JPS635255A - Method for compensating offset of semiconductive biosensor - Google Patents

Method for compensating offset of semiconductive biosensor

Info

Publication number
JPS635255A
JPS635255A JP61150386A JP15038686A JPS635255A JP S635255 A JPS635255 A JP S635255A JP 61150386 A JP61150386 A JP 61150386A JP 15038686 A JP15038686 A JP 15038686A JP S635255 A JPS635255 A JP S635255A
Authority
JP
Japan
Prior art keywords
converter
output
voltage
effect transistor
field effect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61150386A
Other languages
Japanese (ja)
Other versions
JPH052267B2 (en
Inventor
Akio Kaneyoshi
昭雄 兼吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP61150386A priority Critical patent/JPS635255A/en
Publication of JPS635255A publication Critical patent/JPS635255A/en
Publication of JPH052267B2 publication Critical patent/JPH052267B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Analogue/Digital Conversion (AREA)

Abstract

PURPOSE:To shorten the time required in compensation to a large extent and to set accurate voltage, by driving a D/A converter under the control of a microcomputer. CONSTITUTION:A semiconductive biosensor consisting of a reference electric field effect transistor (REFET) and an enzyme membrane electric field effect transistor (ENFET) is immersed in a pH buffer solution not containing a substrate being a measuring object and the potential difference output generated in the sources of REFET and ENFET is amplified by amplifiers 2a-2c and the output of the amplifier 2c is inputted to a microprocessor 4 through an A/D converter 1. A D/A converter 3 is driven by the microprocessor 4 to apply the output of the D/A converter 3 to the output stage of the amplifier 2a having the voltage between sources as differential input as inverse voltage -VOUT and the output voltage VOUT of the amplifier 2a is subjected to zero calibration to perform offset compensation.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はマイコン制御による半導体バイオセンサのオフ
セット補償法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an offset compensation method for a semiconductor biosensor controlled by a microcomputer.

[従来の技術] 従来、半導体バイオセンサのオフセット補償は増幅器に
接続された可変抵抗器の手動調整により行なわれていた
[Prior Art] Conventionally, offset compensation for semiconductor biosensors has been performed by manual adjustment of a variable resistor connected to an amplifier.

[発明が解決しようとする問題点] 半導体バイオセンサは参照用電界効果トランジスタと酵
素膜電界効果トランジスタからなり、被測定溶液に浸し
、溶質に反応しない参照用電界効果トランジスタのソー
ス電位と、溶質と化学反応する酵素膜電界効果トランジ
スタのソース電位との電位差を被測定物(溶質)の濃度
として検出するセンサである。デバイスの生成条件や、
酵素膜の形成方法の僅かな差異によって半導体バイオセ
ンサを緩衝液(被測定物を全く含まない液)に浸した場
合にも酵素膜電界効果トランジスタと参照用電界効果ト
ランジスタのソース・ソース間には電位差(オフセット
電圧)が生じ、この電位差はチップによって異なった値
を持っている。このため、半導体バイオセンサを使用す
る前には必ずオフセット電圧を補償する必要があるが、
センサ信号を入力とする増幅器に接続された可変抵抗器
を手動で調整するのは正確性に欠け、しかも微調整が難
しいのが現状でおる。
[Problems to be Solved by the Invention] A semiconductor biosensor consists of a reference field effect transistor and an enzyme membrane field effect transistor, and is immersed in a solution to be measured to determine the source potential of the reference field effect transistor that does not react with the solute and the solute. This sensor detects the potential difference with the source potential of an enzyme membrane field effect transistor that undergoes a chemical reaction as the concentration of a substance to be measured (solute). device generation conditions,
Due to slight differences in the formation method of the enzyme membrane, even when the semiconductor biosensor is immersed in a buffer solution (a solution that does not contain any analyte), there is a difference between the sources of the enzyme membrane field effect transistor and the reference field effect transistor. A potential difference (offset voltage) occurs, and this potential difference has a different value depending on the chip. Therefore, it is necessary to compensate for the offset voltage before using a semiconductor biosensor.
Currently, manually adjusting a variable resistor connected to an amplifier that receives a sensor signal lacks accuracy, and furthermore, it is difficult to make fine adjustments.

