JPS6352550B2 - - Google Patents

Info

Publication number
JPS6352550B2
JPS6352550B2 JP7102084A JP7102084A JPS6352550B2 JP S6352550 B2 JPS6352550 B2 JP S6352550B2 JP 7102084 A JP7102084 A JP 7102084A JP 7102084 A JP7102084 A JP 7102084A JP S6352550 B2 JPS6352550 B2 JP S6352550B2
Authority
JP
Japan
Prior art keywords
plasma
emission spectrum
adhesion strength
coating film
intensity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7102084A
Other languages
Japanese (ja)
Other versions
JPS60217244A (en
Inventor
Koichiro Itagaki
Kyotaka Komatsubara
Kazuo Igarashi
Katsuichi Jusai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanto Jidosha Kogyo KK
Toyota Motor Corp
Original Assignee
Kanto Jidosha Kogyo KK
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanto Jidosha Kogyo KK, Toyota Motor Corp filed Critical Kanto Jidosha Kogyo KK
Priority to JP7102084A priority Critical patent/JPS60217244A/en
Publication of JPS60217244A publication Critical patent/JPS60217244A/en
Publication of JPS6352550B2 publication Critical patent/JPS6352550B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、特にオレフイン系樹脂に対して塗膜
の付着性を向上させるためにプラズマ前処理を伴
う塗装により形成した塗膜の付着強度の変動を管
理する方法及び装置に関するものである。 従来、この種の装置に用いるマイクロ波プラズ
マ処理装置においては、プラズマを発生させるパ
ラメータを予めセツトして所定量のプラズマを発
生させ、処理効果は被処理物の水滴接触角及び塗
装後の塗膜付着(剥離)強度により後で確認して
いた。例えば第1図によるマイクロ波プラズマ処
理装置(後述)においては、マイクロ波発振器1
の出力及び発振時間、ガスボンベ6の処理ガスの
種類及びその流量並びに反応室13の真空度が、
プラズマ発生量を規定するパラメータとなり、こ
れらはパワーモニタ3、ガス流量計7及び真空度
計(図示せず)で監視できるが、煩雑であるばか
りでなく、プラズマ発生量の変動をプラズマ処理
中に正確に検知するのは難しかつた。 よつて、本発明は冒頭に述べた方法による塗装
に際してマイクロ波プラズマ処理装置におけるプ
ラズマ発生量の変動に起因する塗膜付着強度の低
減等の変動を未然に容易、かつ確実に防止できる
塗膜の付着強度管理方法及び装置を提供すること
を目的とする。そして本発明は、塗膜付着強度、
つまりプラズマ発生量とプラズマ発光現象との間
に相関があるとの確認を基にプラズマ処理中プラ
ズマの発光スペクトル強度または発光量を監視
し、その変動を検知することにより前記目的を達
成した。 第1図はこのようなプラズマ発光におけるスペ
クトル相対強度と塗膜付着強度との相関関係を実
験的に確認するための装置である。即ち、1はマ
イクロ波発振器、2はアイソレータ、3はパワー
モニタ、4は整合器、6は処理ガスの充填された
ガスボンベ、7はガス流量計、10は導波管5は
通して供給されるマイクロ波をパイプ8を通して
供給される処理ガスへ加えることによりマイクロ
波プラズマを発生させるプラズマ発生炉、11は
マイクロ波プラズマを伝送する石英管、12はテ
フロン製ジヨイント、13は排気口14を通して
真空ポンプ(図示せず)により真空化されている
反応室、15は反応室13内において被処理物に
プラズマを照射するプラズマ照射管である。 このようなプラズマ処理装置1〜8、10〜1
5自体は従来通りのものであるが、この装置の石
英管11に、プラズマの発光を分光後スペクトル
相対強度として表示するスペクトル強度測定装置
18へプラズマの発光を送出する光フアイバー1
7が取付けられている。 一方、プラズマ処理した後に塗装してその塗膜
強度を測定する試験片は、次のようにして製作す
る。即ち、ポリプロピレン平板成形品22を先ず
洗浄のためにトリクロルエタン蒸気槽中に吊り下
げて2分間曝露後、吊り上げて乾燥させ、次に前
述の第1図による装置により種々の条件下でプラ
ズマ処理を行なう。続いて、ウレタン系塗料を厚
さ50μに塗装し、120℃において30分間乾燥させ
ることにより平板成形品22に塗膜20を形成さ
せ、その中央部を50×10mmの方形状に切り出す
ことにより製作する。このように製作された試験
片23の塗膜付着強度の試験は、第2図に示すよ
うに、その長手方向の上端部を約10mmにわたり
ナイフにて塗膜20を剥離させ、セロハンテープ
21でサンドイツチ状に挟み込んだ後、塗膜20
が剥離された平板成形品部分22aとセロハンテ
ープ21とを引張試験機のチヤツクに固定し、引
張速度50mm/minにて行つた。 次に、前述のプラズマ処理装置1〜8、10〜
15及びプラズマ発光のスペクトル強度測定装置
18並びに前述の試験片23に対する強度試験方
法により確認したプラズマ発光におけるスペクト
ル相対強度と塗膜付着強度との相関関係の実験結
果について説明する。 ポリプロピレン平板成形品22のプラズマ処理
に先立ち、発光スペクトルの再現性を確認するた
め、処理ガスが一定流量の乾燥空気、マイクロ波
発振器1の出力電力が1kWそして反応室13の
真空度が1Torr及び4Torrにおける発光スペクト
ルを2回測定した(第3図a,b、第4図a,
b)。そして発光スペクトルの中から波長320nm、
345nm、360nm、600nm、670nm付近に最大値を
もつスペクトルを選びベースライン法により発光
スペクトル相対強度を求めた(表1)。
The present invention relates to a method and apparatus for managing variations in the adhesion strength of a coating film formed by coating with plasma pretreatment in order to improve the adhesion of the coating film, particularly to olefinic resins. Conventionally, in microwave plasma processing equipment used for this type of equipment, plasma generation parameters are set in advance to generate a predetermined amount of plasma, and the treatment effect is determined by the contact angle of water droplets on the object to be treated and the coating film after painting. This was confirmed later based on adhesion (peel) strength. For example, in the microwave plasma processing apparatus shown in FIG. 1 (described later), the microwave oscillator 1
output and oscillation time, the type and flow rate of the processing gas in the gas cylinder 6, and the degree of vacuum in the reaction chamber 13,
