JPH01244354A - Uranyl-ion selective electrode characterized by long life - Google Patents

Uranyl-ion selective electrode characterized by long life

Info

Publication number
JPH01244354A
JPH01244354A JP62284811A JP28481187A JPH01244354A JP H01244354 A JPH01244354 A JP H01244354A JP 62284811 A JP62284811 A JP 62284811A JP 28481187 A JP28481187 A JP 28481187A JP H01244354 A JPH01244354 A JP H01244354A
Authority
JP
Japan
Prior art keywords
uranyl
electrode
ion
membrane
selective electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62284811A
Other languages
Japanese (ja)
Other versions
JPH063426B2 (en
Inventor
Shujiro Shiga
志賀 周二郎
Hideo Nagata
永田 英雄
Kenichiro Shigeoka
重岡 憲一郎
Takao Akiyama
秋山 孝夫
Yukio Wada
幸男 和田
Yasuo Suzuki
康夫 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Power Reactor and Nuclear Fuel Development Corp
Sumitomo Chemical Co Ltd
Original Assignee
Power Reactor and Nuclear Fuel Development Corp
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Power Reactor and Nuclear Fuel Development Corp, Sumitomo Chemical Co Ltd filed Critical Power Reactor and Nuclear Fuel Development Corp
Priority to JP62284811A priority Critical patent/JPH063426B2/en
Publication of JPH01244354A publication Critical patent/JPH01244354A/en
Publication of JPH063426B2 publication Critical patent/JPH063426B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

PURPOSE:To obtain an uranyl-ion selective electrode characterized by excellent reproducibility, accuracy and durability and a long life, by providing both potassium chloride and uranyl ions together as internal liquid in contact with a sensitive film. CONSTITUTION:An intended uranyl-ion selective electrode is of an ion exchange type. Namely, an independent internal reference electrode having a junction is provided in the inside. Uranyl-ion inner liquid having a specified concentration is filled between said electrode and an outer tube. Solution under test and the inner liquid are in contact with an uranyl-ion exchange liquid film that is a part of the outer tube in-between. On the inner liquid composition for the inner reference electrode and the inner liquid composition for the uranyl ion electrode, i.e., potassium chloride and uranyl ions, are made to coexist in this structure. In this way, the uranyl-ion selective electrode characterized by excellent concentration response, excellent reproducibility, accuracy and durability and a long life is obtained.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本願説明は、長寿命ウラニル・イオン選択性電極に関す
る。更に詳しくは、ウラニル拳イオン交換膜を宥する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present description relates to long-life uranyl ion-selective electrodes. More specifically, uranyl fist ion exchange membranes are used.

濃度応答性が優れ、また再現性、正確度および耐久性に
優れた長寿命ウラニル・イオン選択性電極に関するもの
である。
The present invention relates to a long-life uranyl ion-selective electrode with excellent concentration response, excellent reproducibility, accuracy, and durability.

〈従来の技術〉 近年の原子カニ業の発展に伴ない、かかる原子カニ業に
不可欠のウラニル・イオン分析用電極の実用的研究が進
められている。既に、内部に比較電極を置き、これと外
筒の間に一定濃度のウラニル・イオン内部液を満たした
イオン交換液膜型のウラニル・イオン選択性電極につい
ては、種々の報告がなされている。
<Prior Art> With the recent development of the atomic crab industry, practical research is underway on electrodes for uranyl ion analysis, which are indispensable to the atomic crab industry. Various reports have already been made regarding ion exchange membrane type uranyl ion selective electrodes in which a reference electrode is placed inside and an internal solution of uranyl ions at a certain concentration is filled between this and the outer cylinder.

例えば、ディトリッヒ(W、 C,Dietrich)
はジー2−エチルへキシルフォスフェート(02EHP
)とウラニル・イオンとの錯体を含むポリ塩化ビニル(
pvc)膜がウラニル・イオンに感応すると報告した(
Technical Progress Report
 No、 Yl1740、  Y−12Develop
ment  Division、  Aug、−0ct
For example, Dietrich (W, C, Dietrich)
is di-2-ethylhexyl phosphate (02EHP
) and polyvinyl chloride (
reported that pvc) membranes are sensitive to uranyl ions (
Technical Progress Report
No, Yl1740, Y-12Develop
ment Division, Aug, -0ct
.

(1971)) 、一方、マニングら(D、 L、 M
anninget al、)は酸性中性のホスホン酸エ
ステルまたはリン酸エステルを希釈剤とする酸性リン酸
エステル−ウラニル・イオン錯体のPvC基材反応膜の
性質を調べ、数種の感応性の良好な膜を得たが、濃度応
答性と相関のある電位差の常用対数表示濃度に対する勾
配(以下単に電位差勾配と称する。)はせいぜい26m
V/ decadeでNernst式の2価イオンに対
する理論電位差勾配(以下単にNernst勾配と称す
る。)より小さかった(Anal、 Cherl、、 
Vol、 48. No、 8. pp、 111B−
1119(1974)) 、更に、ゴールドバーブら 
(I。
(1971)), while Manning et al. (D, L, M
Anning et al.) investigated the properties of PvC-based reaction membranes of acidic phosphate ester-uranyl ion complexes using acidic and neutral phosphonates or phosphates as diluents, and found several types of membranes with good sensitivity. However, the slope of the potential difference correlated with the concentration response with respect to the common logarithmic concentration (hereinafter simply referred to as the potential difference gradient) is at most 26 m.
V/decade, it was smaller than the Nernst equation theoretical potential gradient for divalent ions (hereinafter simply referred to as the Nernst gradient) (Anal, Cherl,...
Vol, 48. No, 8. pp, 111B-
1119 (1974)), and furthermore, Goldbarb et al.
(I.

