JPS60217244A - Adhesion control of coating films in coating process including plasma pretreatment - Google Patents

Adhesion control of coating films in coating process including plasma pretreatment

Info

Publication number
JPS60217244A
JPS60217244A JP7102084A JP7102084A JPS60217244A JP S60217244 A JPS60217244 A JP S60217244A JP 7102084 A JP7102084 A JP 7102084A JP 7102084 A JP7102084 A JP 7102084A JP S60217244 A JPS60217244 A JP S60217244A
Authority
JP
Japan
Prior art keywords
plasma
intensity
adhesion strength
emission spectrum
coating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7102084A
Other languages
Japanese (ja)
Other versions
JPS6352550B2 (en
Inventor
Koichiro Itagaki
板垣 宏一郎
Kiyotaka Komatsubara
小松原 清隆
Kazuo Igarashi
五十嵐 和男
Katsuichi Tomonari
友斉 勝一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanto Jidosha Kogyo KK
Toyota Motor Corp
Original Assignee
Kanto Jidosha Kogyo KK
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanto Jidosha Kogyo KK, Toyota Motor Corp filed Critical Kanto Jidosha Kogyo KK
Priority to JP7102084A priority Critical patent/JPS60217244A/en
Publication of JPS60217244A publication Critical patent/JPS60217244A/en
Publication of JPS6352550B2 publication Critical patent/JPS6352550B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)

Abstract

PURPOSE:When the article to be coated is previously treated with plasma, the emission speactra is detected and monitored to control the adhesion strength of the coating film depending on plasma quantity to ensure easily and steadily the prevention in decrease or fluctuation in adhesion strength. CONSTITUTION:In the coating operation which is accompanied by pretreatment with microwave plasma, the intensity or energy of the emission spectra of the plasma for pretreatment is monitered so that the fluctuation in intensity or energy tells the change in adhesion strength of the coating films. Microwaves are generated in the plasma treatment system provided with microwave generator 1, isolator 2, power monitor 3, matching device 4, gas bomb 6 and gas flow meter 7 and fed through duct 5, then combined with a gas from pipe 8 to generate plasma in the chamber 10. The plasma generated sent through quartz tube 11, joint 12 into the evacuated reactor 13 to irradiate the substrate with the plasma from pipe 15. At this time, the plasma emission is sent through optical fiber 17 to the spectrophotometer 18.

Description

【発明の詳細な説明】 木発明は、特にオレフ、Cン系樹脂に対して塗膜の付着
性を向−トさせるためにプラズマi!1処理を伴う塗装
により形成した塗l々の付着強度の変動を管理する方法
及び装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION In order to improve the adhesion of coating films, especially to olefin and C-based resins, the present invention uses plasma i! The present invention relates to a method and apparatus for managing variations in adhesion strength of coatings formed by coating with one treatment.

従来、この種の装置に用いるマイクロ波プラズマ処理装
置においては、プラズマを発生させるパラメータヲ予メ
セットして所定量のプラズマ前処理させ、処理効果は被
処理物の水滴接触角及び塗装後の@膜付着(剥離)強度
により後で確認していた。例えば第1図によるマイクロ
波プラズマ処理装置(後述)においては、マイクロ波発
生器3の出力及び発振時間、ガスボンベ6の処理ガスの
種類及びその流都並ひに処理室13の真空度が、プ □
ラズマ発生量を規定するパラ、メータとなり、これらは
パワーモニタ3、ガス流量計7及び真空度計(図示せず
)で監視できるが、煩雑であるばかりでな(、プラズマ
発生量の変動をプラズマ処理中に正確に検知するのは難
しかった。
Conventionally, in microwave plasma processing equipment used in this type of equipment, parameters for generating plasma are set in advance and a predetermined amount of plasma is pretreated. This was confirmed later based on adhesion (peel) strength. For example, in the microwave plasma processing apparatus shown in FIG. 1 (described later), the output and oscillation time of the microwave generator 3, the type and flow of processing gas in the gas cylinder 6, and the degree of vacuum in the processing chamber 13 are □
Parameters and meters that define the amount of plasma generated can be monitored using the power monitor 3, gas flow meter 7, and vacuum gauge (not shown), but they are not only complicated (but also can be used to monitor fluctuations in the amount of plasma generated). It was difficult to detect accurately during processing.

