than a Nernst gradient, excellent in ion selectively and concn. response and having good reproducibility, accuracy and durability, by using a specific ion exchange material in a membrane forming base material. CONSTITUTION:In an ion exchange liquid membrane type electrode having an internal comparing electrode and an uranyl ion internal liquid, as a film forming base material, a response membrane treated with an ion exchange material consisting of one or more of an uranyl ion complex of neutral phosphoric ester or neutral phosphoric ester, a diluent excellent in the compatibility with said ion exchange material and a solvent having the compatibility with the film forming base material is used. As the complexing agent forming the ion exchange material, for example, neutral phosphoric ester or neutral phosphorous ester such as trioctyl phosphate or tri-n-butyl phosphite is used. As the diluent, for example, neutral phosphoric ester such as triethyl phosphate is used and, as the compatible solvent, for example, a plasticizer such as phthalic ester is used.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本願発明は、ウラニル、イオン選択性電極に微性に優れ
たウラニル、イオン選択性電極に関するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Field of Application> The present invention relates to a uranyl, ion selective electrode with excellent fineness.

〈従来の技術〉 近年の原子カニ業の発展に伴い、斯る原子カニ業に不可
欠のウラニル、イオン分析用電極の実用的研究が進めら
れている。既に、内部に比較電極を置き、これと外筒の
間に一定濃度のウラニル、イオン内部液を満たしたイオ
ン交換液膜型のウラニル、イオン選択性電極については
、種種の報告がなされている。
<Prior Art> With the recent development of the atomic crab industry, practical research is underway on electrodes for uranyl and ion analysis, which are essential to the atomic crab industry. Various reports have already been made regarding ion-exchange membrane-type uranyl and ion-selective electrodes in which a reference electrode is placed inside and a constant concentration of uranyl is filled between this and the outer cylinder, an ion internal solution is filled.

例えば、デイトリッヒ(W、 C,Dietrich 
)は、ジー2−エチルへキシルフォスフエイト(D2E
HP)とウラニル、イオンとの錯体を含むポリ塩化ビニ
ル(PVC)膜がウラニル、イオンに感応すると報告し
た(Technical Progress Repo
rtNo、Y1174D、Y−12Developme
nt Division。
For example, Dietrich (W. C. Dietrich
) is di-2-ethylhexyl phosphate (D2E
It was reported that a polyvinyl chloride (PVC) membrane containing a complex of HP) and uranyl ions is sensitive to uranyl ions (Technical Progress Report
rtNo, Y1174D, Y-12Developme
nt Division.

Aug、  0ct−(1971))。−方、マニング
ら(D、 L、 Manning 、 e t  a 
1. )は酸性、中性のホスホン酸エステルまたはリン
酸エステルを希釈剤とする酸性リン酸エステルのウラニ
ル、イオン錯体を含むPVC基材感応膜の性質を調べ、
数種の感応膜を得たが、濃度応答性と相関のある電位差
の常用対数表示濃度に対する勾配(以下「電位差勾配」
と称す。)はせいぜい26 mV/ decade  
でネルンスト(Nernst )式の2価イオンに対す
る理論電位差勾配(以下「ネルンスト勾配」と称す。)
より小さかった(Anal。
Aug, 0ct- (1971)). Manning et al.
1. ) investigated the properties of PVC-based sensitive membranes containing uranyl and ionic complexes of acidic phosphate esters using acidic and neutral phosphonic esters or phosphoric esters as diluents.
Several types of sensitive membranes were obtained, and the gradient of the potential difference with respect to the common logarithmic concentration (hereinafter referred to as the "potential gradient"), which is correlated with the concentration response.
It is called. ) is at most 26 mV/decade
The theoretical potential difference gradient for divalent ions according to the Nernst equation (hereinafter referred to as the "Nernst gradient").
It was smaller (Anal.

etal、)はD2EHP、  リン酸トリブチル(T
BP )及び多種のホスホン酸エステルの何れかを希釈
剤とし、酸性、中性のリン酸エステル、亜リン酸エステ
ルあるいは酸性ホスホン酸エステルとウラニル、イオン
錯体のPVC基材感応膜の性Vo1.52.No、 1
3.pp、 2105−2108(1980))。
etal, ) is D2EHP, tributyl phosphate (T
Properties of PVC-based sensitive membranes of acidic or neutral phosphoric esters, phosphorous esters, or acidic phosphonic esters and uranyl, ionic complexes, using any of BP ) and various phosphonic esters as a diluent, Vol. 1.52 .. No. 1
3. pp. 2105-2108 (1980)).

上記報告において、マニングら、及びゴルードバーグら
は、いずれもPVCに対する親引溶剤の混合はしなかっ
た。
In the above reports, Manning et al. and Goldberg et al. did not mix a solvent-friendly agent for PVC.

〈発明が解決すべき問題点〉 一般に、電極の電位差勾配が大きい程、センサーとして
の性能に優れている。しかし、上記報告では2価のネル
ンスト勾配より大きい弁室位差勾配は得られておらず、
実用的なウラニル、イオン選択性電極としては、未だ不
満足であった。
<Problems to be solved by the invention> Generally, the larger the potential difference gradient of the electrode, the better the performance as a sensor. However, in the above report, a valve chamber position gradient larger than the bivalent Nernst gradient was not obtained;
As a practical uranyl ion selective electrode, it was still unsatisfactory.

本発明者は、斯かる現状に鑑み鋭意検討を行った結果、
ネルンスト勾配より大きな電位差勾配を実現し、本発明
を完成するに至った。
As a result of intensive study in view of the current situation, the inventor of the present invention found that
A potential difference gradient larger than the Nernst gradient was realized, and the present invention was completed.