Goldberg et at、)はD2EHP 、リ
ン酸トリブチル(TBP)および多種のホスホン酸エス
テルのいずれかを希釈剤とし、酸性、中性のリン酸エス
テル、亜リン酸エステルあるいは酸性ホスホン酸エステ
ルとウラニル・イオンとの錯体のPvC基材感応膜の性
質を調べ、亜リン酸エステル系の感応膜によりネルンス
ト勾配に近い電位差勾配を得た(Anal、 Cher
a、、 Vol、 52. pp、 2105−210
8(1980)) 、志賀らはイオン交換体と相溶性に
優れた希釈剤及び膜形成基材と親和性を有する溶剤で処
理した感応膜を用いることを特徴とした電位差勾配の大
きいウラニル・イオン選択性電極を得た(特願昭81−
150559号公報)、シかしながら、これらの文献に
は電極の寿命に関する報告は一例を除いてない、その例
では、寿命は2週間で、はなはだ不充分である。
Goldberg et al.) used D2EHP, tributyl phosphate (TBP), and any of a variety of phosphonates as diluents, and used acidic, neutral phosphates, phosphites, or acidic phosphonates with uranyl ions. We investigated the properties of PvC-based sensitive membranes in complexes with phosphite esters, and obtained a potential difference gradient close to the Nernst gradient using a phosphite-based sensitive membrane (Anal, Cher.
a,, Vol, 52. pp, 2105-210
8 (1980)), Shiga et al. used a sensitive membrane treated with a diluent that has excellent compatibility with the ion exchanger and a solvent that has affinity with the membrane-forming substrate. A selective electrode was obtained (patent application 1981-
150559), however, these documents do not report on the lifespan of the electrodes, except in one case, in which the lifespan is two weeks, which is extremely insufficient.

〈発明が解決すべき問題点〉 一般に、電極の寿命は長いほど、センサーとしての実用
性は高い、しかし、上記報告では電極の寿命に関する報
告は殆ど無く、工業的センサーとしての水準に到達した
ものかどうか疑わしい、後述の比較例に示すように1本
発明者らの研究では、これらの寿命は充分と言えなかっ
た。
<Problems to be solved by the invention> In general, the longer the lifespan of an electrode, the more practical it is as a sensor.However, in the above reports, there is almost no report on the lifespan of the electrode, and even if the electrode has reached the level of being an industrial sensor. However, as shown in the comparative example below, in the research conducted by the present inventors, the lifespan of these products could not be said to be sufficient.

本発明者は、かかる現状に鑑み鋭意検討を行なった結果
、5ケ月以上の寿命を持つ、工業的利用可能のウラニル
・イオン電極を実現し1本発明を完成するに至った。
As a result of intensive studies in view of the current situation, the present inventor has completed the present invention by realizing an industrially usable uranyl ion electrode that has a lifespan of 5 months or more.

く問題点を解決する為の手段〉 本発明は、イオン交換液膜型電極において、膜形成基材
を、中性リン酸エステルまたは中性亜リン酸エステルの
ウラニル・イオン錯体の一種または二種以上よりなるイ
オン交換体、該イオン交換体と相溶性に優れた希釈剤、
及び膜形成基材と親和性を有する溶剤の、三種の試薬に
て処理した感応膜を用い、内部比較電極として第二種電
極を用いるウラニルΦイオン電極において、感応膜に接
触する内部液として、塩化カリウムをウラニル・イオン
と共存させることを特徴とするのウラニル・イオン選択
性電極に係るものである。
Means for Solving Problems> The present invention provides an ion-exchange liquid membrane type electrode in which the membrane-forming substrate is made of one or two types of uranyl ion complexes of neutral phosphate esters or neutral phosphite esters. An ion exchanger comprising the above, a diluent having excellent compatibility with the ion exchanger,
In a uranyl Φ ion electrode using a sensitive membrane treated with three types of reagents: and a solvent having affinity with the membrane-forming substrate and a second type electrode as an internal reference electrode, as an internal liquid in contact with the sensitive membrane, This invention relates to a uranyl ion selective electrode characterized in that potassium chloride coexists with uranyl ions.

以下、本発明を具体的に説明する。The present invention will be explained in detail below.

本発明に関わるウラニル・イオン選択性電極はイオン交
換液膜型である。即ち、ジャンクションを備えた独立の
内部比較電極を内部に置き、これと外筒の間に一定濃度
のウラニル争イオン内部液を満たし、試験溶液と内部液
は外筒の一部であるウラニル・イオン交換液膜をはさん
で接触しているか、あるいは上記内部比較電極を電極素
子のみとし、内部液として内部比較電極のための内部液
組成とウラニル・イオン電極のための内部液組成すなわ
ちウラニル・イオンを共存させた構造である。
The uranyl ion selective electrode according to the present invention is of the ion exchange liquid membrane type. That is, an independent internal reference electrode equipped with a junction is placed inside, and an internal solution containing uranyl ions of a certain concentration is filled between this electrode and the outer tube, and the test solution and the inner solution are uranyl ions that are part of the outer tube. Either the internal reference electrode is in contact with an exchange liquid membrane across it, or the internal reference electrode is only an electrode element, and the internal liquid composition for the internal reference electrode and the internal liquid composition for the uranyl ion electrode, that is, uranyl ion. It is a structure that allows both to coexist.