[問題点を解決するための手段] 本発明は参照用電界効果トランジスタと酵素膜電界効果
トランジスタとからなる半導体バイオセンサを測定対象
の基質を含まないI)H緩衝液に浸し、半導体バイオセ
ンサを構成する前記各電界効果トランジスタをソースフ
ォロワ回路にて駆動させ、各ソース電位の電位差から基
質濃度を測定する方法において、測定対象の基質を含ま
ないpH緩衝液に浸した半導体バイオセンサの参照用電
界効果トランジスタと酵素膜電界効果トランジスタとの
ソースに発生する電位差出力を増幅器により増幅した後
、該増幅器の出力をA/Dコンバータに介してマイクロ
プロセッサに入力し、このマイクロプロセッサによりD
/Aコンバータを駆動して該D/Aコンバータの出力を
前記ソース・ソース間電圧を差動入力とする増幅器の出
力段に逆電圧として印加し、前記増幅器の出力電圧を零
校正することを特徴とする半導体バイオセンサのオフセ
ット補償法である。
[Means for Solving the Problems] The present invention involves immersing a semiconductor biosensor consisting of a reference field effect transistor and an enzyme membrane field effect transistor in an I)H buffer solution that does not contain the substrate to be measured. In the method of driving each of the field effect transistors in a source follower circuit and measuring the substrate concentration from the potential difference between the respective source potentials, a reference electric field of a semiconductor biosensor immersed in a pH buffer solution that does not contain the substrate to be measured is used. After the potential difference output generated at the sources of the effect transistor and the enzyme membrane field effect transistor is amplified by an amplifier, the output of the amplifier is input to the microprocessor via the A/D converter, and the microprocessor
The output voltage of the amplifier is zero-calibrated by driving a /A converter and applying the output of the D/A converter as a reverse voltage to an output stage of an amplifier that uses the source-source voltage as a differential input. This is an offset compensation method for semiconductor biosensors.

[原理・作用] 本発明の半導体バイオセンサのオフセット補償法は緩衝
液に浸した半導体バイオセンサの参照用電界効果トラン
ジスタと酵素膜電界トランジスタとのソース・ソース間
の電位差をA/D変換し、オフセット電圧の大きざを認
識した後、これをキャンセルさせる電圧をD/Aコンバ
ータから出力させることによってオフセット電圧を補償
するものでおる。
[Principle/Operation] The semiconductor biosensor offset compensation method of the present invention converts the source-to-source potential difference between the reference field effect transistor and the enzyme membrane field transistor of the semiconductor biosensor immersed in a buffer solution from analog to digital; After recognizing the magnitude of the offset voltage, the offset voltage is compensated for by outputting a voltage from the D/A converter that cancels it.

本発明の半導体バイオセンサのオフセット補償法では、
マイコン制御によってD/Aコンバータを駆動させるこ
とによって正確なオフセット補償ができ、可変抵抗器の
微調整などを必要としない。
In the semiconductor biosensor offset compensation method of the present invention,
By driving the D/A converter under microcomputer control, accurate offset compensation is possible, and fine adjustment of the variable resistor is not required.

[実施例コ 以下、本発明の一実施例を図により説明する。[Example code] Hereinafter, one embodiment of the present invention will be described with reference to the drawings.

第1図は半導体バイオセンサの出力信号をA/Dコンバ
ータ1に入力するための増幅回路であり、オフセット補
償のためにD/Aコンバータ3が接続されている。半導
体バイオセンサの2つの参照用電界効果トランジスタ(
REFE旬と酵素膜電界効果トランジスタ(ENFET
)とのソース電位が1段目のオペアンプ2aの差動入力
となり、半導体バイオセンサが緩衝液に浸されていれば
、2つのREFETとENFETとのソース電位は等し
く、1段目のオペアンプ2aの出力電圧は本来OVにな
るはずでおるが、実際には前述の理由により電位差が生
じ、またオペアンプ自身のオフセット電圧もオペアンプ
の出力端に加えられている。半導体バイオセンサを緩衝
液に浸したときの1段目のオペアンプ2aの出力電圧を
打ち消すために、2段目のオペアンプ?bはD/Aコン
バータ3の出力と、1段目のオペアンプ2aの出力との
/JOtJする加障器として作用する。半導体バイオセ
ンサ@緩衝液に浸したときのREFE丁1段目のオペア
ンプ2aの出力電圧■。UlはVoU丁 =−G (V
E −VR) と表される。したがって、REFETとENFETとの
ソース・ソース間の電位差をA、/Dコンバータ1にて
A/D変換してマイクロプロセッサ4に入力し、マイク
ロプロセッサ4によりD/Aコンバータ3からオフセッ
ト電圧をキャンセルさせる一VOU工の電圧を出力させ
ればオフセット電圧補償が実現される。第2段目のオペ
アンプ2bの出力はオペアンプ2Cを介してA/Dコン
バータ1に入力される。
FIG. 1 shows an amplifier circuit for inputting an output signal of a semiconductor biosensor to an A/D converter 1, to which a D/A converter 3 is connected for offset compensation. Two reference field-effect transistors for semiconductor biosensors (
REFE Shun and Enzyme Membrane Field Effect Transistor (ENFET)
) is the differential input of the first-stage operational amplifier 2a, and if the semiconductor biosensor is immersed in a buffer solution, the source potentials of the two REFETs and ENFETs are equal, and the source potential of the first-stage operational amplifier 2a is the same. Although the output voltage is originally supposed to be OV, in reality, a potential difference occurs due to the above-mentioned reasons, and the offset voltage of the operational amplifier itself is also applied to the output terminal of the operational amplifier. In order to cancel the output voltage of the first stage operational amplifier 2a when the semiconductor biosensor is immersed in the buffer solution, the second stage operational amplifier is used. b acts as a hindrance between the output of the D/A converter 3 and the output of the first-stage operational amplifier 2a. Semiconductor biosensor @ Output voltage of the first stage operational amplifier 2a of REFE when immersed in buffer solution■. Ul is VoU ding =-G (V
E-VR). Therefore, the potential difference between the sources of REFET and ENFET is A/D converted by the A/D converter 1 and inputted to the microprocessor 4, and the offset voltage from the D/A converter 3 is canceled by the microprocessor 4. Offset voltage compensation can be achieved by outputting a voltage of one VOU. The output of the second stage operational amplifier 2b is input to the A/D converter 1 via the operational amplifier 2C.

第2図はオフセット電・圧補償をするために用いるD/
Aコンバータ3の出力変化と、センサ信号を受けるA/
Dコンバータ1の入力変化を同一時間軸上に示したもの
で必る。オフセット電圧として予想される最大値のG倍
(1段目のオペアンプ2aの増幅率)の範囲(±1〜±
3V程度)でD/Aコンバータ3をマイコン制御によっ
て1ステツプ(1〜3mV程度)ずつ上げて(又は下げ
て〉出力させ、このときのAIDコンバータ1の入力電
圧がOVに等しいか、またはD/Aコンバータ3の出力
電圧範囲中、A/Dコンバータ1の入力電圧が最もOv
に近づいたときのD/Aコンバータ3の出力値が−V。
Figure 2 shows the D/V used for offset voltage/voltage compensation.
Changes in the output of the A converter 3 and the A/
It is necessary to show the input changes of the D converter 1 on the same time axis. The range (±1 to ±
3V), the D/A converter 3 is controlled by the microcomputer to raise (or lower) the output by one step (about 1 to 3mV), and then check whether the input voltage of the AID converter 1 at this time is equal to OV or if the D/A converter 3 is In the output voltage range of A converter 3, the input voltage of A/D converter 1 is the highest
The output value of the D/A converter 3 when it approaches -V.

0丁である。It is 0 pieces.

この出力値−V OUTをメモリに記憶しておき、半導
体バイオセンサを用いて実際に被測定溶液を測定する場
合に、D/Aコンバータ3から−VO(J□の電圧を出
力させておけば、オフセット電圧による誤差は極めて小
さくなり正しいセンサ信号の大きさを認識することがで
きる。
If you store this output value -V OUT in memory and output a voltage of -VO (J , the error caused by the offset voltage becomes extremely small, and the correct magnitude of the sensor signal can be recognized.

これによって、オフセット電圧補償に要する時間が大幅
に短縮(約2秒未満)され、しかも正確に補償すること
が可能である。
This significantly reduces the time required for offset voltage compensation (less than about 2 seconds), yet allows accurate compensation.

「発明の効果] 以上説明したように本発明の半導体バイオセンサのオフ
セット補償法はマイコン制御可能なD/Aコンバータを
用いることによって、補償に要する時間を大幅に短縮で
き、しかも可変抵抗器を手動により調節するよりも正確
に電圧を設定することができる効果がある。
"Effects of the Invention" As explained above, the semiconductor biosensor offset compensation method of the present invention uses a D/A converter that can be controlled by a microcomputer, thereby significantly shortening the time required for compensation. This has the effect that the voltage can be set more accurately than by adjusting the voltage.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明で使用するセンサ信号の増幅回路を示す
回路図、第2図(a)は同一時間上に示したD/Aコン
バータの出力特性図、(b)はA/Dコンバータの入力
特性図でおる。 1・・・A/Dコンバータ 2a、 2b、 2c・・・オペアンプ3・・・D/A
コンバータ
Figure 1 is a circuit diagram showing the sensor signal amplification circuit used in the present invention, Figure 2 (a) is an output characteristic diagram of the D/A converter shown at the same time, and (b) is the output characteristic diagram of the A/D converter. This is an input characteristic diagram. 1... A/D converter 2a, 2b, 2c... operational amplifier 3... D/A
converter

Claims (1)

【特許請求の範囲】[Claims] (1)参照用電界効果トランジスタと酵素膜電界効果ト
ランジスタとからなる半導体バイオセンサを測定対象の
基質を含まないpH緩衝液に浸し、半導体バイオセンサ
を構成する前記電界効果トランジスタをソースフォロワ
回路にて駆動させ、各ソース電位の電位差から基質濃度
を測定する方法において、測定対象の基質を含まないp
H緩衝液に浸した半導体バイオセンサの参照用電界効果
トランジスタと酵素膜電界効果トランジスタとのソース
に発生する電位差出力を増幅器により増幅した後、該増
幅器の出力をA/Dコンバータに介してマイクロプロセ
ッサに入力し、このマイクロプロセッサによりD/Aコ
ンバータを駆動して該D/Aコンバータの出力を前記ソ
ース・ソース間電圧を差動入力とする増幅器の出力段に
逆電圧として印加し、前記増幅器の出力電圧を零校正す
ることを特徴とする半導体バイオセンサのオフセット補
償法。
(1) A semiconductor biosensor consisting of a reference field effect transistor and an enzyme film field effect transistor is immersed in a pH buffer solution that does not contain the substrate to be measured, and the field effect transistor constituting the semiconductor biosensor is connected to a source follower circuit. In the method of measuring the substrate concentration from the potential difference between each source potential, p
After amplifying the potential difference output generated at the sources of the reference field effect transistor of the semiconductor biosensor and the enzyme membrane field effect transistor immersed in the H buffer solution using an amplifier, the output of the amplifier is sent to the microprocessor via an A/D converter. This microprocessor drives a D/A converter and applies the output of the D/A converter as a reverse voltage to the output stage of an amplifier which uses the source-source voltage as a differential input. An offset compensation method for a semiconductor biosensor characterized by zero-calibrating the output voltage.
JP61150386A 1986-06-25 1986-06-25 Method for compensating offset of semiconductive biosensor Granted JPS635255A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61150386A JPS635255A (en) 1986-06-25 1986-06-25 Method for compensating offset of semiconductive biosensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61150386A JPS635255A (en) 1986-06-25 1986-06-25 Method for compensating offset of semiconductive biosensor

Publications (2)

Publication Number Publication Date
JPS635255A true JPS635255A (en) 1988-01-11
JPH052267B2 JPH052267B2 (en) 1993-01-12

Family

ID=15495858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61150386A Granted JPS635255A (en) 1986-06-25 1986-06-25 Method for compensating offset of semiconductive biosensor

Country Status (1)

Country Link
JP (1) JPS635255A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012252008A (en) * 2011-06-06 2012-12-20 Robert Bosch Gmbh Method and device for calculating measurement value of chemical sensitivity field effect transistor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012252008A (en) * 2011-06-06 2012-12-20 Robert Bosch Gmbh Method and device for calculating measurement value of chemical sensitivity field effect transistor

Also Published As

Publication number Publication date
JPH052267B2 (en) 1993-01-12

Similar Documents

Publication Publication Date Title
Turner et al. A CMOS potentiostat for amperometric chemical sensors
Chung et al. ISFET performance enhancement by using the improved circuit techniques
JP2708276B2 (en) Excitation circuit for biosensor electrode
Goh et al. A CMOS-based ISFET chemical imager with auto-calibration capability
US20100066378A1 (en) Current Mirror Potentiostat
Zhu et al. Research of CMOS biosensor IC for extracellular electrophysiological signal recording and pH value measuring
US7981264B2 (en) Drift calibration method and device for the potentiometric sensor
JPH04254750A (en) Measuring circuit for biosensor utilizing ion sensitive field-effect transistor
US4879517A (en) Temperature compensation for potentiometrically operated ISFETS
EP0223597B1 (en) Buffer compensation in enzyme - modified ion sensitive devices
JPH0512883B2 (en)
Kakerow et al. A monolithic sensor array of individually addressable microelectrodes
JPS635255A (en) Method for compensating offset of semiconductive biosensor
US5602467A (en) Circuit for measuring ion concentrations in solutions
US11841340B2 (en) Interface electronic device for reading an output signal and for controlling and conditioning a three-electrodes amperometric sensor
US20040132204A1 (en) Portable pH detector
JPS6260662B2 (en)
JP2021105564A (en) Ion sensor device
KR910006276B1 (en) Circuit for measuring ion condensation using transistor
US8852421B2 (en) Converter for use with sensing devices
JPS5982082A (en) Apparatus for determining glucose concentration
JPH0441613Y2 (en)
Prathap et al. ISFET Pixel Array With Selectable Sensitivity and Bulk-Based Offset-Drift Nullification Capability for Reduction of Non-Ideality Effects
JPH02280047A (en) One-chip semiconductor biosensor
JPS63187131A (en) Zero point compensation circuit of pressure transducer

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term