These are parameters that define the amount of plasma generated, and these can be monitored using the power monitor 3, gas flow meter 7, and vacuum gauge (not shown), but this is not only complicated, but also allows for monitoring fluctuations in the amount of plasma generated during plasma processing. It was difficult to detect accurately. Therefore, the present invention provides a coating film that can easily and reliably prevent fluctuations such as a reduction in coating film adhesion strength caused by fluctuations in the amount of plasma generated in a microwave plasma processing device when painting using the method described at the beginning. An object of the present invention is to provide a bond strength management method and device. The present invention also provides coating film adhesion strength,
That is, based on the confirmation that there is a correlation between the amount of plasma generated and the phenomenon of plasma light emission, the above object was achieved by monitoring the emission spectrum intensity or amount of light emission of the plasma during plasma processing and detecting its fluctuations. FIG. 1 shows an apparatus for experimentally confirming the correlation between the relative spectral intensity and coating adhesion strength in such plasma emission. That is, 1 is a microwave oscillator, 2 is an isolator, 3 is a power monitor, 4 is a matching device, 6 is a gas cylinder filled with processing gas, 7 is a gas flow meter, and 10 is supplied through the waveguide 5. A plasma generation furnace that generates microwave plasma by adding microwaves to the processing gas supplied through a pipe 8, 11 a quartz tube that transmits the microwave plasma, 12 a Teflon joint, and 13 a vacuum pump that passes through an exhaust port 14. A reaction chamber 15 is evacuated by a vacuum cleaner (not shown), and a plasma irradiation tube 15 irradiates the object to be treated with plasma in the reaction chamber 13 . Such plasma processing apparatuses 1-8, 10-1
5 itself is the same as before, but an optical fiber 1 is attached to the quartz tube 11 of this device to send the plasma emission to a spectral intensity measuring device 18 that displays the plasma emission as a spectral relative intensity after spectroscopy.
7 is installed. On the other hand, a test piece to be coated after plasma treatment and to measure the strength of the coating film is manufactured as follows. That is, the polypropylene flat plate molded product 22 was first suspended in a trichloroethane vapor bath for cleaning, exposed for 2 minutes, then lifted and dried, and then subjected to plasma treatment under various conditions using the apparatus shown in FIG. Let's do it. Next, urethane paint was applied to a thickness of 50 μm and dried at 120°C for 30 minutes to form a coating film 20 on the flat molded product 22, and the central part was cut out into a rectangular shape of 50 x 10 mm. do. To test the coating film adhesion strength of the test piece 23 manufactured in this way, as shown in FIG. After sandwiching it in a sandwich shape, the coating film 20
The flat plate molded part 22a from which the peeled part 22a and the cellophane tape 21 were fixed to the chuck of a tensile tester, and the test was carried out at a tensile speed of 50 mm/min. Next, the above-mentioned plasma processing apparatuses 1 to 8, 10 to
Experimental results of the correlation between the relative spectral intensity of plasma emission and the coating film adhesion strength, which were confirmed by the intensity test method for the above-mentioned test piece 23 and 15 and plasma emission spectral intensity measuring device 18, will be explained. Prior to the plasma treatment of the polypropylene flat plate molded product 22, in order to confirm the reproducibility of the emission spectrum, the processing gas was dry air at a constant flow rate, the output power of the microwave oscillator 1 was 1 kW, and the vacuum degree of the reaction chamber 13 was 1 Torr and 4 Torr. The emission spectrum was measured twice (Fig. 3 a, b, Fig. 4 a,
b). And from the emission spectrum, the wavelength is 320nm,
Spectra with maximum values near 345 nm, 360 nm, 600 nm, and 670 nm were selected, and the relative intensity of the emission spectra was determined by the baseline method (Table 1).