本発明において内部比較電極としては、従来用いられて
いる一般的な電極が用いられる0例えば、銀塩化銀電極
、カロメル電極あるいは水銀硫酸第一水銀電極等が使用
できる。その構造には、特に制限はなく、シングルφジ
ャンクシ璽ン型でもよく、ダブル・ジャンクション型で
もよい、また内部比較電極と、イオン交換膜の間の隔壁
を取払った、電極素子が、内部比較電極としての内部液
に浸っている形式でもよい。
In the present invention, as the internal reference electrode, conventionally used general electrodes can be used, such as a silver-silver chloride electrode, a calomel electrode, or a mercurous mercury sulfate electrode. There is no particular restriction on the structure, and it may be a single φ junction type or a double junction type. It may also be immersed in an internal liquid as an electrode.

本発明で使用する膜形成基材とは、イオン交換液膜を形
成しうるちのである0例えば、ポリ酢酸ビニル、シリコ
ンゴム、酢酸セルローズ、ポリ塩化ビニール、エポキシ
樹脂等が好適に使用される。中でも、ポリ塩化ビニルが
特に好ましい。
The film-forming base material used in the present invention is preferably a material capable of forming an ion-exchange liquid film, such as polyvinyl acetate, silicone rubber, cellulose acetate, polyvinyl chloride, or epoxy resin. Among these, polyvinyl chloride is particularly preferred.

イオン交換体を形成する錯化剤としては中性リン酸エス
テルまたは中性亜リン酸エステルが使用される。これら
のエステルはアルコール残基がそれぞれ炭素数2から2
0のアルキル基あるいはハロゲン化アルキル基が好適に
使用される。炭素数2から20のアルキル基あるいはハ
ロゲン化アルキル基としては例えばエチル、プロピル、
ブチル、ヘキシル、オクチル、ドデシルまたはこれらの
ハロゲン置換物がある。3個のアルコール残基はもちろ
ん同一でなくてもよい。
As the complexing agent for forming the ion exchanger, a neutral phosphoric acid ester or a neutral phosphorous acid ester is used. These esters each have alcohol residues with 2 to 2 carbon atoms.
0 alkyl groups or halogenated alkyl groups are preferably used. Examples of alkyl groups having 2 to 20 carbon atoms or halogenated alkyl groups include ethyl, propyl,
Butyl, hexyl, octyl, dodecyl or their halogen substitutes. Of course, the three alcohol residues do not have to be the same.

具体的には、亜リン酸トリーn−ブチル、リン酸トリオ
クチル、リン酸トリクロロプロピル。
Specifically, tri-n-butyl phosphite, trioctyl phosphate, and trichloropropyl phosphate.

リン酸トリーn−クロロエチル、リン酸トリクロロブチ
ル、リン酸トリクロロオクチル、亜リン酸ジブチルデシ
ル、亜リン酸ジエチルデシル。
Tri-n-chloroethyl phosphate, trichlorobutyl phosphate, trichlorooctyl phosphate, dibutyldecyl phosphite, diethyldecyl phosphite.

リン酸ジブチルデシル、リン酸ジエチルデシル等が挙げ
られる。これらは、単独または複数併用して使用で奢る
Examples include dibutyldecyl phosphate and diethyldecyl phosphate. These can be used alone or in combination.

次に、上記のイオン交換体と相溶性に優れた希釈剤とし
ては、中性リン酸エステルが好適に使用できる。これら
のエステルはアルコール残基がそれぞれ炭素数2から2
0のアルキル基が好ましい、炭素数2から20のアルキ
ル基としては、エチル、プロピル、ブチル、ヘキシル、
オクチル、ドデシルなどが挙げられ、中でも、炭素数3
から8のアルキル基が好ましい。
Next, as a diluent having excellent compatibility with the above-mentioned ion exchanger, a neutral phosphoric acid ester can be suitably used. These esters each have alcohol residues with 2 to 2 carbon atoms.
Examples of the alkyl group having 2 to 20 carbon atoms, preferably 0 alkyl group, include ethyl, propyl, butyl, hexyl,
Examples include octyl, dodecyl, etc. Among them, carbon number 3
8 alkyl groups are preferred.

具体的には、リン酸トリエチル、リン酸トリプロピル、
リン酸トリヘキシル、リン酸トリオクチル、リン酸トリ
ドデシル等であり、中でもリン酸トリブチルが好適に使
用される。
Specifically, triethyl phosphate, tripropyl phosphate,
Trihexyl phosphate, trioctyl phosphate, tridodecyl phosphate, etc., among which tributyl phosphate is preferably used.