オン内部液とを有するイオン交換液膜型電極において、
膜形成基材を、中性リン酸エステルまたは中性亜リン酸
エステルのウラニル、イオン錯体の一種または二種以上
よりなるイオン交換体と、該イオン交換体と相溶性に優
れた希釈剤及び膜形成基材と親和性を有する溶剤にて処
理せしめた感応膜を用いることを特徴とするウラニル、
イオン選択性電極に係るものである。
In an ion-exchange liquid membrane type electrode having an internal liquid,
The film forming base material is an ion exchanger made of one or more types of ion complexes such as uranyl of a neutral phosphate ester or a neutral phosphite, a diluent having excellent compatibility with the ion exchanger, and a membrane. Uranyl, characterized in that it uses a sensitive film treated with a solvent that has an affinity with the forming substrate;
This relates to an ion-selective electrode.

以下、本発明を具体的に説明する。The present invention will be explained in detail below.

本発明に関わるウラニル、イオン選択性電極はイオン交
換液摸型である。即ち、内部に内部比較電極を!き、此
れと外筒の間に一定濃度のウラニル、イオン内部液を満
たし、試験溶液と内部液は外筒の一部であるウラニル、
イオン交換液膜ヲ挟んで接触している。
The uranyl ion selective electrode related to the present invention is an ion exchange liquid model. In other words, an internal comparison electrode inside! Then, a certain concentration of uranyl and ion internal solution are filled between this and the outer cylinder, and the test solution and the internal liquid are uranyl, which is part of the outer cylinder.
They are in contact with an ion exchange liquid membrane sandwiched between them.

本発明に於いて内部比較電極としては、従来用いられて
いる一般的な電極が用いられる。例えば、銀塩化銀電極
、カロメル電極あるいは水銀硫酸第一水銀電極等が使用
できる。
In the present invention, a conventionally used general electrode is used as the internal comparison electrode. For example, a silver-silver chloride electrode, a calomel electrode, a mercurous mercurous sulfate electrode, etc. can be used.

けば既成の電極が適宜使用でき、本発明のポイントはウ
ラニル、イオン交換液膜にある。そして、このウラニル
、イオン交換液膜としての必要な性能は、外部比較電極
との対比による電位差の濃度応答性、再現性、正確度(
例えば安定性や応答直線性)、耐久性に優れ、またイオ
ン選択性の良い事である。
If the electrode is fuzzy, a ready-made electrode can be used as appropriate, and the key point of the present invention lies in the uranyl and ion exchange liquid membrane. The performance required for this uranyl ion exchange membrane is the concentration responsiveness, reproducibility, and accuracy of the potential difference compared with an external reference electrode.
For example, it has excellent stability and response linearity), durability, and good ion selectivity.

本発明で使用する膜形成基材とは、イオン交換液膜を形
成しうるものである。例えば、ポリ酢酸ビニル、シリコ
ンゴム、酢酸セルロース、ポリ塩化ビニル、エポキシ樹
脂等が好適に使用される。中でも、ポリ塩化ビニルが特
に好ましい。
The membrane-forming substrate used in the present invention is one that can form an ion-exchange liquid membrane. For example, polyvinyl acetate, silicone rubber, cellulose acetate, polyvinyl chloride, epoxy resin, etc. are preferably used. Among these, polyvinyl chloride is particularly preferred.

イオン交換体を形成する錯化剤としては中性リン酸エス
テルまたは中性亜リン酸エステルが使用される。これら
のエステルはアルコール残基がそれぞれ炭素数2から1
2のアルキル基あるいはハロゲン化アルキル基が好適に
使珀される。炭素数2から12のアルキル基あるいはハ
ロゲン化アルキル基としてはエチル、プロピル、ブチル
、ヘキシル、オクチル、ドデシルまたはこれらのハロゲ
ン置換物である。この中でも、炭素数3から8のアルキ
ル基あるいはハロゲン化アルキル基が好ましい。
As the complexing agent for forming the ion exchanger, a neutral phosphoric acid ester or a neutral phosphorous acid ester is used. These esters have alcohol residues each having 2 to 1 carbon atoms.
2 alkyl groups or halogenated alkyl groups are preferably used. Examples of the alkyl group having 2 to 12 carbon atoms or the halogenated alkyl group include ethyl, propyl, butyl, hexyl, octyl, dodecyl, and halogen-substituted products thereof. Among these, an alkyl group having 3 to 8 carbon atoms or a halogenated alkyl group is preferred.

具体的には、亜リン酸トリーn−ブチル、リン酸トリオ
クチ、ル、リン酸ト1にクロロプロピノの、リン酸トリ
ー2−クロロエチル、リン酸トリクロロブチル、リン酸
クロロオクチル等が挙げられる。これらは、単独または
複数併用して使用できる。
Specific examples include tri-n-butyl phosphite, trioctyl phosphate, tri-chloropropino phosphate, tri-2-chloroethyl phosphate, trichlorobutyl phosphate, and chlorooctyl phosphate. These can be used alone or in combination.

次に、上記のイオン交換体と相溶性に優れた希釈剤とし
ては、中性リン酸エステルが好適に使用できる。これら
のエステルはアルコール残基がそれぞれ炭素数2から1
2のアルキル基が好ましい。炭素数2から12のアルキ
ル基としては、エチル、プロピル、ブチル、ヘキシル、
オクチル、ドデシルなどが挙げられ中でも、炭素数3か
ら8のアルキ・ル基が好ましい。
Next, as a diluent having excellent compatibility with the above-mentioned ion exchanger, a neutral phosphoric acid ester can be suitably used. These esters have alcohol residues each having 2 to 1 carbon atoms.
The alkyl group of 2 is preferred. Examples of alkyl groups having 2 to 12 carbon atoms include ethyl, propyl, butyl, hexyl,
Among these, an alkyl group having 3 to 8 carbon atoms is preferred, such as octyl and dodecyl.

具体的には、リン酸トリエチル、リン酸トリプロピル、
リン酸トリヘキシル、リン酸トリオクチル、リン酸ドデ
シル等であり、中でもリン酸トリブチルが好適に使用さ
れる。
Specifically, triethyl phosphate, tripropyl phosphate,
Trihexyl phosphate, trioctyl phosphate, dodecyl phosphate, etc., among which tributyl phosphate is preferably used.