【表】 これにより、1回目と2回目の各波長における
発光スペクトル相対強度の差は0〜5.8%であり、
良い再現性が得られ、所定の入力系の設定の基で
は一定の発光スペクトル相対強度を呈することが
分る。 発光スペクトル相対強度と塗膜付着強度との相
関関係の確認のために、トルクロルエタン蒸気洗
浄を終えたポリプロピレン平板成形品22に対し
て、マイクロ波出力:1KW、処理時間:30秒、
処理ガス:乾燥空気の条件下で、反応室13の真
空度を0.5、1、4及び8Torrに変化させ第5図
a〜dに示す発光スペクトル相対強度を先ず測定
した。表2はこの測定において各真空度でのピー
クを呈する波長320、345、360、600及び670nm付
近の最大発光スペクトル相対強度を示し、前述の
方法で行つたこれらのプラズマ発光状態に対応す
る塗膜付着強度の試験結果も併記してある。
[Table] As a result, the difference in the relative intensity of the emission spectrum at each wavelength between the first and second times is 0 to 5.8%,
It can be seen that good reproducibility is obtained and that the emission spectrum exhibits a constant relative intensity under a given input system setting. In order to confirm the correlation between the relative intensity of the emission spectrum and the adhesion strength of the coating film, a polypropylene flat plate molded product 22 that had been subjected to torchloroethane steam cleaning was subjected to microwave output: 1 KW, processing time: 30 seconds,
Under the conditions of process gas: dry air, the degree of vacuum in the reaction chamber 13 was varied to 0.5, 1, 4, and 8 Torr, and the relative intensities of the emission spectra shown in FIGS. 5a to 5d were first measured. Table 2 shows the relative intensities of the maximum emission spectra around wavelengths 320, 345, 360, 600 and 670 nm that exhibit peaks at each degree of vacuum in this measurement, and the coating films corresponding to these plasma emission states conducted using the method described above. Adhesion strength test results are also listed.