また、膜形成基材と親和性を有する溶剤(親和溶剤)に
は、可髪剤等が用いられ、例えば、フタル酸エステル、
アジピン酸エステル、セバシン酸エステル、その他グリ
コール誘導体等が挙げられる。そのなかでも好ましいの
はフタル酸エステル、アジピン酸エステル及びセパシン
酸エステルである。これらのエステルはアルコール残基
がそれぞれ炭素数2から20のアルキル基が好ましい、
炭素数2から20のアルキル基としては、エチル、プロ
ピル、ブチル、ヘプチル、ドデシル等である。この中で
も、炭素数3から8のアルキル基が好ましい。
In addition, hair dyes and the like are used as solvents that have affinity with the film-forming substrate (compatible solvents), such as phthalate esters,
Examples include adipic acid ester, sebacic acid ester, and other glycol derivatives. Among them, phthalic acid esters, adipic acid esters and sepacic acid esters are preferred. In these esters, each alcohol residue is preferably an alkyl group having 2 to 20 carbon atoms.
Examples of the alkyl group having 2 to 20 carbon atoms include ethyl, propyl, butyl, heptyl, and dodecyl. Among these, an alkyl group having 3 to 8 carbon atoms is preferred.

具体的には、フタル酸ジオクチル(DOP)、アジピン
酸ジオクチル(DOA)、セバシン酸ジオクチル(DO
3)等が挙げられる。
Specifically, dioctyl phthalate (DOP), dioctyl adipate (DOA), dioctyl sebacate (DO
3) etc.

錯化剤は、後記のウラニル・イオン内部液調整の為の硝
酸ウラニル・6水塩1モルに対し2モル〜3モル特に好
ましくは、2.0モル〜2.5モルの比率で用いられる
。希釈剤と親和溶剤の混合比率は、重量比で3/1〜1
/3特に好ましくは、2/1〜1/2であり、錯化剤と
硝酸ウラニルから作られたイオン交換体は希釈剤と親和
溶剤との混合物と重量比で1/7〜1/20好ましくは
、178〜1/15で混合され、さらにこれらのイオン
交換体、希釈剤、親和溶剤の混合物は膜形成基材が全体
の20重量%〜50重量%好ましくは25重量%〜35
重量%になるように混合して膜形成基材として用いられ
る。
The complexing agent is used in a ratio of 2 to 3 moles, particularly preferably 2.0 to 2.5 moles, per mole of uranyl nitrate hexahydrate for preparing the uranyl ion internal solution described below. The mixing ratio of diluent and compatible solvent is 3/1 to 1 by weight.
/3 is particularly preferably 2/1 to 1/2, and the ion exchanger made from the complexing agent and uranyl nitrate is preferably 1/7 to 1/20 in weight ratio to the mixture of the diluent and compatible solvent. are mixed at a ratio of 178 to 1/15, and the mixture of these ion exchangers, diluents, and affinity solvents has a film forming base material of 20% to 50% by weight, preferably 25% to 35% by weight of the total.
The mixture is used as a film-forming base material by weight percentage.

本発明において、膜形成基材を、中性リン酸エステルま
たは中性亜リン酸エステルのウラニル・イオン錯体の一
種または二種以上よりなるイオン交換体と、該イオン交
換体と相溶性に優れた希釈剤及び膜形成基材と親和性を
有する溶剤にて処理せしめ感応膜を得る方法は、いかな
る方法でもよい6例えば膜形成基材と錯体、希釈剤、親
和溶剤等とを、直接混合したのち、熱成型する方法もあ
るが、−船釣には、溶解力のある例えばテトラヒドロフ
ラン、シクロヘキサノン等の揮発性の良溶媒に膜形成基
材を溶解後、上記イオン交換体、希釈剤、親和溶剤と混
合したのち、あるいは順次加えて均一な溶液としたのち
、該良溶倍媒を蒸発させることにより得られる。
In the present invention, the membrane-forming base material is an ion exchanger made of one or more uranyl ion complexes of a neutral phosphate ester or a neutral phosphite, and an ion exchanger having excellent compatibility with the ion exchanger. Any method may be used to obtain a sensitive film treated with a diluent and a solvent that has an affinity for the film-forming base material6. There is also a method of thermoforming, but for boat fishing, after dissolving the film forming base material in a volatile good solvent such as tetrahydrofuran or cyclohexanone, the above-mentioned ion exchanger, diluent, and compatible solvent are used. It can be obtained by evaporating the good solvent after mixing or adding them one after another to make a homogeneous solution.

膜の厚みは0.1m1〜0.8mmが適当であり特に好
ましくは0.2■〜0.6■になるように調整する。
The thickness of the film is suitably adjusted to 0.1 ml to 0.8 mm, and particularly preferably 0.2 to 0.6 mm.

イオン交換膜と接触しているウラニル・イオン内部液、
すな、わち指示電極としての内部液は、ウラニル・イオ
ンと、塩化カリウムを溶解させている。濃度にはどちら
にも特に制限は無い。
uranyl ion internal solution in contact with the ion exchange membrane;
That is, the internal liquid serving as the indicator electrode dissolves uranyl ions and potassium chloride. There are no particular restrictions on the concentration.

ウラニル・イオン濃度としては被測定液の濃度に近いこ
とが望ましく、塩化カリウム濃度には、隔壁のある比較
電極に通常よく用いられる濃度が好適である。
The uranyl ion concentration is preferably close to the concentration of the liquid to be measured, and the potassium chloride concentration is preferably a concentration commonly used in comparison electrodes with partition walls.