) よ。ア、よう’M t* ”El 5ff LC!
 < f: M If: +=よ64カに際してマイク
ロ波プラズマ処理装置におけるプラズマ発生量の変動に
起因する塗膜付着強度の低減等の変動を未然に容易、か
つ確実に防1トできる塗膜の付着強度管理方法及び装置
を提供することを目的とする。そし°C本発明は、塗膜
付着強度、つまりプラズマ発生量とプラズマ発光現象と
の間に相関があるとの確認を基にプラズマ処理中プラズ
マの発光スペクトル強度または発光量を監視し、その変
動を検知することにより前記目的を達成した。
) Yo. A, you'M t* "El 5ff LC!
< f: M If: += 64F, the coating film can be easily and reliably prevented from changing, such as a reduction in coating film adhesion strength, caused by fluctuations in the amount of plasma generated in the microwave plasma processing device. An object of the present invention is to provide a bond strength management method and device. Based on the confirmation that there is a correlation between the coating film adhesion strength, that is, the amount of plasma generated, and the plasma emission phenomenon, the present invention monitors the intensity of the plasma emission spectrum or the amount of light emission during plasma processing, and detects its fluctuations. The above objective was achieved by detecting.

第1図はこのようなプラズマ発光におけるスペクトル相
対強度と塗膜付着強度との相関関係を実験的に確認する
ための装置である。即ち、1はマイクロ波発振器、2は
アイソレータ、3はパワーモニタ、4は整合器、6は処
理ガスの充填されたガスボンベ、7はガス液量計、10
は導波管5を通して供給されるヤイクロ波をパイプ8を
通して供給される処理ガスへ加えることによりマイクロ
波プラズマを発生させるプラズマ発生炉、11はマイク
ロ波プラズマを伝送する石英管、12はテフロン製ジヨ
イント、13は排気口14を通して真空ポンプ(図示せ
ず)により真空化されている反応室、15は反応室13
内において被処理物にプラズマを照射するプラズマ照射
管である。
FIG. 1 shows an apparatus for experimentally confirming the correlation between the relative spectral intensity and coating adhesion strength in such plasma emission. That is, 1 is a microwave oscillator, 2 is an isolator, 3 is a power monitor, 4 is a matching device, 6 is a gas cylinder filled with processing gas, 7 is a gas liquid meter, and 10
1 is a plasma generation furnace that generates microwave plasma by adding microwaves supplied through waveguide 5 to processing gas supplied through pipe 8; 11 is a quartz tube that transmits the microwave plasma; 12 is a Teflon joint. , 13 is a reaction chamber evacuated by a vacuum pump (not shown) through an exhaust port 14, and 15 is a reaction chamber 13.
This is a plasma irradiation tube that irradiates plasma onto the object to be processed.

このようなプラズマ処理装置1〜8.10〜15自体は
従来通りのものであるが、この装置の石英管7に、プラ
ズマの発光を分光後スペクトル相対強度として表示する
スペクトル強度測定装置18へプラズマの発光を送出す
る光ファイバー17を取付けられている。
Although the plasma processing apparatuses 1 to 8 and 10 to 15 themselves are conventional, the quartz tube 7 of this apparatus is used to transfer the plasma to a spectral intensity measuring device 18 that displays plasma emission as spectral relative intensity after spectroscopy. An optical fiber 17 for transmitting light emission is attached.