【表】 第6図a,b及びcは、これら測定及び試験結
果を基に波長320、345及び360nm付近における最
大の発光スペクトル相対強度と塗膜付着強度との
相関関係を示す。そして第6図の関係から、紫外
領域の発光スペクトルについて相対強度0.08〜
0.14を境にそれ以上では塗膜付着強度が一定にな
り、それ以下では急減することが分る。同様に第
7図a及びbでは、600及び670nm付近における
最大発光スペクトルとの相関関係を示す。第7図
の関係から可視領域では相対強度がほぼ0を境に
それ以上で急増して一定になることが分る。 以上のように確認されたプラズマ発光スペクト
ル相対強度と塗膜付着強度との相対関係から特定
の波長についての発光スペクトル相対強度を監視
し、その基準レベルからの変動を監視すれば塗膜
付着強度の変動を検知できることが分る。また、
発光スペクトル相対強度の変化は、発光スペクト
ル強度の絶対値の変動に対応することを意味する
から、絶対強度を測定しても良い。第5図からも
分るように発光スペクトル相対強度の変動は、全
発光波長領域にわたつて同じ割合で変動するた
め、監視すべき波長を敢えて選択しなくても、各
発光スペクトル相対強度の積分値又は一定の波長
領域にわたる発光の全体量を測定すれば良い。 次に本発明による方法を実施するための装置を
説明する。 第8図において、30は第1図の発光スペクト
ル強度測定装置18からの特定の波長例えば
320nm近辺で最大の発光スペクトル強度信号をア
ナログ的に保持する保持回路、31は被塗物の塗
膜付着強度を確実に一定レベルに保持できる発光
スペクトルの相対強度例えば0.15に相当する基準
レベルから保持回路30の出力信号が下廻る方向
へ変動するのを検知する比較器、32はこの比較
器の出力信号で作動して音響もしくは光学的に警
報を発する警報器である。即ちプラズマ発光測定
器としての発光スペクトル強度測定装置18に後
続する保持回路30の出力信号を比較器31で監
視しておき、基準レベルを下廻ると警報器32に
より警報を発することにより、プラズマ発生量の
異常低減が検知でき、直ちにプラズマ処理装置の
異常を点検できる。保持回路30の代りに入力側
にA/Dコンバータ及び出力側にD/Aコンバー
タを備えたマイクロコンピユータとスペクトル強
度測定装置18とで光量測定器を構成すると、特
定波長域の発光スペクトル強度の積分値、或は複
数の波長域についての平均もしくは積分値と基準
レベルとの比較が可能になる。さらに、基準レベ
ルを第6図aにおける立上り領域の任意の塗膜付
着強度に相当するように設定し、比較器において
この基準レベルから所定量だけ増減方向に発光ス
ペクトル強度信号が変動するのを検知させると、
任意の付着強度範囲に管理できる。 第9図においては第1図の光フアイバー17
に、入射光量に対応したレベルの電気信号を出力
するプラズマ発光測定器としての光電変換回路3
5、比較器36及び警報器37が後続している。
この場合、光電変換回路35の出力信号レベル
と、塗膜付着強度との相関関係を予め測定してお
き、その結果に応じて比較器36の基準レベルを
設定しておくことにより、スペクトル強度の測定
は不要となり装置が簡単・安価になる。 発光スペクトル強度または発光量の基準レベル
に対する誤差信号をプラズマ発生量を設定する入
力パラメータ系に帰還制御させることにより、発
光スペクトル強度または発光量を一定にするサー
ボ制御も可能である。 以上、本発明によりマイクロ波プラズマ前処理
を伴う塗装法の実施に際してプラズマ発光スペク
トル強度または発光量の変動を監視することによ
り、簡単な方法でプラズマ発生量の変動に起因す
る塗膜の付着強度の低下を確実に防止したり或は
所望の付着強度を精度よく確保する塗膜付着強度
の管理が可能となる。即ち、プラズマ処理の異常
を処理中に高信頼度下で検知でき、被処理物の不
良を未然に確実に防止できる。また、必要により
付着強度を基準にしたプラズマ発生装置の自動制
御も可能になる。
[Table] Figures 6a, b, and c show the correlation between the maximum relative intensity of the emission spectrum near wavelengths of 320, 345, and 360 nm and the coating film adhesion strength based on these measurement and test results. From the relationship shown in Figure 6, the relative intensity of the emission spectrum in the ultraviolet region is 0.08~
It can be seen that the coating film adhesion strength becomes constant above 0.14, and decreases rapidly below it. Similarly, FIGS. 7a and 7b show the correlation with the maximum emission spectra around 600 and 670 nm. From the relationship shown in FIG. 7, it can be seen that in the visible region, the relative intensity reaches approximately 0, rapidly increases above it, and becomes constant. By monitoring the relative intensity of the emission spectrum for a specific wavelength from the relative relationship between the relative intensity of the plasma emission spectrum and the coating film adhesion strength confirmed as above, and monitoring its fluctuation from the reference level, it is possible to determine the coating film adhesion strength. It turns out that fluctuations can be detected. Also,
Since a change in the relative intensity of the emission spectrum corresponds to a change in the absolute value of the intensity of the emission spectrum, the absolute intensity may be measured. As can be seen from Figure 5, the fluctuations in the relative intensity of the emission spectra vary at the same rate over the entire emission wavelength range, so it is possible to integrate the relative intensity of each emission spectrum without having to deliberately select the wavelength to be monitored. It is sufficient to measure the value or the total amount of light emission over a certain wavelength range. Next, an apparatus for carrying out the method according to the invention will be described. In FIG. 8, 30 indicates a specific wavelength, for example, from the emission spectrum intensity measuring device 18 of FIG.