〈実施例〉 (実験方法) 感応膜試作より電位差測定までの共通的な実験方法を以
下に記す0本発明では、特に記さないかぎり、これらに
基づき実験を行なった。
<Example> (Experimental Method) Common experimental methods from sensitive membrane prototype production to potential difference measurement are described below. In the present invention, experiments were conducted based on these unless otherwise specified.

(t)  pvc−イオン交換体感応膜の調製1) イ
オン交換体の調製 1.00gの硝酸ウラニル6水塩に対し、モル比で2と
なるようにリン酸エステル(または亜リン酸エステル)
を加える。これを硝酸ウラニルの固相が無くなるまで良
く攪拌振盪し錯体を生成させる。この時下層に水相が生
じた場合は、遠心分離機により水相と油相を完全に分離
した後、注射器等を用いて水相を取り除く、残った粘ち
ょうな黄色の液体(油相)がリン酸エステル(または亜
リン酸エステル)と硝酸ウラニルとの錯体であり、これ
に100+agの無水硫酸ソーダを 2回加え、その度
毎に遠心分離して、錯体中の水分を除去する。このイオ
ン交換体(錯体)は乾燥したキャー、プ付き試験管に保
存する。
(t) Preparation of PVC-ion exchanger sensitive membrane 1) Preparation of ion exchanger Add phosphate ester (or phosphite ester) to 1.00 g of uranyl nitrate hexahydrate in a molar ratio of 2.
Add. This is thoroughly stirred and shaken until the solid phase of uranyl nitrate disappears to form a complex. If an aqueous phase forms in the lower layer at this time, use a centrifuge to completely separate the aqueous and oil phases, and then remove the aqueous phase using a syringe, etc., leaving behind a viscous yellow liquid (oil phase). is a complex of phosphate ester (or phosphite ester) and uranyl nitrate, and to this is added 100+ag of anhydrous sodium sulfate twice, centrifuging each time to remove water in the complex. This ion exchanger (complex) is stored in a dry, capped test tube.

2) 感応膜の調製 イオン交換体と混合溶剤との重量比が、約1:9になる
ようにイオン交換体45mgと混合溶剤400mgを乾
燥した50〜1001 ビーカーに計り取り、良く攪拌
する。混合溶液中の希釈剤と親和溶剤の比率は1:1 
とした。
2) Preparation of sensitive membrane Weigh out 45 mg of the ion exchanger and 400 mg of the mixed solvent into a dry 50-1001 beaker so that the weight ratio of the ion exchanger and the mixed solvent is about 1:9, and stir well. The ratio of diluent and compatible solvent in the mixed solution is 1:1
And so.

ただし希釈剤か親和溶剤の一方しか使わない場合もある
。その場合にはもちろんその溶剤を400mg加える。
However, there are cases where only one of the diluent and the compatible solvent is used. In that case, of course, add 400 mg of the solvent.

この溶液に、あらかじめ硬質PVC:  (住友化学製
5X−DH粘度平均重合度2820) 1.75gをテ
トラハイドロフラン(THF) 8’hlに溶解させた
溶液61を加え良く攪拌する。この溶液を直径的30m
mの乾燥したシャーレにあけ、上に濾紙を 2〜3枚か
ぶせて、ドラフト内へ水平を保つようにして静置し溶媒
である丁HFを徐々に蒸発させて乾燥させる。乾燥時間
は36時間以上とする。
To this solution, a solution 61 in which 1.75 g of hard PVC (manufactured by Sumitomo Chemical 5X-DH viscosity average degree of polymerization 2820) was dissolved in 8'hl of tetrahydrofuran (THF) was added and stirred well. This solution is 30m in diameter.
Pour into a dry petri dish, cover with 2 to 3 pieces of filter paper, and leave to stand in a fume hood horizontally to gradually evaporate the solvent, HF, and dry. Drying time shall be at least 36 hours.

(2)  電極の組立て 乾燥を終えたPVC感応膜を直径12+amの円盤上に
コルクポーラ−、カッター等を利用して切り抜き、外形
12mm長さ30〜40■腸のPvCチューブの一端に
接着する。接着剤にはPVC7gをTHF 8h+に溶
解したものを用いた。接着部分が充分乾燥した後電極膜
に使用する前に24時間以上のぞましくは72時間以上
PvC感応膜の両側が10’Hのウラニル標準濃度液に
接っするように浸し所謂コンディショニングを行なう、
また電極膜を取り外して保存する場合もこの標準溶液に
浸しておく、電極の組立ては銀塩化銀比較電極の先に膜
を接着した上記のPvCチューブを取付はシールテープ
で外れないように固定する。なおこの電極膜と比較電極
との間には内部液として10−tMの硝酸ウラニル溶液
(pH−3,0)をあらかじめ満たしておく。
(2) Assembling the electrode The dried PVC sensitive membrane is cut out onto a disk with a diameter of 12+ am using a cork polar cutter, etc., and adhered to one end of an intestinal PvC tube with an external diameter of 12 mm and a length of 30 to 40 mm. The adhesive used was one in which 7 g of PVC was dissolved in 8 h+ of THF. After the adhesive part has sufficiently dried, before using it as an electrode film, perform so-called conditioning by soaking both sides of the PvC sensitive film in 10'H uranyl standard concentration solution for at least 24 hours, preferably for at least 72 hours. ,
Also, when removing the electrode membrane and storing it, soak it in this standard solution.To assemble the electrode, attach the above-mentioned PvC tube with the membrane glued to the tip of the silver-silver chloride reference electrode, and fix it with sealing tape so that it does not come off. . Note that a 10-tM uranyl nitrate solution (pH-3.0) is filled in advance as an internal solution between the electrode film and the reference electrode.