また、膜形成基材と親和性を有する溶剤(親和溶剤)に
は、可塑剤等が用いられ、例えば、フタル酸エステル、
アジピン酸エステル、セバシン酸エステル、その他グリ
コール誘導体等が挙げられる。そのなかでも好ましいの
はフタル酸エステル、アジピン酸エステル及びセバシン
酸エステルであろうこれらのエステルはアルコール残基
がそれぞれ炭素数2から12のアルキル基が好ましい。
In addition, plasticizers and the like are used as solvents that have affinity with the film-forming substrate (compatible solvents), such as phthalate esters,
Examples include adipic acid ester, sebacic acid ester, and other glycol derivatives. Preferred among these are phthalic acid ester, adipic acid ester and sebacic acid ester.The alcohol residue of these esters is preferably an alkyl group having 2 to 12 carbon atoms.

炭素数2から12のアルキル基としては、エチル、プロ
ピル、ブチル、ヘプチル、イソデシル等である。この中
でも、炭素数3から8のアルキル基が好ましい。
Examples of the alkyl group having 2 to 12 carbon atoms include ethyl, propyl, butyl, heptyl, isodecyl, and the like. Among these, an alkyl group having 3 to 8 carbon atoms is preferred.

具体的には、フタル酸ジオクチル(DOP )、アジピ
ン酸ジオクチル(DOA)、セパシン酸ジオクチル(D
O5)等が挙げられる。
Specifically, dioctyl phthalate (DOP), dioctyl adipate (DOA), dioctyl sepacate (D
O5), etc.

錯化剤は、後記のウラニル、イオン内部液調整の為の硝
酸ウラニル、6水塩1モルに対し2モル〜3モル特に好
ましくは、2.0モル〜2.5モルの比率で用いられる
。希釈剤と親和溶剤の混合比率は、重量比で3/1〜凶
特に好ましくは、2/1〜1/2であり、錯化剤と硝酸
ウラニルから作られたイオン交換体は希釈剤と親和溶剤
との混合物と重量比で1/7〜1/20  好ましくは
、1/8〜1/15で混合され、さらにこれらの錯化剤
、希釈剤、親和溶剤の混合物は膜形成基材が全体の20
重量%〜50重量%好ましくは25重量%〜35重量%
になるように混合して膜形成基材としてもちいられる。
The complexing agent is used in a ratio of 2 to 3 moles, particularly preferably 2.0 to 2.5 moles, per mole of uranyl described later, uranyl nitrate for adjusting the ionic internal solution, and 1 mole of hexahydrate. The mixing ratio of the diluent and the compatible solvent is preferably 3/1 to 2/1 to 1/2 by weight, and the ion exchanger made from the complexing agent and uranyl nitrate has an affinity for the diluent. The mixture with the solvent is mixed in a weight ratio of 1/7 to 1/20, preferably 1/8 to 1/15, and the mixture of these complexing agents, diluents, and compatible solvents is mixed so that the film forming substrate is entirely 20 of
% to 50% by weight, preferably 25% to 35% by weight
It can be used as a film-forming base material by mixing it so that it has the following properties.

本発明に於いて、膜形成基材を、中性リン酸エステルま
たは中性亜リン酸エステルのウラニル、イオン錯体の一
種または二揮以上よりなるイオン交換体と、該イオン交
換体と相溶性に優れた希釈剤及び膜形成基材と親和性を
有する溶剤にて処顛せしめ感応膜をうる方法は、いかな
る方法でもよい。例えば膜形成基材と錯体、希釈剤、親
和溶剤等とを、直接混合したのち、熱成形する方法等も
あるが、−般的には、溶解力のある例えばテトラヒドロ
フラン、シクロヘキサノン等の揮発(生の良溶媒に膜形
成基材を溶解後、上記イオン交換体、希釈剤、親和溶剤
と混合したのち、あるいは順次加えて均一な溶液とした
のち、該良溶媒を蒸発させることにより得られる。
In the present invention, the membrane-forming substrate is made of an ion exchanger made of one or more of uranyl and ion complexes of a neutral phosphate ester or a neutral phosphite, and is compatible with the ion exchanger. Any method may be used to obtain a sensitive film prepared with an excellent diluent and a solvent having affinity with the film-forming substrate. For example, there is a method of directly mixing the film-forming base material with the complex, diluent, affinity solvent, etc., and then thermoforming. It can be obtained by dissolving the membrane-forming substrate in a good solvent, mixing it with the ion exchanger, diluent, and affinity solvent, or adding them one after another to make a uniform solution, and then evaporating the good solvent.

膜の厚みは0.1 ran〜0,8叫が適当であり特に
好ましくは0.2 yan〜0.6順になるように調製
する。
The thickness of the film is suitably adjusted to be in the order of 0.1 yan to 0.8 yen, and particularly preferably in the order of 0.2 yan to 0.6 yen.

尚、ウラニル、イオン内部液は、−般的方法により硝酸
ウラニル等より調製される。
Incidentally, uranyl and the ion internal solution are prepared from uranyl nitrate and the like by a conventional method.

以下実施例により具体的に本発明の実施態様を明らかに
する。
Hereinafter, embodiments of the present invention will be clarified through Examples.

〈実施例〉 (実験方法) 感応膜試作より電位差測定までの共通的な実験方法を以
下に記す。
<Example> (Experimental method) A common experimental method from the production of a sensitive membrane prototype to potential difference measurement is described below.

(1)  PVC−イオン交換体感応膜の調製1)イオ
ン交換体の調製 1.00gの硝酸ウラニル6水塩に対し、モル比で2〜
3となるようにリン酸エステル(または亜リン酸エステ
ル)を加える。
(1) Preparation of PVC-ion exchanger sensitive membrane 1) Preparation of ion exchanger For 1.00 g of uranyl nitrate hexahydrate, the molar ratio of
Add phosphoric acid ester (or phosphorous ester) so that the amount becomes 3.

これを硝酸ウラニルの固相が無くなるまで良く攪拌振を
し錯体を生成させる。この時下層に水相が生じた場合は
、遠心分離機により水相と油相を完全に分離した後、注
射様 器等を用いて水相を取り除く。残った粘岳ルとの錯体で
あり、これに100TNIの無水硫酸ソーダを2回加え
、その度毎に遠心分離して、錯体中の水分を除去する。
This is stirred and shaken well until the solid phase of uranyl nitrate disappears to form a complex. If an aqueous phase is generated in the lower layer at this time, the aqueous phase and oil phase are completely separated using a centrifuge, and then the aqueous phase is removed using a syringe-like device or the like. This is a complex with the remaining viscous sulfur, and 100 TNI of anhydrous sodium sulfate is added twice, centrifuging each time to remove water in the complex.

このイオン交換体(錯体)は乾燥したキャップ付き試験
管に保存する。
The ion exchanger (complex) is stored in a dry capped test tube.

2)感応膜の調製 イオン交換体と混合溶媒との重量比が、約1:9になる
ようにイオン交換体45T!Pgと混合溶媒400ηを
乾燥した50〜100ゴビーカーに計り取り、良く攪拌
する。混合溶媒中の希釈剤と親和溶剤の比率は1:1と
した。ただし親和溶剤を使わない場合もある。その場合
にはもちろん希釈剤のみを400■加える。この溶液に
、あらかじめ硬質pvc(住友化学製5X−DH粘度平
均重合度2620) 1.751をテトラハイドロフラ
ン(THF)  60 mに溶解させた溶液6iを加え
良く攪拌する。この溶液を直径約3011!I11の乾
燥したシャーレにあけ、上にp紙を2〜3枚かぶせて、
ドラフト内へ水平を保つようにして静置し溶媒であるT
HFを徐々に蒸発させて乾燥させる。乾燥時間は36時
間以上とする。
2) Preparation of sensitive membrane Ion exchanger 45T! Pg and 400 η of the mixed solvent are weighed into a dry 50-100 g beaker and stirred well. The ratio of diluent and compatible solvent in the mixed solvent was 1:1. However, there are cases where no affinity solvent is used. In that case, of course, add 400 ml of diluent only. To this solution is added a solution 6i in which hard PVC (manufactured by Sumitomo Chemical 5X-DH viscosity average degree of polymerization 2620) 1.751 is dissolved in 60 m of tetrahydrofuran (THF) in advance and stirred well. This solution has a diameter of about 3011! Pour into a dry Petri dish I11, cover with 2-3 sheets of P paper on top,
Place the solvent T in a fume hood horizontally.
The HF is slowly evaporated to dryness. Drying time shall be at least 36 hours.

(2)  電極の組立て 乾燥を終えたPvC感応膜を直径12=の円盤状にコル
クポーラ−、カッター等を利用して切り抜き、外形12
咽長さ30〜40順のPvCチューブの一端に接着する
。接着剤にはPVC7gをTHF60−に溶解したもの
を用いた。接着部分が充分乾燥した後電極膜に使用する
前に24時間以上のぞましくは’      72時間
以上PVC感応膜の両側がto−2Mのウラニル標準濃
度液に接するように浸し所謂コンディショニングを行な
う。
(2) After assembling and drying the electrode, cut out the PvC sensitive membrane into a disk shape with a diameter of 12 using a cork polar cutter, cutter, etc.
Glue to one end of a PvC tube of 30-40 pharyngeal length. The adhesive used was one in which 7 g of PVC was dissolved in 60 - THF. After the bonded area has sufficiently dried, before using it as an electrode film, the PVC sensitive film is conditioned by immersing it in a to-2M standard concentration solution of uranyl for at least 24 hours, preferably at least 72 hours.

また電極膜を取り外して保存する場合もこの標準溶液に
浸しておく。電極の組立ては銀塩化銀比較電極の先に膜
を接着した上記のPVCチューブを取り付はシールテー
プで外れないように固定する。なおこの電極膜と比較電
極との間には内部液として10−2Mの硝酸ウラニル溶
液(pH=、3.0)をあらかじめ満しておく。従って
この電極(指示電極)の構造は次のように書ける。
Also, when removing the electrode membrane and storing it, soak it in this standard solution. To assemble the electrode, attach the above-mentioned PVC tube with a film adhered to the tip of the silver-silver chloride reference electrode and fix it with sealing tape so that it does not come off. Note that the space between this electrode film and the reference electrode is filled in advance with a 10 −2 M uranyl nitrate solution (pH=3.0) as an internal solution. Therefore, the structure of this electrode (indicator electrode) can be written as follows.

Ag/AgC4,KCt 11 UO2(NO3)2.
10−2M(pH=3)i膜!内部比較電極     
      内部液(3)  標準濃度の硝酸ウラニル
水溶液の調製電位差測定前にpHが3,0となるようI
N液を調製使用した。
Ag/AgC4, KCt 11 UO2 (NO3)2.
10-2M (pH=3)i membrane! Internal reference electrode
Internal solution (3) Preparation of uranyl nitrate aqueous solution at standard concentration.
A N solution was prepared and used.

(4)  電位差測定法 上記指示電極と、その内部比較電極と同じ電極を外部比
較電極として電池を組立て、その起電力(電位差)を堀
場製のpH/mV計F−でぷっくり攪拌した。ビーカー
とスターラーの間には断熱マットをはさみ液温の上昇を
防止した。10分間での電位変化が1 mV以下となっ
た点をその濃度での確定電位であるとして読取った。
(4) Potential Difference Measurement Method A battery was assembled using the above-mentioned indicator electrode and the same electrode as its internal comparison electrode as an external comparison electrode, and the electromotive force (potential difference) was stirred with a pH/mV meter F- manufactured by Horiba. A heat insulating mat was placed between the beaker and stirrer to prevent the temperature of the liquid from rising. The point at which the potential change in 10 minutes was 1 mV or less was read as the confirmed potential at that concentration.

比較例l DBPおよびD2EHPのそれぞれ倍モル量(対ウラニ
ル、イオン)を使って上記実験方法+111)のイオン
交換体を調製し、混合溶剤にTBPだけを2)の感応膜
の調製に用いた電極で組立だ電池の起電力をその他は全
く同じにして希釈剤による感応膜の性能を測定した。そ
の結果を表1に示す。
Comparative Example 1 An ion exchanger according to the above experimental method + 111) was prepared using twice the molar amount (versus uranyl, ion) of DBP and D2EHP, and an electrode used in the preparation of the sensitive membrane in 2) using only TBP in the mixed solvent. The electromotive force of the assembled battery was kept the same in all other respects, and the performance of the sensitive membrane using the diluent was measured. The results are shown in Table 1.

表   1 表1より比較例1は前記文献の代表例としての、リン酸
ジブチル(DBP)およびD2EHP−ウラニル、イオ
ン錯体をイオン交換体としTBPを希釈剤とするPVC
基材の感応膜のトレース実験の結果である。ウラニル、
イオン濃度に対する電位差を見ると2価のネルンスト勾
配が得られる場合があり応答直線性もある範囲で成立す
る場合がある。電位差は安定していて短時間内に一定値
を示し、ふらつかない。実験は表の上から下へ行なった
Table 1 From Table 1, Comparative Example 1 is a PVC using dibutyl phosphate (DBP) and D2EHP-uranyl, an ion complex as an ion exchanger and TBP as a diluent, as a representative example of the above literature.
These are the results of a tracing experiment using a sensitive film as a base material. uranyl,
When looking at the potential difference with respect to the ion concentration, a bivalent Nernst gradient may be obtained, and response linearity may also be established within a certain range. The potential difference is stable, shows a constant value within a short time, and does not fluctuate. The experiment was performed from top to bottom of the table.

すなわち−旦濃度の薄いところから濃いほうへ測定し、
ついで逆方向に濃度を変えて測定した。この濃度変化よ
り見た再現性はD2EHPの場合非常に悪く、また10
3Mより稀薄なウラニル、イオン濃度にはほとんど感応
しないことが分かる。
In other words, measure from the lowest concentration to the highest concentration,
Then, the concentration was changed in the opposite direction and measured. The reproducibility seen from this concentration change is very poor in the case of D2EHP, and 10
It can be seen that uranyl, which is more dilute than 3M, is hardly sensitive to ion concentration.

実施例1 亜リン酸トリーn−ブチルを錯化剤とする親和溶剤がD
OAまたはDO5である感応膜を調製して性能を検討し
た。結果を表2に示す。
Example 1 An affinity solvent using tri-n-butyl phosphite as a complexing agent is D
Sensitive membranes of OA or DO5 were prepared and their performance investigated. The results are shown in Table 2.

表   2 実施例2 リン酸トリ(クロロプロピノのを錯化剤としDOPまた
はDOAを親和溶剤とする感応膜を調製し性能の試験を
行なっtチその結果を表3に示す。
Table 2 Example 2 Sensitive membranes were prepared using trichloropropinophosphate as a complexing agent and DOP or DOA as an affinity solvent, and performance tests were conducted. The results are shown in Table 3.

表   3 実施例3 リン酸トリオクチルを錯化剤としDOP。Table 3 Example 3 DOP using trioctyl phosphate as a complexing agent.

DOAまたはDOSを親和溶剤とする感応膜を調製し性
能を試験した。その結果を表4に示す。
A sensitive membrane using DOA or DOS as an affinity solvent was prepared and its performance was tested. The results are shown in Table 4.

表2〜表4の結果をまとめ、以下に説明する。実施例1
〜3は本発明の方法で作成した電極による結果で、イオ
ン交換体がそれぞれ亜リン酸トリーn−ブチル、リン酸
トリQロロプロピノラ、リン酸トリオクチルと硝酸ウラ
ニルとの錯体の場合に対応する。それぞれに希釈剤がT
BPかつPVC基材との親和溶媒にフタル酸ジオクチル
(DOP)、アジピン酸ジオクチル(DOA)、セバシ
ン酸ジオクチル(DOS)を使用した結果を示した。ま
ず表1に比し明らかに電位差勾配が大きくなったことが
分かる。1価イオンのネルンスト勾配が約59〜60 
mV/decadeであるから、本発明によるイオン交
換液膜ではウラニル、イオンが1価と2価の中間の電荷
を持つことになる。また主要領域において応答直線性が
あり、再現性のある濃度範囲が広くなった。
The results in Tables 2 to 4 are summarized and explained below. Example 1
Figures 3 to 3 show the results of electrodes prepared by the method of the present invention, and correspond to cases where the ion exchangers are tri-n-butyl phosphite, tri-Q lolopropinola phosphate, and a complex of trioctyl phosphate and uranyl nitrate, respectively. T diluent for each
The results are shown using dioctyl phthalate (DOP), dioctyl adipate (DOA), and dioctyl sebacate (DOS) as solvents compatible with BP and PVC substrates. First, it can be seen that the potential difference gradient is clearly larger than in Table 1. The Nernst slope of monovalent ions is approximately 59-60
mV/decade, in the ion exchange liquid membrane according to the present invention, the uranyl ion has an intermediate charge between monovalent and divalent. In addition, response linearity was achieved in the main regions, and the reproducible concentration range was widened.

比較例2 比較例1において親和溶剤としてDOPを加えた場合の
感応膜を調製し評価した。その結果を表5に示した。
Comparative Example 2 A sensitive film in which DOP was added as an affinity solvent in Comparative Example 1 was prepared and evaluated. The results are shown in Table 5.

表  5 比較例2は比較例1のイオン交換液膜でPVC基材の親
和溶剤としてのDOPがTBPと混合して使われている
以外は全く同じイてン交換液膜による結果である。02
EHPの場合は再現性と応答直線性がかなり改善された
ことが分かる。DBPの場合は逆にどちらも悪くなった
。注目すべきは電位差勾配であって、この錯体系では親
和溶剤の添加の有無に拘らず2価のネルンスト勾配を大
巾に越えることはなかった。
Table 5 Comparative Example 2 shows the results using the same ion exchange liquid membrane as Comparative Example 1 except that DOP as an affinity solvent for the PVC base material was mixed with TBP. 02
It can be seen that in the case of EHP, the reproducibility and response linearity were considerably improved. In the case of DBP, on the contrary, both became worse. What should be noted is the potential difference gradient; in this complex system, the divalent Nernst gradient was not significantly exceeded regardless of whether or not an affinity solvent was added.

比較例3 実施例1のイオン交換膜の調製において親和溶媒の使用
を止めた膜を試作し評価した。
Comparative Example 3 A membrane in which the use of an affinity solvent in the preparation of the ion exchange membrane of Example 1 was omitted was fabricated and evaluated.

その結果を表6に示す。The results are shown in Table 6.

表6 1 実験番号 )12 比較例4 実施例2のイオン交換液の試作において親和溶剤の使用
を止めた膜を調製し評価した。
Table 6 1 Experiment Number ) 12 Comparative Example 4 In the trial production of the ion exchange solution in Example 2, a membrane was prepared and evaluated in which the use of an affinity solvent was stopped.

その結果を表7に示す。The results are shown in Table 7.

表7 比較例5 実施例3のイオン交換膜の調製において親和溶剤の添加
を止めたイオン交換膜を試作し評価した。その結果を表
8に示す。
Table 7 Comparative Example 5 An ion exchange membrane in which the addition of the affinity solvent was stopped in the preparation of the ion exchange membrane of Example 3 was manufactured and evaluated. The results are shown in Table 8.

表8 比較例6 実施例1〜3においてそれぞれの希釈剤を全量それぞれ
の親和溶剤におきか丸た電極につき検討した。それらは
例外なく電位差計の針を周期数回毎秒の速さで数mVの
振幅の振で海島構造を作っていた。良膜は一般に透明な
のに対し不良膜は比較例6に示したように半透明乃至不
透明である。これらの事実はウラニル、イオン錯体の電
気化学的特質を充分に発揮させるために共存溶剤の特質
が非常に重要であることを示唆する。ただし本発明は上
記のモルフォロジー的観察によって制限されるものでは
ない。
Table 8 Comparative Example 6 In Examples 1 to 3, the total amount of each diluent was placed in each affinity solvent, and a round electrode was examined. Without exception, they created a sea-island structure by oscillating the potentiometer needle several times per second with an amplitude of several mV. Good films are generally transparent, while poor films are translucent to opaque as shown in Comparative Example 6. These facts suggest that the properties of the co-solvent are very important in order to fully exhibit the electrochemical properties of uranyl and ion complexes. However, the present invention is not limited by the above morphological observations.

ゞ1「4例3は実施例1の、比較例4は実施例2の、比
較例5は実施例3のイオン交換液膜の試作において親和
溶剤を全量希釈剤のTBPと置きかえただけのイオン交
換液膜の実験結果である。電位差勾配が2価のネルンス
ト勾配に近接したことがあきらかである。逆に比較例6
は実施例1〜3においてそれぞれの希釈剤TBPを全量
それぞれの親和溶剤に置きかえた場合について記載する
。例中の各実験膜による電極は例外なく電位差計の針を
周期数回毎秒の速さで数mVの振幅の振動を示す。
ゞ1 ``4 Example 3 is Example 1, Comparative Example 4 is Example 2, and Comparative Example 5 is Example 3. Comparative Example 5 is the ion exchange solution membrane of Example 3 in which the entire amount of the affinity solvent was replaced with TBP as a diluent. These are the experimental results of the exchange liquid membrane.It is clear that the potential difference gradient is close to the divalent Nernst gradient.On the contrary, Comparative Example 6
The following describes the case where each diluent TBP in Examples 1 to 3 was replaced in its entirety with each compatible solvent. Without exception, each experimental membrane electrode in the example exhibits oscillations with an amplitude of several mV at a rate of several cycles per second of the potentiometer needle.

DOP、DOA、DO3の各可塑剤はウラニル。The plasticizers of DOP, DOA, and DO3 are uranyl.

イオン錯体を溶解させる。(ただし溶解速度は遅い。)
それにもかかわらず混合溶媒でないと電極としての性能
が極端に悪い。
Dissolve the ionic complex. (However, the dissolution rate is slow.)
Nevertheless, unless it is a mixed solvent, the performance as an electrode will be extremely poor.

このように性能の良い膜と悪い膜のできる矛 ロブローブアナライザー)による観察を行なった。光学
顕微鏡およびSEMによる観察では双方に明確な相違点
を指摘できなかったが、EPMAによる観察で良膜は不
良膜に比し明確にウラニル錯体の分散が勝っていること
を見出した。
In this way, we conducted observations using a laser probe analyzer, which allows us to determine which films have good performance and which have poor performance. Although it was not possible to point out any clear difference between the two by optical microscopy and SEM observation, it was found by EPMA observation that the dispersion of the uranyl complex was clearly superior in the good film compared to the poor film.

実施例4 実施例1実験番号3の試験液に硝酸ジルコニルを一定量
含有させた硝酸ウラニル溶液(pH3)を用いた場合の
評価を行なった。
Example 4 An evaluation was conducted using a uranyl nitrate solution (pH 3) containing a certain amount of zirconyl nitrate in the test solution of Example 1 Experiment No. 3.

その結果を表9に示す。The results are shown in Table 9.

表9 実施例4は実施例1の膜の選択性を・見る目的テ硝酸ジ
ルコニルを硝酸ウラニル溶液中(こ加えた試験液の電位
差勾配のデータである。
Table 9 Example 4 is for the purpose of examining the selectivity of the membrane of Example 1. It is data on the potential difference gradient of a test solution in which zirconyl nitrate was added to a uranyl nitrate solution.

ウラニル、イオン濃度10−3M以下の稀薄溶液ではジ
ルコニル、イオン濃度104Mでも影響を受けることを
示す。
It is shown that in a dilute solution of uranyl with an ion concentration of 10-3M or less, zirconyl is affected even with an ion concentration of 104M.

実施例5 実施例1実験番号3の試験液に硝酸セリウム(m)を−
定量含有させた硝酸ウラニル溶液(pH8)を用いた場
合の評価を行なった。
Example 5 Cerium nitrate (m) was added to the test solution of Example 1 Experiment No. 3.
An evaluation was conducted using a uranyl nitrate solution (pH 8) containing a fixed amount of uranyl nitrate.

その結果を表10に示す。The results are shown in Table 10.

表10 実施例5はやはり実施例1の摸につき硝酸セリウム(I
I[)のまじった硝酸ウラニル溶液ジルコニル、イオン
もセリウム、イオンも核燃料再処理廃液中の組成として
量的にも電気化学活性的にも重要なイオンである。先に
のべたゴールドバーブの文献にセリウム(IV)の選択
係数が3を越す場合があることを記載しているが、上述
の実施例での選択係数は0.01程度で従来の膜に比し
ひけを取らないことが分かる。
Table 10 Example 5 is a sample of Example 1 with cerium nitrate (I
Zirconyl nitrate solution mixed with I[) and cerium ion are important ions both quantitatively and electrochemically active as a composition in nuclear fuel reprocessing waste liquid. The above-mentioned Goldbarb literature states that the selectivity coefficient for cerium (IV) may exceed 3, but the selectivity coefficient in the above example was about 0.01, which is lower than that of conventional membranes. You can see that it doesn't hold back.

実施例6 実施例1実験番号3の試験液のpHを変化させた実験を
行なった。その結果を表11に示す。
Example 6 An experiment was conducted in which the pH of the test solution in Experiment No. 3 of Example 1 was varied. The results are shown in Table 11.

妨害イオンとして最も影グの大きなものは水素イオンで
ある。実施例6は実施例1の膜について水素イオン濃度
の影響を調べた結果である。上述のマニングらの文献に
も見られるが、この種の電極では水素イオン濃度の制御
は定量性を高めるのに欠かせない。
The most significant interfering ion is hydrogen ion. Example 6 shows the results of investigating the influence of hydrogen ion concentration on the membrane of Example 1. As can be seen in the above-mentioned document by Manning et al., control of the hydrogen ion concentration is essential for improving quantitative performance in this type of electrode.

実施例7 実施例1の実験番号3の電極につき耐久試験を行なった
。試験はp H3,0の硝酸ウラニル102M溶液に浸
した電極を所定の時限に引きあげて実験方法に述べた電
位差測定に掛ることにより行なった。その結果を表12
に示す。ここでは最初と最長時間に対する結果のみを示
した。試験時間とは電極試作よりの時間を示す。
Example 7 A durability test was conducted on the electrode of Experiment No. 3 of Example 1. The test was carried out by lifting an electrode immersed in a 102M solution of uranyl nitrate at pH 3.0 at a predetermined time and performing potential difference measurements as described in the experimental method. Table 12 shows the results.
Shown below. Only the results for the first and longest time are shown here. The test time refers to the time from electrode prototype production.

表12 実施例8 実施例1の実験番号4の電極を同様の耐久性試験に供し
た。その結果を表13に示した。
Table 12 Example 8 The electrode of Experiment No. 4 of Example 1 was subjected to a similar durability test. The results are shown in Table 13.

20日〜1ケ月の間に通常この種の電極には 実当然の
少し許りのドリフトは伴うが、氷雪的な変化は無いと見
てよい。
During a period of 20 days to 1 month, this kind of electrode usually experiences some drift, but it can be seen that there are no icy changes.

表13 二lし □ 施例9 実施例2の実験番号5の電極の耐放射線性につき検討し
た。被曝実験にはコノiルトー60を線源とするガンマ
線を使った。線量率265x 105R/hrにより3
8時間照射し続けた。
Table 13 Example 9 The radiation resistance of the electrode in Experiment No. 5 of Example 2 was investigated. Gamma rays from a Cono I Luto 60 radiation source were used in the radiation exposure experiments. 3 due to dose rate 265x 105R/hr
Irradiation continued for 8 hours.

そのとき電極の内部液にはpHa、oの10−2M硝酸
ウラニル溶液を、また試験液としては司じ、ただし10
 ” Mの溶液を使用した。
At that time, the internal solution of the electrode was a 10-2M uranyl nitrate solution with a pH of 0, and the test solution was a 10
” A solution of M was used.

その結果を表14に示す。照射前後の電位差;こついて
比較しである。
The results are shown in Table 14. The potential difference before and after irradiation is a tricky comparison.

表14 実施例10 実施例3の実験番号8の電極を実施例9と同様に照射し
た。照射前後の電位差測定結果を表15に示す。
Table 14 Example 10 The electrode of experiment number 8 of Example 3 was irradiated in the same manner as in Example 9. Table 15 shows the potential difference measurement results before and after irradiation.

表15 実施例9.10でそれぞれの膜特性は較正可能な範囲で
しかシフトしておらず、また電位差計の指針が振動する
こともなかった。
Table 15 In Examples 9 and 10, the respective membrane properties shifted only within a calibratable range, and the potentiometer pointer did not vibrate.

〈発明の効果〉 本発明によりウラニル、イオン選択性、濃度応答性に優
れたウラニル、イオン選択性電極が提供される。本電極
は、再現性、正確度、耐久性も良好であり特にウラニル
、イオン分析用電極として原子カニ業において実用的な
電極を提供するものといえる。
<Effects of the Invention> The present invention provides a uranyl- and ion-selective electrode with excellent uranyl- and ion-selectivity and concentration responsiveness. This electrode has good reproducibility, accuracy, and durability, and can be said to provide a practical electrode in the atomic crab industry, especially as an electrode for uranyl ion analysis.

Claims (1)

【特許請求の範囲】[Claims] 内部比較電極およびウラニル.イオン内部液とを有する
イオン交換液膜型電極において、膜形成基材を、中性リ
ン酸エステルまたは中性亜リン酸エステルのウラニル.
イオン錯体の一種または二種以上よりなるイオン交換体
と、該イオン交換体と相溶性に優れた希釈剤及び膜形成
基材と親和性を有する溶剤にて処理せしめた感応膜を用
いることを特徴とするウラニル.イオン選択性電極。
Internal reference electrode and uranyl. In an ion-exchange liquid membrane type electrode having an ion internal liquid, the membrane-forming substrate is a neutral phosphate ester or a neutral phosphite ester of uranyl.
It is characterized by using an ion exchanger made of one or more types of ion complexes, a sensitive membrane treated with a diluent having excellent compatibility with the ion exchanger, and a solvent having affinity with the membrane-forming substrate. Uranyl. Ion selective electrode.
JP61150559A 1986-06-25 1986-06-25 Uranyl ion selective electrode Expired - Lifetime JPH0629875B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61150559A JPH0629875B2 (en) 1986-06-25 1986-06-25 Uranyl ion selective electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61150559A JPH0629875B2 (en) 1986-06-25 1986-06-25 Uranyl ion selective electrode

Publications (2)

Publication Number Publication Date
JPS635256A true JPS635256A (en) 1988-01-11
JPH0629875B2 JPH0629875B2 (en) 1994-04-20

Family

ID=15499525

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61150559A Expired - Lifetime JPH0629875B2 (en) 1986-06-25 1986-06-25 Uranyl ion selective electrode

Country Status (1)

Country Link
JP (1) JPH0629875B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6425053A (en) * 1987-07-21 1989-01-27 Sumitomo Chemical Co Long-life uranyl-ion exchanged liquid-film type electrode
JPH01244354A (en) * 1987-11-10 1989-09-28 Sumitomo Chem Co Ltd Uranyl-ion selective electrode characterized by long life
US5290498A (en) * 1991-04-03 1994-03-01 Mitsui Petrochemical Industries, Ltd. Ultra-high molecular weight polyethylene thin-wall pipe, and method of and apparatus for manufacturing the same
NL9201794A (en) * 1992-10-15 1994-05-02 Priva Agro Holding Bv Anion selective membrane and a sensor provided with it.
RU2683423C1 (en) * 2018-03-26 2019-03-28 Федеральное государственное бюджетное учреждение науки Институт общей и неорганической химии им. Н.С. Курнакова Российской академии наук (ИОНХ РАН) Membrane of ionoselective electrode to determine uranyl ion

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6425053A (en) * 1987-07-21 1989-01-27 Sumitomo Chemical Co Long-life uranyl-ion exchanged liquid-film type electrode
JPH0557539B2 (en) * 1987-07-21 1993-08-24 Sumitomo Chemical Co
JPH01244354A (en) * 1987-11-10 1989-09-28 Sumitomo Chem Co Ltd Uranyl-ion selective electrode characterized by long life
US5290498A (en) * 1991-04-03 1994-03-01 Mitsui Petrochemical Industries, Ltd. Ultra-high molecular weight polyethylene thin-wall pipe, and method of and apparatus for manufacturing the same
US5417561A (en) * 1991-04-03 1995-05-23 Mitsui Petrochemical Industries, Ltd. Apparatus for manufacturing of ultra high molecular weight polyethylene thin wall pipe
US5683767A (en) * 1991-04-03 1997-11-04 Mitsui Petrochemical Industries, Ltd. Ultra-high molecular weight polyethylene thin-wall pipe, and method of an apparatus for manufacturing the same
NL9201794A (en) * 1992-10-15 1994-05-02 Priva Agro Holding Bv Anion selective membrane and a sensor provided with it.
US5380423A (en) * 1992-10-15 1995-01-10 Priva Agro Holding B.V. Anion-selective membrane and a sensor provided therewith
RU2683423C1 (en) * 2018-03-26 2019-03-28 Федеральное государственное бюджетное учреждение науки Институт общей и неорганической химии им. Н.С. Курнакова Российской академии наук (ИОНХ РАН) Membrane of ionoselective electrode to determine uranyl ion

Also Published As

Publication number Publication date
JPH0629875B2 (en) 1994-04-20

Similar Documents

Publication Publication Date Title
Ammann et al. Intracellular neutral carrier-based Ca 2+ microelectrode with subnanomolar detection limit
CA2085322C (en) Graphite based solid state polymeric membrane ion-selective electrodes
Coşofreţ et al. Phenothiazine drug poly (vinyl chloride) matrix membrane electrodes and their use in pharmaceutical analysis
CN108593745B (en) Ion selective electrode sensitive membrane, preparation method thereof and ion selective electrode comprising ion selective electrode sensitive membrane
EP0603742B1 (en) Potentiometric ion determinations using enhanced selectivity asymmetric ion-selective membrane electrodes
US5376254A (en) Potentiometric electrochemical device for qualitative and quantitative analysis
WO2004048960A1 (en) Multi-ionophore membrane electerode
Zareh Plasticizers and their role in membrane selective electrodes
JPS635256A (en) Uranyl ion selective electrode
WO2001073425A2 (en) Lithium ion-selective electrode for clinical applications
JPS61178654A (en) Ion sensitive membrane electrode
AU2001247614A1 (en) Lithium ion-selective electrode for clinical applications
US4399002A (en) Large organic cation-selective electrodes
US4801371A (en) Uranyl ion selective electrode
USH745H (en) Ion-selective electrode for measuring carbonate concentration
JP4662615B2 (en) Dry-operated ion-selective electrode and method for determining the presence or amount of ions in a liquid
US3655526A (en) Potentiometric titration process
KR20180044040A (en) Ion sensors for sensing multiple ions in blood
Oyama et al. Ion-selective electrodes based on bilayer film coating
EP0316380A1 (en) Electrochemical sensor with solid phase electrolyte.
JP7441715B2 (en) Bicarbonate ion sensitive membrane
CN113924481A (en) Metal ferrocyanide-doped carbon as ion-selective electrode converter
JP2022169988A (en) Bicarbonate ion-sensitive membrane
Mahajan et al. Calix [4] arene derivatives: Efficient ionophores for silver (I) ion sensors
JPH01244354A (en) Uranyl-ion selective electrode characterized by long life