A holding circuit that holds the maximum emission spectrum intensity signal in the vicinity of 320 nm in an analog manner, 31 is the relative intensity of the emission spectrum that can reliably maintain the coating adhesion strength of the object to be coated at a constant level, and holds it from a reference level corresponding to, for example, 0.15. A comparator 32 detects a downward change in the output signal of the circuit 30, and a warning device 32 is activated by the output signal of the comparator to issue an acoustic or optical alarm. That is, the comparator 31 monitors the output signal of the holding circuit 30 following the emission spectrum intensity measuring device 18 as a plasma luminescence measuring device, and when the signal falls below a reference level, the alarm 32 issues an alarm, thereby detecting plasma generation. Abnormal reductions in the amount of plasma can be detected, and abnormalities in the plasma processing equipment can be immediately checked. If a light intensity measuring device is configured with a microcomputer equipped with an A/D converter on the input side and a D/A converter on the output side instead of the holding circuit 30 and the spectral intensity measuring device 18, it is possible to integrate the emission spectrum intensity in a specific wavelength range. It becomes possible to compare the value, or the average or integral value for multiple wavelength ranges, with a reference level. Furthermore, the reference level is set to correspond to the arbitrary coating film adhesion strength in the rising region in Figure 6a, and the comparator detects that the emission spectrum intensity signal fluctuates by a predetermined amount in the direction of increase or decrease from this reference level. If you let
Adhesive strength can be controlled within any desired range. In FIG. 9, the optical fiber 17 of FIG.
A photoelectric conversion circuit 3 serves as a plasma luminescence measurement device that outputs an electrical signal at a level corresponding to the amount of incident light.
5. Comparator 36 and alarm 37 follow.
In this case, by measuring the correlation between the output signal level of the photoelectric conversion circuit 35 and the coating film adhesion strength in advance and setting the reference level of the comparator 36 according to the result, the spectral intensity can be adjusted. Measurement is not required, making the device simple and inexpensive. It is also possible to perform servo control to keep the emission spectrum intensity or emission amount constant by feedback-controlling an error signal with respect to a reference level of the emission spectrum intensity or emission amount to an input parameter system that sets the plasma generation amount. As described above, by monitoring the fluctuations in plasma emission spectrum intensity or luminescence amount when implementing a coating method involving microwave plasma pretreatment according to the present invention, it is possible to easily reduce the adhesion strength of a coating film caused by fluctuations in the amount of plasma generation. It becomes possible to manage the coating film adhesion strength to reliably prevent deterioration or ensure the desired adhesion strength with precision. That is, abnormalities in plasma processing can be detected with high reliability during processing, and defects in the object to be processed can be reliably prevented. Furthermore, if necessary, it becomes possible to automatically control the plasma generator based on the adhesion strength.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はプラズマ処理装置及び本発明によるプ
ラズマ発光スペクトル測定装置の概略構成、第2
図は第1図による装置によりプラズマ処理された
後に塗装された試験片の付着強度の試験方法の説
明図、第3図及び第4図は第1図の装置により発
生したプラズマの発光スペクトル相対強度の再現
性を確認するための測定結果、第5図は第1図に
よる装置の反応室の真空度を可変したときのプラ
ズマの発光スペクトル相対強度の測定結果、第6
図及び第7図はプラズマの発光スペクトル相対強
度と塗膜付着強度との相関関係の実験結果並びに
第8図及び第9図は本発明による方法を実施する
ための装置を示す。 1…マイクロ波発振器、6…ガスボンベ、10
…プラズマ発生炉、17…光フアイバ、13…反
応室、14…排気口。
FIG. 1 shows the schematic configuration of a plasma processing apparatus and a plasma emission spectrum measuring apparatus according to the present invention, and FIG.
The figure is an explanatory diagram of the method for testing the adhesion strength of a painted specimen after plasma treatment using the apparatus shown in Fig. 1, and Figs. 3 and 4 show the relative intensity of the emission spectrum of the plasma generated by the apparatus shown in Fig. 1. Figure 5 shows the measurement results of the relative intensity of the plasma emission spectrum when varying the degree of vacuum in the reaction chamber of the apparatus shown in Figure 1.
7 and 7 show the experimental results of the correlation between the relative intensity of the emission spectrum of the plasma and the coating adhesion strength, and FIGS. 8 and 9 show the apparatus for carrying out the method according to the invention. 1...Microwave oscillator, 6...Gas cylinder, 10
...Plasma generation furnace, 17...Optical fiber, 13...Reaction chamber, 14...Exhaust port.