従ってこの電極(指示電極)の構造は次のように書ける
Therefore, the structure of this electrode (indicator electrode) can be written as follows.

Ag/AgC:l、  KOI  I  UO2(No
  :l  )  2 .10 −”  M(pH=3
) l膜1 (3)  標準濃度の硝酸ウラニル水溶液の調製電位差
測定前にpHが3.0となるようIN HNO:1また
はIN KOH溶液を用いて調節した10→、10−2
゜10−1 、10=Hのウラニルeイオン標準液を調
製使用した。
Ag/AgC:l, KOI I UO2 (No
:l) 2. 10-”M (pH=3
) l Membrane 1 (3) Preparation of standard concentration uranyl nitrate aqueous solution 10 →, 10-2 adjusted using IN HNO:1 or IN KOH solution so that the pH was 3.0 before potential difference measurement
A uranyl e ion standard solution of 10-1 and 10=H was prepared and used.

(4)  電位差測定法 上記指示電極と、その内部比較電極と同じ電極を外部比
較電極として電池を組立て、その起電力(電位差)を揚
場製のpH/mV系F−8AT型によって25±2℃で
測定した。試料液をいれたビーカーはマグネチック・ス
ターラーでゆっくり攪拌した。ビーカーとスターラーの
間には断熱マットをはさみ液温の上昇を防止した。 1
0分間での電位変化が1mV以下となった点をその濃度
での確定電位であるとして読取った。
(4) Potential difference measurement method A battery was assembled using the above indicator electrode and the same electrode as its internal reference electrode as an external reference electrode, and the electromotive force (potential difference) was measured at 25±2°C using a pH/mV system F-8AT model manufactured by Ageba. It was measured with The beaker containing the sample solution was slowly stirred with a magnetic stirrer. A heat insulating mat was placed between the beaker and stirrer to prevent the temperature of the liquid from rising. 1
The point at which the potential change in 0 minutes was 1 mV or less was read as the confirmed potential at that concentration.

(5)  寿命測定法 上記電位差測定法により測定を終った指示電極を、試料
液より引上げたのち保存液の中に浸す、保存液はコンデ
ィショニングに用いたのと同じ10−tMのウラニル標
準濃度液である。所定時間(約10日)が経過したら(
4)の方法で電位差を測定する。この保存、測定を繰返
す、電位差勾配はほとんど経時変化しないが、指示電位
は時間とともに振動をはじめる。その振幅が2回以上続
けて2sVを越した場合その最初の測定時点を電極寿命
の終点と判断する。
(5) Lifetime measurement method The indicator electrode, which has been measured using the potentiometric method described above, is lifted from the sample solution and then immersed in a storage solution.The storage solution is the same 10-tM uranyl standard concentration solution used for conditioning. It is. After the specified time (about 10 days) has passed (
Measure the potential difference using method 4). When this storage and measurement is repeated, the potential difference gradient hardly changes over time, but the indicated potential begins to oscillate over time. If the amplitude exceeds 2 sV two or more times in a row, the first measurement point is determined to be the end point of the electrode life.

比較例1 DBPまたはD2EHPのそれぞれ倍モル量(対ウラニ
ル・イオン)を使って上記実験方法(1)1)のイオン
交換体を調製し、混合溶剤にTBPだけを2)の感応膜
の調製に用いた電極の寿命は約15日であった。
Comparative Example 1 The ion exchanger of the above experimental method (1) 1) was prepared using twice the molar amount (based on uranyl ions) of DBP or D2EHP, and the sensitive membrane preparation of 2) was carried out using only TBP in the mixed solvent. The life of the electrodes used was about 15 days.

この比較例1はデイトリッヒらやマンニングらの実験の
代表例としての、リン酸ジブチル(DBP)またはD2
EHP−ウラニル・イオン錯体をイオン交換体としTB
Pを希釈剤とするPvC基材の感応膜の寿命試験である
。この結果は彼らの試作電極の寿命が工業的使用のため
には充分でないことを示す。
Comparative Example 1 uses dibutyl phosphate (DBP) or D2 as a representative example of the experiments of Deitrich et al. and Manning et al.
TB using EHP-uranyl ion complex as an ion exchanger
This is a life test of a PvC-based sensitive film using P as a diluent. This result indicates that the lifetime of their prototype electrode is not sufficient for industrial use.

比較例2 亜リン酸トリーn−ブチルな錯化剤とする、希釈剤がT
BPで、親和溶剤がDOAまたはDOSである感応膜を
調製して寿命の測定をした。その結果約30日の寿命を
得た。
Comparative Example 2 Tri-n-butyl phosphite complexing agent, diluent T
Sensitive films were prepared using BP and the affinity solvent was DOA or DOS, and their lifetimes were measured. As a result, a lifespan of about 30 days was obtained.