一方、プラズマ処理した後塗装して′その塗膜強度を測
定する試験片は、次のようにして製作する。即ちポリプ
ロピレン平板成形品22を先ず洗浄のためにトリクロル
エタン蒸気槽中に吊り下げて2分間曝露後、吊り上げて
乾燥させ、次に前述の第1図による装置により種々の条
件下でプラズマ処理を行ない、続いてウレタン系塗料を
5081.塗装し、 120℃において30分間乾燥さ
せた後、中央部より50X 10mm切り出すことによ
り製作する。試験片の塗膜付着強度の試験は第2図に示
すようにその長手方向の端的1cmにわたりナイフにて
塗膜20を剥離させ、セロテープ21でサンドイッチ状
に挟み込んだ後、塗膜20を剥離した平板成形品22と
セロテープ21とを引張試験機のチャックに固定し、引
張速度50mm/ll1inにて行った。
On the other hand, a test piece to be coated after plasma treatment and to measure the strength of the coating film is manufactured as follows. That is, the polypropylene flat plate molded product 22 was first suspended in a trichloroethane steam bath for cleaning, exposed for 2 minutes, then lifted and dried, and then subjected to plasma treatment under various conditions using the apparatus shown in FIG. Then apply urethane paint to 5081. After painting and drying at 120°C for 30 minutes, cut out a 50 x 10 mm piece from the center. To test the adhesion strength of the coating film on the test piece, as shown in FIG. 2, the coating film 20 was peeled off with a knife over a 1 cm length in the longitudinal direction, and after being sandwiched with cellophane tape 21, the coating film 20 was peeled off. The flat molded product 22 and cellophane tape 21 were fixed to the chuck of a tensile tester, and the test was conducted at a tensile speed of 50 mm/11 inch.

次に、前述のプラズマ処理装置1〜8、lO〜15及び
プラズマ発光のスペクトル強度測定装置17.18並び
に前述の試験片に対する強度試験方法により確認したプ
ラズマ発光におけるスペクトル相対強度と塗膜付着強度
との相関関係の実験結果について説明する。
Next, the relative spectral intensity and coating film adhesion strength of the plasma emission confirmed by the above-mentioned plasma processing apparatuses 1 to 8, 1O to 15 and the plasma emission spectral intensity measuring device 17.18 and the above-mentioned strength test method for the test piece are as follows. We will explain the experimental results of the correlation between

ポリプロピレン平板成形品22のプラズマ処理に先☆゛
ち、発光スペクトルの再現性を確認するため、処理ガス
が一定流昂の乾燥空気、マイクロ波発振器の出力電力が
IKWそして処理室13の真空度がI Torr及び4
 Torrにおける発光スペクトルを2回測定した(第
3図a、b、第4図a、b)。そして発光スペクトルの
中から波長320nm、345nm、 380nm、 
600nm、137onm付近に最大値をもつスペクト
ルを選びベースライン法により発光スペクトル相対強度
をめた(表1)。
Prior to plasma processing of the polypropylene flat plate molded product 22, in order to confirm the reproducibility of the emission spectrum, the processing gas was dry air with a constant flow, the output power of the microwave oscillator was IKW, and the vacuum degree of the processing chamber 13 was I Torr and 4
The emission spectrum at Torr was measured twice (Fig. 3 a, b, Fig. 4 a, b). From the emission spectrum, the wavelengths are 320nm, 345nm, 380nm,
A spectrum having a maximum value near 600 nm and 137 onm was selected, and the relative intensity of the emission spectrum was determined by the baseline method (Table 1).

これにより、1回目と2回目の各波長における発光スペ
クトル相対強度の差はO〜5.8%であり、良い再現性
が得られ、所定の入力系の設定の基では一定の発光スペ
クトル相対強度を呈することが分る。
As a result, the difference in the relative intensity of the emission spectrum at each wavelength between the first and second times is 0~5.8%, and good reproducibility is obtained, and the relative intensity of the emission spectrum is constant based on the settings of the predetermined input system. It can be seen that

発光スペクトル相対強度と塗膜付着強度との相関関係の
確認のために、ドルクロルエタン蒸気洗浄を終えたポリ
プロピレン平板成形品22に吋して、マイクロ波山カニ
lKW、処理時間:30秒、処理ガス:乾燥空気の条件
ドで、反応室13の真空度を0.5,1.4及び8 T
orrに変化させ第5図a〜dに示す発光スペクI・ル
相対強度を先ず測定した。表2はこの測定において各真
空度でのピークを呈する波長320.345.3[fo
、 600及び87Or+m付近の最大発光スペクトル
相対強度を示し、前述の方法で行ったこれらのプラズマ
発光状態に対応する塗膜付着強度の試験結果も併記しで
ある。
In order to confirm the correlation between the relative intensity of the emission spectrum and the adhesion strength of the coating film, the polypropylene flat plate molded product 22 that had been cleaned with chloroethane steam was heated using a microwave oven, treatment time: 30 seconds, and treatment gas. : Under dry air conditions, the degree of vacuum in the reaction chamber 13 was set to 0.5, 1.4, and 8 T.
First, the relative intensities of the emission spectra I and R as shown in FIGS. Table 2 shows the wavelength 320.345.3 [fo
, 600 and 87 Or+m, and the test results of coating film adhesion strength corresponding to these plasma emission states conducted by the method described above are also shown.

表2 第6図a、b及びCは、これら測定及び試験結果を基に
波長320.345及び360nm付近における最大の
発光スペクトル相対強度と塗膜付着強度との相関関係を
示す。そして第6図の関係から、紫外領域の発光スペク
トルについて相対強度0.08〜0.14を境にそれ以
」二では塗膜付着強度が一定になり、それ以下では急減
することが分る。同様に第7図a及びbでは、600及
び6?Onm付近における最大発光スペクトルとの相関
関係を示す。第7図の関係から可視領域では相対強度が
ほぼOを境にそれ以」二で急増して一定になることが分
る。
Table 2 Figures 6a, b and c show the correlation between the maximum relative intensity of the emission spectrum near wavelengths 320.345 and 360 nm and the coating film adhesion strength based on these measurement and test results. From the relationship shown in FIG. 6, it can be seen that with respect to the emission spectrum in the ultraviolet region, the coating film adhesion strength becomes constant at a relative intensity of 0.08 to 0.14 and thereafter becomes constant, and below that, it rapidly decreases. Similarly, in Figures 7a and b, 600 and 6? The correlation with the maximum emission spectrum near Onm is shown. From the relationship shown in FIG. 7, it can be seen that in the visible region, the relative intensity increases sharply at approximately 0 and then becomes constant.

以−ヒのように確認されたプラズマ発光スペクトル相対
強度と塗膜付着強度との相対関係から特定の波長につい
ての発光スペクトル相対強度を監視し、その基準レベル
からの変動を監視すれば塗膜付着強度の変動を検知でき
ることが分る。また、発光スペクトル相対強度の変化は
、発光スペクトル強度の絶対値の変動に対応することを
意味するから、絶対強度を測定しても良い。第5図から
も分るように発光スペクトル相対強度の変動は、全発光
波長領域にわたって同じ割合で変動するため、監視すべ
き波長を敢えて選択しなくても、各発光スペクトル相対
強度の積分値又は一定の波長領域にわたる発光の全体量
を測定すれば良い。
From the relative relationship between the plasma emission spectrum relative intensity and the paint film adhesion strength confirmed as shown below, the relative intensity of the emission spectrum for a specific wavelength can be monitored, and the fluctuation from the reference level can be monitored to determine whether the paint film has adhered. It can be seen that fluctuations in intensity can be detected. Further, since a change in the relative intensity of the emission spectrum means that it corresponds to a change in the absolute value of the intensity of the emission spectrum, the absolute intensity may be measured. As can be seen from Fig. 5, the relative intensity of the emission spectrum varies at the same rate over the entire emission wavelength range, so it is not necessary to intentionally select the wavelength to be monitored. It is sufficient to measure the total amount of light emitted over a certain wavelength range.

次に本発明による方法を実施するための装置を説明する
Next, an apparatus for carrying out the method according to the invention will be described.

第8図において、30は第1図の発光スペクトル強度測
定装置18かもの特定の波長例えば320nm近辺で最
大の発光スペクトル強度信号をアナログ的に保持する保
持回路、31は被塗物の塗膜付着強度を確実に一定レベ
ルに保持できる発光スペクトルの相対強度例えば0.1
5に相当する基準レベルから保持回路30の出力信号が
下廻る方向へ変動するのを検知する比較器、32はこの
比較器の出力信号で作動してW響もしくは光学的に警報
を発する警報器である。即ちプラズマ発光測定器として
の発光スペクトル強度測定装置18に後続する保持回路
30の出力信号を比較器31で監視しておき、基準レベ
ルを下廻ると警報器32により警報を発することにより
、プラズマ発生量の異常低減が検知でき、直ちにプラズ
マ処理装置の異常を点検できる。保持回路30の代りに
入力側にA/Dコンバータ及び出力側にD/Aコンバー
タを備えたマイクロコンビュー夕とスペクトル強度測定
装置18とで光層測定器を構成すると、特定波長域の発
光スペクトル強度の積分値、或は複数の波長域について
の平均もしくは積分値と基準レベルとの比較が可能にな
る。さらに、基準レベルを第6図aにおける立ヒリ領域
の任意の塗膜付着強度に相当するように設定し、比較器
においてこの基準レベルから所定量だけ増減方向に発光
スペクトル強度信号が変動するのを検知させると、任意
の付着強度範囲に管理できる。
In FIG. 8, 30 is a holding circuit that analogically holds the maximum emission spectrum intensity signal at a specific wavelength, for example, around 320 nm, of the emission spectrum intensity measuring device 18 of FIG. The relative intensity of the emission spectrum to ensure that the intensity is kept at a constant level, e.g. 0.1
A comparator that detects a change in the output signal of the holding circuit 30 in a downward direction from a reference level corresponding to 5, and an alarm device 32 that is activated by the output signal of this comparator to issue a warning by sound or optically. It is. That is, a comparator 31 monitors the output signal of a holding circuit 30 following an emission spectrum intensity measuring device 18 as a plasma luminescence measuring device, and when the signal falls below a reference level, an alarm is issued by an alarm 32, thereby detecting plasma generation. Abnormal reductions in the amount of plasma can be detected, and abnormalities in the plasma processing equipment can be immediately checked. When an optical layer measuring device is configured with a microcomputer equipped with an A/D converter on the input side and a D/A converter on the output side instead of the holding circuit 30 and the spectral intensity measuring device 18, the emission spectrum in a specific wavelength range can be measured. It becomes possible to compare the integrated value of intensity, or the average or integrated value for a plurality of wavelength ranges, with a reference level. Furthermore, the reference level is set to correspond to the arbitrary coating film adhesion strength in the scallop area in Figure 6a, and the comparator detects fluctuations in the emission spectrum intensity signal in the direction of increase or decrease by a predetermined amount from this reference level. By detecting it, you can control the adhesion strength to any desired range.

第9図においては第1図の光ファイバー17に、入射光
硅に対応したレベルの電気信号を出力するプラズマ発光
測定器としての光電変換回路35、比較器36及び警報
器37が後続している。この場合、光電変換回路35の
出力信号レベルと、塗膜付着強度との相関関係を予め測
定しておき、その結果に応じて比較器36の基準レベ少
しを設定しておくことにより、スペクトル強度の測定は
不要となり装置が簡単・安価になる。
In FIG. 9, the optical fiber 17 in FIG. 1 is followed by a photoelectric conversion circuit 35, a comparator 36, and an alarm 37 as a plasma luminescence measuring device that outputs an electrical signal at a level corresponding to the incident light. In this case, by measuring the correlation between the output signal level of the photoelectric conversion circuit 35 and the coating film adhesion strength in advance, and setting the reference level of the comparator 36 slightly according to the result, the spectral intensity can be increased. There is no need to measure , making the device simpler and cheaper.

発光スペクトル強度または発光量の基準レベル1 に対する誤差信号をプラズマ発生量を設定する入力パラ
メータ系に帰還制御させることにより、発光スペクトル
強度または発光液を一定にするサーボ制御も可能である
By feedback-controlling the error signal for the reference level 1 of the emission spectrum intensity or the amount of light emission to the input parameter system for setting the amount of plasma generation, servo control to keep the intensity of the emission spectrum or the luminescent liquid constant is also possible.

以上、本発明によりマイクロ波プラズマ前処理を伴う塗
装法の実施に際してプラズマ発光スペクトル強度または
発光量の変動を監視することにより、簡単な方法でプラ
ズマ発生量の変動に起因する塗膜の付着強度の低下を確
実に防止したり或は所望の付着強度を精度よく確保する
塗膜付着強度の管理が可能となる。即ち、プラズマ処理
の異常を処理中に高信頼度下で検知でき、被処理物の不
良を未然に確実に防止できる。また、必要により付着強
度を基準にしたプラズマ発生装置の自動制御も可能にな
る。
As described above, according to the present invention, by monitoring fluctuations in plasma emission spectrum intensity or luminescence amount when implementing a coating method involving microwave plasma pretreatment, it is possible to easily reduce the adhesion strength of a coating film caused by fluctuations in plasma generation amount. It becomes possible to manage the coating film adhesion strength to reliably prevent deterioration or ensure the desired adhesion strength with precision. That is, abnormalities in plasma processing can be detected with high reliability during processing, and defects in the object to be processed can be reliably prevented. Furthermore, if necessary, it becomes possible to automatically control the plasma generator based on the adhesion strength.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はプラズマ処理装置及び本発明によるプラズマ発
光スペクトル測定装置の概略構成、第2図は第1図によ
る装置によりプラズマ処理された後に塗装された試験片
の付着強度の試験方法の説2 開園、第3図及び第4図は第1図の装置により発生した
プラズマの発光スペクトル相対強度の再現性を確認する
ための測定結果、第5図は第1図に) よる装置の反応室の真空度を可変したときのプラズマの
発光スペクトル相対強度の測定結果、第6図及び第7図
はプラズマの発光スペクトル相対強度と塗膜付着強度と
の相関関係の実験結果並びに第8図及び第9図は本発明
による方法を実施するための装置を示す。 1・・・マイクロ波発振器、6・・・ガスボンベlO・
・・プラズマ発生炉、 1?・・・光ファイバ13・・
・反応室、14・・・排気口 代理人 福 留 正 治 C) E すA 契材濶利りm− 響毅老ll!!IΦ−一 耕 契釈姻廻〈− (a) 一一一一う一オ目文1タ表カ1 7図 (b) −一相対強度
Figure 1 shows a schematic configuration of a plasma treatment device and a plasma emission spectrum measuring device according to the present invention, and Figure 2 shows a method for testing the adhesion strength of a painted specimen after being plasma-treated with the device shown in Figure 1.2 Opening of the Park , Figures 3 and 4 are measurement results for confirming the reproducibility of the relative intensity of the plasma emission spectrum generated by the apparatus shown in Figure 1, and Figure 5 is based on Figure 1). Figures 6 and 7 are the measurement results of the relative intensity of the plasma emission spectrum when the temperature was varied, and Figures 8 and 9 are the experimental results of the correlation between the relative intensity of the plasma emission spectrum and the coating adhesion strength. 1 shows an apparatus for carrying out the method according to the invention. 1...Microwave oscillator, 6...Gas cylinder lO・
...Plasma generation reactor, 1? ...Optical fiber 13...
・Reaction chamber, 14... Exhaust port representative Masaharu Fukutome C) E SuA Materials collection m- Hibiki Tsuyoshi! ! IΦ-Ikkou Kishakuryo Mawari〈- (a) 1111Uichiomebun1tatableka1 Figure 7(b) -One relative strength

Claims (2)

【特許請求の範囲】[Claims] (1)マイクロ波プラズマ前処理を伴う塗装により形成
された被塗物の塗膜の付着強度変動を処理する方法にお
いて、被塗物をマイクロ波プラズマ処理するためのプラ
ズマの発光スペクトル強度または発光量を監視し、この
発光スペクトル強度または発光量の変動により塗膜付着
強度の変動を検知することを特徴とする方法。
(1) In a method for treating variations in the adhesion strength of a coating film on an object to be coated formed by coating with microwave plasma pre-treatment, the emission spectrum intensity or luminescence amount of plasma for applying microwave plasma treatment to the object to be coated. A method characterized in that a change in coating film adhesion strength is detected based on a change in the intensity of the emission spectrum or the amount of light emission.
(2)処理ガス及びマイクロ波を供給されることにより
マイクロ波プラズマを発生するプラズマ発生炉から被塗
物を収納する真空化された反応室に至る間に設けられて
マイクロ波プラズマの発光スペクトル強度または発光量
を測定するプラズマ発光測定器と、この測定器の出力信
号が所定の塗膜付着強度をもたらす発光スペクトル強度
または発光量に相当するfめ設定した基壁レベルから変
動するのを検知する比較器と、この比較器の検知信号に
より作動する警報器とを(niiえたことを特徴と干る
プラズマ前処理を伴う塗装法における塗膜のイ」看強度
管理装置。
(2) Emission spectrum intensity of microwave plasma provided between a plasma generation furnace that generates microwave plasma by supplying processing gas and microwaves to a evacuated reaction chamber that houses the object to be coated. Alternatively, a plasma luminescence measuring device for measuring the amount of luminescence is used, and the output signal of this measuring device is detected to fluctuate from a base wall level set at f, which corresponds to the emission spectrum intensity or the amount of luminescence that produces a predetermined coating film adhesion strength. This is an intensity control device for controlling the intensity of a coating film in a coating method that involves plasma pretreatment, which is characterized by a comparator and an alarm activated by the detection signal of the comparator.
JP7102084A 1984-04-11 1984-04-11 Adhesion control of coating films in coating process including plasma pretreatment Granted JPS60217244A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7102084A JPS60217244A (en) 1984-04-11 1984-04-11 Adhesion control of coating films in coating process including plasma pretreatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7102084A JPS60217244A (en) 1984-04-11 1984-04-11 Adhesion control of coating films in coating process including plasma pretreatment

Publications (2)

Publication Number Publication Date
JPS60217244A true JPS60217244A (en) 1985-10-30
JPS6352550B2 JPS6352550B2 (en) 1988-10-19

Family

ID=13448416

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7102084A Granted JPS60217244A (en) 1984-04-11 1984-04-11 Adhesion control of coating films in coating process including plasma pretreatment

Country Status (1)

Country Link
JP (1) JPS60217244A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6316703U (en) * 1986-07-17 1988-02-03

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0464324U (en) * 1990-10-15 1992-06-02

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6316703U (en) * 1986-07-17 1988-02-03

Also Published As

Publication number Publication date
JPS6352550B2 (en) 1988-10-19

Similar Documents

Publication Publication Date Title
US7501292B2 (en) Method for managing UV irradiation for curing semiconductor substrate
US5955139A (en) Automatic film deposition control
US6160242A (en) Apparatus and process for measuring the temperature of semiconductor wafers in the presence of radiation absorbing gases
US5536359A (en) Semiconductor device manufacturing apparatus and method with optical monitoring of state of processing chamber
JP2001203097A (en) Apparatus and method of plasma density measurement and plasma processing apparatus and method by using it
CN102661791B (en) Methods and apparatus for normalizing optical emission spectra
US6509960B2 (en) Method and apparatus employing external light source for endpoint detection
US20040011379A1 (en) Processing apparatus and cleaning method
US10262841B2 (en) Plasma monitoring device
JP4055880B2 (en) Plasma processing apparatus, plasma processing monitoring window member, and electrode plate for plasma processing apparatus
JPS6487777A (en) Method and apparatus for controlling thin film adhesion process by plasma
JPH11237281A (en) Measuring method for electromagnetic radiation
US20080078504A1 (en) Self-Calibrating Optical Emission Spectroscopy for Plasma Monitoring
JP3660896B2 (en) Maintenance method of plasma processing apparatus
JPS60217244A (en) Adhesion control of coating films in coating process including plasma pretreatment
Schaepkens et al. Gas-phase studies in inductively coupled fluorocarbon plasmas
US9656292B2 (en) Coating method, coating device and coating generating system
JPS6314421A (en) Plasma chemical vapor deposition method
JP2002122480A (en) Method and device for measuring temperature, and plasma treatment device
JP2004207314A (en) Method for detecting end point of modification of film, its end point detecting device and electron beam processing apparatus
US20230266669A1 (en) Spin-coating device
JP2001249050A (en) Temperature-measuring apparatus, film-forming apparatus, etching apparatus, method for measuring temperature, and etching method
JP3878745B2 (en) Semiconductor manufacturing condition setting method, semiconductor manufacturing condition setting apparatus, semiconductor manufacturing apparatus using this apparatus, and condition setting method
JPH0237089B2 (en)
JP3897380B2 (en) Processing method and apparatus