Claims (1)

【特許請求の範囲】 1 マイクロ波プラズマ前処理を伴う塗装により
形成された被塗物の塗膜の付着強度変動を管理す
る方法において、被塗物をマイクロ波プラズマ処
理するためのプラズマの発光スペクトル強度また
は発光量を監視し、この発光スペクトル強度また
は発光量の変動により塗膜付着強度の変動を検知
することを特徴とする方法。 2 処理ガス及びマイクロ波を供給されることに
よりマイクロ波プラズマを発生するプラズマ発生
炉から被塗物を収納する真空化された反応室に至
る間に設けられてマイクロ波プラズマの発光スペ
クトル強度または発光量を測定するプラズマ発光
測定器と、この測定器の出力信号が所定の塗膜付
着強度をもたらす発光スペクトル強度または発光
量に相当する予め設定した基準レベルから変動す
るのを検知する比較器と、この比較器の検知信号
により作動する警報器とを備えたことを特徴とす
るプラズマ前処理を伴う塗装法における塗膜の付
着強度管理装置。
[Scope of Claims] 1. In a method for managing adhesion strength fluctuations of a coating film on an object to be coated formed by coating with microwave plasma pre-treatment, an emission spectrum of plasma for treating an object to be coated with microwave plasma A method characterized by monitoring the intensity or amount of luminescence, and detecting changes in coating film adhesion strength based on fluctuations in the emission spectrum intensity or amount of luminescence. 2. A plasma generating furnace that generates microwave plasma by being supplied with processing gas and microwaves, and a vacuum reaction chamber that stores the object to be coated, is installed to control the emission spectrum intensity or luminescence of microwave plasma. a plasma luminescence measuring device for measuring the amount of light emitted from the plasma; An apparatus for controlling adhesion strength of a coating film in a coating method involving plasma pretreatment, characterized by comprising an alarm activated by a detection signal of the comparator.
JP7102084A 1984-04-11 1984-04-11 Adhesion control of coating films in coating process including plasma pretreatment Granted JPS60217244A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7102084A JPS60217244A (en) 1984-04-11 1984-04-11 Adhesion control of coating films in coating process including plasma pretreatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7102084A JPS60217244A (en) 1984-04-11 1984-04-11 Adhesion control of coating films in coating process including plasma pretreatment

Publications (2)

Publication Number Publication Date
JPS60217244A JPS60217244A (en) 1985-10-30
JPS6352550B2 true JPS6352550B2 (en) 1988-10-19

Family

ID=13448416

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7102084A Granted JPS60217244A (en) 1984-04-11 1984-04-11 Adhesion control of coating films in coating process including plasma pretreatment

Country Status (1)

Country Link
JP (1) JPS60217244A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0464324U (en) * 1990-10-15 1992-06-02

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6316703U (en) * 1986-07-17 1988-02-03

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0464324U (en) * 1990-10-15 1992-06-02

Also Published As

Publication number Publication date
JPS60217244A (en) 1985-10-30

Similar Documents

Publication Publication Date Title
US20210225622A1 (en) Substrate treatment apparatus and substrate treatment method for monitoring integrated value
US5665214A (en) Automatic film deposition control method and system
US4317698A (en) End point detection in etching wafers and the like
US6297064B1 (en) End point detecting method for semiconductor plasma processing
US7501292B2 (en) Method for managing UV irradiation for curing semiconductor substrate
US10262841B2 (en) Plasma monitoring device
CA2939534C (en) Photo-acoustic device and method for non-contact measurement of thin layers
EP0129199A1 (en) A method for controlling the operation of a microwave-excited oxygen plasma surface treatment apparatus
JPH01108378A (en) Sputtering device
JPH11237281A (en) Measuring method for electromagnetic radiation
US6060329A (en) Method for plasma treatment and apparatus for plasma treatment
JPS6352550B2 (en)
US5284547A (en) Plasma-process system with batch scheme
WO2019109385A1 (en) Method, device, and system for measuring coating thickness
Schaepkens et al. Gas-phase studies in inductively coupled fluorocarbon plasmas
US9656292B2 (en) Coating method, coating device and coating generating system
JPS6314421A (en) Plasma chemical vapor deposition method
US5173146A (en) Plasma treatment method
JPH0237089B2 (en)
US5064679A (en) Plasma treatment method
EP0645008A1 (en) Endpoint detection technique using signal slope determinations
TW201108869A (en) Plasma processing system, plasma processing method and plasma detecting device
JP2000021856A (en) Setting method for semiconductor manufacturing conditions, device for setting the semiconductor manufacturing conditions, semiconductor manufacturing equipment using the device and semiconductor substrate manufactured by the semiconductor manufacturing equipment
JPH05315266A (en) Cvd growing apparatus
US20150110949A1 (en) Vacuum In-Situ Thin Layer Color Deposition System and Method