この比較例2は志賀らの実験の代表例としての、亜リン
酸トリーn−ブチルーウラニル・イオン錯体をイオン交
換体とし、TBPを希釈剤とし、DOAまたはDOSを
親和溶剤とするPVC基材の感応膜の寿命試験である。
Comparative Example 2 is a PVC base material using tri-n-butyluranyl phosphite ion complex as an ion exchanger, TBP as a diluent, and DOA or DOS as an affinity solvent, as a representative example of Shiga et al.'s experiment. This is a life test of a sensitive membrane.

この結果は彼らの試作電極の寿命が比較例1よりは優れ
るが、まだ工業的使用のためには充分でないことを示す
This result shows that although the life of their prototype electrode is better than Comparative Example 1, it is still not sufficient for industrial use.

実施例1 比較例2において、(2)電極の組立ての際電極膜と比
較電極との間に内部液として10−2にの硝酸ウラニル
溶液で、pH−3、かつ3.33HのKCIを含むよう
に調製した溶液を使用した。
Example 1 In Comparative Example 2, (2) During electrode assembly, a 10-2 uranyl nitrate solution containing KCI of pH-3 and 3.33H was used as an internal solution between the electrode membrane and the reference electrode. A solution prepared as above was used.

その結果 150日を越す寿命を得た。As a result, a lifespan of over 150 days was obtained.

実施例2 実施例1において、内部比較電極として、カロメル電極
を用いた。この場合も150日を越す寿命であった。
Example 2 In Example 1, a calomel electrode was used as the internal comparison electrode. In this case as well, the lifespan exceeded 150 days.

実施例3 実施例1において、内部比較電極として、水銀硫酸第一
水銀電極を用いた。この場合も150日を越す寿命であ
った。
Example 3 In Example 1, a mercurous sulfate electrode was used as the internal comparison electrode. In this case as well, the lifespan exceeded 150 days.

実施例4 比較例2において、銀塩化銀内部電極の外筒をとりはず
し、電極素子のみとし、それを実施例1のイオン交換膜
と内部液をいれた筒に浸した指示電極の寿命を測定した
。その結果やはり 150日以上の寿命を得た。
Example 4 In Comparative Example 2, the outer cylinder of the silver-silver chloride internal electrode was removed, leaving only the electrode element, and the life of the indicator electrode was measured by immersing it in the cylinder containing the ion exchange membrane and internal solution of Example 1. . As a result, we achieved a lifespan of over 150 days.

比較例3 リン酸トリ(クロロプロピル)を錯化剤とし、TBPを
希釈剤、DOPtたはDOAを親和溶剤とする感応膜を
調製し寿命試験を行った。その寿命はどれも30日弱で
あった。
Comparative Example 3 A sensitive membrane was prepared using tri(chloropropyl) phosphate as a complexing agent, TBP as a diluent, and DOPt or DOA as an affinity solvent, and a life test was conducted. The lifespan of all of them was less than 30 days.

実施例5 比較例3において、実施例1.2.3,4と同様の改良
を加えたウラニル・イオン電極4種を試作し、それぞれ
の寿命を測定した。
Example 5 In Comparative Example 3, four types of uranyl ion electrodes with the same improvements as in Examples 1, 2, 3, and 4 were fabricated, and the lifespan of each was measured.

その結果いずれも 150日以上の寿命を示した。As a result, all of them showed a lifespan of 150 days or more.

実施例6 リン酸トリオクチルを錯化剤とし、TBPを希釈剤、D
OAを親和溶剤とする感応膜を調製し、実施例1.2,
3.4に示した方法で4種の電極の組立を行ない、それ
ぞれにつき寿命試験を行なった。その寿命はいずれも1
50日を越えた。
Example 6 Trioctyl phosphate as complexing agent, TBP as diluent, D
A sensitive membrane using OA as an affinity solvent was prepared, and Example 1.2,
Four types of electrodes were assembled using the method shown in 3.4, and a life test was conducted on each. Their lifespan is 1
It's been over 50 days.

実施例7 リン酸ジブチルデシルを錯化剤とし、TBPを希釈剤、
DOP、DOAあるいはDOSを親和溶剤、とする感応
膜の、実施例4と同様の組立法による電極の寿命の試験
を行なった。
Example 7 Dibutyldecyl phosphate as a complexing agent, TBP as a diluent,
An electrode life test was conducted using the same assembly method as in Example 4 for a sensitive film using DOP, DOA, or DOS as an affinity solvent.

いずれも 150日以上の寿命を示した。All showed a lifespan of 150 days or more.

〈発明の効果〉 本発明によりウラニルΦイオン選択性、濃度応答性に優
れ、かつ寿命の長いウラニル・イオン選択性電極が提供
される0本電極は、再現性、正確度、耐久性も良好であ
り、特にウラニル・イオン分析用電極として原子カニ業
において実用的な電極を提供するものといえる。
<Effects of the Invention> The present invention provides a uranyl ion selective electrode with excellent uranyl Φ ion selectivity and concentration response, and a long life. It can be said that it provides a practical electrode in the atomic crab industry, especially as an electrode for uranyl ion analysis.

Claims (1)

【特許請求の範囲】[Claims] イオン交換液膜型電極において、膜形成基材を、中性リ
ン酸エステルまたは中性亜リン酸エステルのウラニル・
イオン錯体の一種または二種以上よりなるイオン交換体
、該イオン交換体と相溶性に優れた希釈剤、及び膜形成
基材と親和性を有する溶剤の、三種の試薬にて処理した
感応膜を用い、内部比較電極として第二種電極を用いる
ウラニル・イオン電極において、感応膜に接触する内部
液として、塩化カリウムをウラニル・イオンと共存させ
ることを特徴とする長寿命ウラニル・イオン選択性電極
In the ion-exchange liquid membrane type electrode, the membrane-forming substrate is a neutral phosphate ester or a neutral phosphite uranyl ester.
A sensitive membrane treated with three types of reagents: an ion exchanger made of one or more types of ion complexes, a diluent with excellent compatibility with the ion exchanger, and a solvent with affinity with the membrane forming substrate. A long-life uranyl ion selective electrode characterized in that potassium chloride coexists with uranyl ions as an internal liquid in contact with a sensitive membrane in a uranyl ion electrode using a second type electrode as an internal reference electrode.
JP62284811A 1987-11-10 1987-11-10 Long-lived uranyl ion-selective electrode Expired - Fee Related JPH063426B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62284811A JPH063426B2 (en) 1987-11-10 1987-11-10 Long-lived uranyl ion-selective electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62284811A JPH063426B2 (en) 1987-11-10 1987-11-10 Long-lived uranyl ion-selective electrode

Publications (2)

Publication Number Publication Date
JPH01244354A true JPH01244354A (en) 1989-09-28
JPH063426B2 JPH063426B2 (en) 1994-01-12

Family

ID=17683317

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62284811A Expired - Fee Related JPH063426B2 (en) 1987-11-10 1987-11-10 Long-lived uranyl ion-selective electrode

Country Status (1)

Country Link
JP (1) JPH063426B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105372321A (en) * 2015-11-06 2016-03-02 中国工程物理研究院材料研究所 Uranyl ion sensor based on target molecule hairpin assembly, and preparation method and application thereof
RU2683423C1 (en) * 2018-03-26 2019-03-28 Федеральное государственное бюджетное учреждение науки Институт общей и неорганической химии им. Н.С. Курнакова Российской академии наук (ИОНХ РАН) Membrane of ionoselective electrode to determine uranyl ion

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS635256A (en) * 1986-06-25 1988-01-11 Sumitomo Chem Co Ltd Uranyl ion selective electrode

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS635256A (en) * 1986-06-25 1988-01-11 Sumitomo Chem Co Ltd Uranyl ion selective electrode

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105372321A (en) * 2015-11-06 2016-03-02 中国工程物理研究院材料研究所 Uranyl ion sensor based on target molecule hairpin assembly, and preparation method and application thereof
CN105372321B (en) * 2015-11-06 2017-11-07 中国工程物理研究院材料研究所 Uranyl ion sensor, its preparation method and the application assembled based on target molecule hair fastener
RU2683423C1 (en) * 2018-03-26 2019-03-28 Федеральное государственное бюджетное учреждение науки Институт общей и неорганической химии им. Н.С. Курнакова Российской академии наук (ИОНХ РАН) Membrane of ionoselective electrode to determine uranyl ion

Also Published As

Publication number Publication date
JPH063426B2 (en) 1994-01-12

Similar Documents

Publication Publication Date Title
JPS63500539A (en) Sensor with ion selective electrode
JPS6219702B2 (en)
JPH01244354A (en) Uranyl-ion selective electrode characterized by long life
US6635683B1 (en) Film responsive to bicarbonate ion
JP2002090332A (en) Phosphate ion selective electrode and its manufacturing method
US5032363A (en) Ion selective part of an apparatus for the determination of the concentration of ions and process for the preparation of polymeric materials containing hydrophilic groups
EP2032580A2 (en) Long lived anion-selective sensors based on a covalently attached metalloporphyrin as anion receptor
JPH0557540B2 (en)
CA2106463A1 (en) Magnesium electrode
JPH0629875B2 (en) Uranyl ion selective electrode
JPS6358147A (en) Electrode for measuring lithium ion
US4801371A (en) Uranyl ion selective electrode
JPH0557539B2 (en)
Okada et al. Use of lipophilic additives for the improvement of the characteristics of PVC membrane lithium-selective electrodes based on non-cyclic neutral carriers
JPS6110759A (en) Carbonate ion selective film and electrode
US4861455A (en) Electrode membrane
JP2575235B2 (en) Method for producing ion-sensitive membrane
SU1097928A1 (en) Composition of ion=selective electrode membrane for determination of carbonate ion activity
SU842546A1 (en) Ion selective electrode membrane
JP3999826B2 (en) Porphyrin complex and anion sensitive membrane
RU1799881C (en) Composition of ion-selective diaphragm of electrode
RU2011986C1 (en) Diaphragm of ion-selective electrode for trichloroacetate determination
CN116465945A (en) Ion-selective membrane, ion-selective electrode, ion sensor, sample testing device, and complex compound
JPH01132592A (en) Composition and electrode containing organotin ion migration substance
JPS62191750A (en) Electrode membrane

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees