JPS6352533B2 - - Google Patents

Info

Publication number
JPS6352533B2
JPS6352533B2 JP57110696A JP11069682A JPS6352533B2 JP S6352533 B2 JPS6352533 B2 JP S6352533B2 JP 57110696 A JP57110696 A JP 57110696A JP 11069682 A JP11069682 A JP 11069682A JP S6352533 B2 JPS6352533 B2 JP S6352533B2
Authority
JP
Japan
Prior art keywords
catalyst
nickel
morpholine
reaction
chromium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57110696A
Other languages
Japanese (ja)
Other versions
JPS594444A (en
Inventor
Yukio Sumino
Fumio Watanabe
Takahiko Nakai
Shizuo Kaneko
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP57110696A priority Critical patent/JPS594444A/en
Publication of JPS594444A publication Critical patent/JPS594444A/en
Publication of JPS6352533B2 publication Critical patent/JPS6352533B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】 本発明はジエチレングリコールとアンモニアか
らモルホリンの製造に使用する新規な触媒に関す
る。詳しくはジエチレングリコールとアンモニア
とを水素の共存下反応せしめてモルホリンおよび
2−(2−アミノエトキシ)エタノールを製造す
るに際して使用されるモルホリン製造用触媒に関
する。 従来、ジエチレングリコールとアンモニアとを
水素の共存下液相にて水素化触媒の存在下反応せ
しめてモルホリンを製造する方法はすでに知られ
ており、その生成反応は次に示すような逐次反応
式(1)および(2)に従つて進む。 そのため、反応生成液中には最終生成物である
モルホリンの他に中間生成物である2−2−アミ
ノエトキシ)エタノールも含まれる。それぞれを
分離精製して製品とすることができるが、モルホ
リンのみの製造を目的とする場合は2−(2−ア
ミノエトキシ)エタノールを回収し、反応器への
供給原料として使用することができる。従つてモ
ルホリン製造に使用する優れた触媒とは反応(1)お
よび(2)に対して高い活性と選択性を示すととも
に、それが十分長期間持続されるものでなければ
ならない。 モルホリン製造用触媒としては、たとえば米国
特許第3151112号には銅、ニツケル、クロム、コ
バルト、マグネシウム、モリブデン、パラジウ
ム、白金、ロジウム、これらの金属の酸化物また
はそれらの混合物、米国特許第3152998号にはニ
ツケル約60〜85モル%、銅約14〜37モル%、クロ
ム約1〜5モル%を含有する触媒、米国特許第
3155657号には金属ルテニウムを約0.2〜5重量%
含むアルミナ触媒、特公昭46−32188号にはラネ
ーニツケル合金またはニツケルを主体とするラネ
ー合金、特公昭46−32189号にはラネーニツケル
合金またはニツケルを主体とするラネー合金をあ
らかじめ水または水蒸気を接触して得られるアル
ミナを担体とする触媒、特公昭47−41908号には
ニツケル50〜90%、銅9〜45%、酸化モリブデン
1〜5%を含有しかつニツケルとして20〜70%
(重量)含有する触媒、特公昭49−32699号には
NiOとして40〜65モル%のニツケルと、CuOとし
て15〜40モル%の銅と、Cr2O3として1〜10モル
%のクロムと、Al2O3として3〜20モル%のアル
ミニウムとからなる触媒、特開昭54−100383号に
はニツケル−銅−クロム−チタン触媒がそれぞれ
提案されている。しかしながらこれら従来公知の
触媒は寿命、活性、選択性等のいずれをとつても
改善すべき点が多く残されており、まだ十分とは
いえない。 本発明者等は工業的に実用し得る触媒の開発を
目指して鋭意検討した結果、ニツケル、クロムお
よびレニウムをα−アルミナ担体に担持させた触
媒が、活性、選択性のみならず高活性の持続と機
械的強度を含めた耐久性にも優れ、従来公知の触
媒に勝る有用なモルホリン製造用触媒であること
を見出した。従つて本発明の目的はジエチレング
リコールとアンモニアを反応させて、高収率でモ
ルホリンを製造するための新規な高活性かつ耐久
性の優れた触媒を提供することである。 本発明はジエチレングリコールとアンモニアと
を水素の共存下で反応せしめてモルホリンを製造
するに際して使用されるモルホリン製造用触媒と
して、α−アルミナ担体上にニツケル、クロムお
よびレニウムを担持したことを特徴とするモルホ
リン製造用触媒に関するものである。 一般に触媒担体としてはα−アルミナ以外にも
数多くのものが知られているが、本発明の触媒に
おいてはα−アルミナ担体を使用することが必須
であり、それ以外の担体を使用する場合には、活
性、選択性、寿命などのいずれかまたはすべてに
おいて欠点のある触媒しか得られない。例えば、
γ−アルミナを担体としたニツケル触媒は後述の
比較例に示すように、比較的高い初期活性を示す
にもかかわらず、その経時低下が急速であり、工
業的には実用しがたい。しかしながら、α−アル
ミナ担体を使用したニツケル触媒がすべて有用で
あるとは限らない。α−アルミナ担体は機械的強
度が優れている反面比表面積が比較的小さく、そ
のためこれにニツケル単独、ニツケル−クロムま
たはニツケル−レニウムを担持した触媒は後述の
比較例で示す如く低活性である。しかるに、ニツ
ケル、クロムおよびレニウムを一緒にα−アルミ
ナ担体に担持させると、それらが相剰して活性が
高められるばかりでなく、選択性、耐久性におい
ても優れた性能の触媒が得られた。従つて本発明
の触媒はα−アルミナ担体上に担持されるニツケ
ル、クロムおよびレニウムの三元素のいずれもが
必須である。 本発明におけるα−アルミナ担体としては、充
填密度0.6〜1.5g/ml、吸水率15〜60%、BET比
表面積0.01〜10m2/gの範囲のものが使用される。
α−アルミナ担体の形状はペレツト状、球状、粒
状、円筒状、押出物形状、その類似形状など各種
の広範囲の形状のものが用いられ、特に直径が3
〜6mmの範囲内の球状ペレツトあるいは直径が
0.8〜6.0mm、長さが0.8〜12.7mmの範囲内の円筒状
ペレツトが好適に用いられる。 本発明のα−アルミナ担体上へのそれぞれの金
属の担持量がα−アルミナに対してニツケルが2
〜20重量%、ニツケル対クロムの原子比が1:
0.5〜1:0.05およびニツケル対レニウムの原子
比が1:0.3〜1:0.01の範囲内であるときに活
性、選択性、寿命に優れた工業的使用に耐える触
媒が得られる。 本発明のα−アルミナ担体上に担持されるニツ
ケルおよびクロムの原料化合物としては硝酸塩、
硫酸塩、炭酸塩、酸化物、水酸化物等の無機塩お
よび酢酸塩、シユウ酸塩、クエン酸塩、乳酸塩等
の有機塩あるいは金属単体の形で使用されるが、
特に水可溶性の大きい塩が好ましい。レニウムの
原料化合物としては過レニウム酸アンモニウム、
過酸化レニウム等の形で使用される。 本発明のモルホリン製造用触媒は次のようにし
て製造される。α−アルミナ担体をニツケル、ク
ロムおよびレニウムの各々の化合物を溶解した水
性媒体中に浸漬し、必要量を担持させ、50〜150
℃、好ましくは80〜120℃で乾燥処理し、ついで
そのまま200〜450℃、好ましくは250〜350℃の温
度範囲で水素または水素含有ガスで還元処理して
完成触媒を得る。水素ガスによる還元処理は水素
ガス100%で行なうことが好ましいが、窒素、メ
タンなどの不活性ガスで希釈された水素含有ガス
で行なつてもよい。 本発明の上述の方法で製造した触媒はジエチレ
ングリコールとアンモニアとを水素の共存下で反
応させてモルホリンを製造する反応に使用でき、
優れた活性と選択性と寿命で比較的低温、低圧下
に反応を行なわせ高収率でモルホリンを製造でき
る効果を示し、工業的規模での長期連続生産を可
能ならしめるものである。反応方式は固定床、懸
濁床のいずれもが使用できる。特に触媒を固定床
にした連続式プロセスが本発明の特徴を効果的に
するので好適である。連続式の反応は反応温度
150〜300℃、反応圧力15〜300Kg/cm2にて行なうこ
とができる。 以下の実施例により本発明により優れた特徴を
もつ触媒をさらに詳しく説明し、触媒の製造方法
およびモルホリンの製造方法について具体的に説
明するが、本発明はこれらの実施例に限定される
ものでない。 ここでジエチレングリコールの転化率、モルホ
リンの選択率および2−(2−アミノエトキシ)
エタノールの選択率は次の式から導き出される。 ジエチレングリコールの転化率(%)=反応したジエチ
レングリコールのモル数/反応に供したジエチレングリ
コールのモル数×100 モルホリンの選択率(%)=生成したモルホリ
ンのモル数/反応したジエチレングリコールのモル数×
100 2−(2−アミノエトキシ)エタノールの選択
率(%) =生成した2−(2−アミノエトキシ)エタノ
ールのモル数/反応したジエチレングリコールのモル数
×100 実施例 1 比表面積1m2/g、直径2mm、長さ4mmのペレ
ツト状α−アルミナ担体50mlに硝酸ニツケル
〔Ni(NO32・6H2O〕16.15g、硝酸クロム〔Cr
(NO33・9H2O〕6.67gおよび過レニウム酸アン
モニウム〔NH4ReO4〕0.74gを含む水溶液17ml
を含浸し、100℃で1時間乾燥した。この触媒を
引き続いて水素ガス雰囲気中300℃で2時間水素
還元処理した。この触媒のそれぞれの金属の含有
率は、ニツケルが担体に対して6.5重量%、クロ
ムがニツケルに対して0.30の原子比、レニウムが
ニツケルに対して0.05の原子比であつた。 内容積0.5のステンレス製電磁回転撹拌機付
オートクレーブに上記触媒15mlとジエチレングリ
コール150gをいれ、水素置換後アンモニア120g
を添加し、次に水素を27気圧相当分圧入した後、
240℃で2時間反応させた。反応生成液の分析か
らジエチレングリコールの転化率74%、モルホリ
ンへの選択率43%、2−(2−アミノエトキシ)
エタノールへの選択率42%であつた。結果を表−
1に示す。 実施例 2〜6 実施例1において、表−1に示す担持金属の触
媒にした以外は実施例1と同様に調製し、実施例
1と同様に反応を行ない表−1に示す結果を得
た。 実施例 7 実施例1で使用した触媒を使用し、その都度新
たな原料を用い実施例1と同一反応条件で繰り返
し反応を行なつた。触媒使用回数5回目の反応生
成液を分析した結果表−1に示すとおりであつ
た。 実施例 8 実施例7の繰返し反応を続け、触媒使用回数10
回目の反応生成液の分析をした結果、表−1に示
すとおりであつた。 比較例 1〜3 実施例1において、表−1に示す担持金属の触
媒にした以外は実施例1と同様に調製し、実施例
1と同様に反応を行ない表−1に示す結果を得
た。 比較例 4 比表面積150m2/g、3φ×3mmペレツト状のγ
−アルミナ担体50mlに硝酸ニツケル〔Ni
(NO32・6H2O〕26.42gを含む水溶液20mlを含
浸し、乾燥した。得られた触媒を引き続いて水素
ガス雰囲気中300℃、2時間水素還元処理した。
この触媒のニツケルの含有率は、担体に対して
10.0重量%であつた。得られた触媒を15ml使用
し、実施例1と同じ反応条件で反応をせしめた。
結果は表−1に示すとおりであつた。 比較例 5 比較例4で使用した触媒を使用し、その都度新
たな原料を用い実施例1と同一反応条件で繰り返
し反応を行なつた。触媒使用回数5回目の反応生
成液を分析した結果、表−1に示すとおりであつ
た。 比較例 6 比較例5の繰返し反応を続け、触媒使用回数10
回目の反応生成液を分析した結果、表−1に示す
とおりであつた。 【表】
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a novel catalyst for use in the production of morpholine from diethylene glycol and ammonia. Specifically, the present invention relates to a catalyst for producing morpholine, which is used in producing morpholine and 2-(2-aminoethoxy)ethanol by reacting diethylene glycol and ammonia in the presence of hydrogen. Conventionally, a method for producing morpholine by reacting diethylene glycol and ammonia in the liquid phase in the coexistence of hydrogen in the presence of a hydrogenation catalyst is already known. ) and (2). Therefore, the reaction product liquid contains not only the final product morpholine but also the intermediate product 2-2-aminoethoxy)ethanol. Each can be separated and purified to produce a product, but if the purpose is to produce only morpholine, 2-(2-aminoethoxy)ethanol can be recovered and used as a feedstock to the reactor. Therefore, an excellent catalyst used in the production of morpholine must exhibit high activity and selectivity for reactions (1) and (2), and must maintain this activity for a sufficiently long period of time. Catalysts for producing morpholine include, for example, copper, nickel, chromium, cobalt, magnesium, molybdenum, palladium, platinum, rhodium, oxides of these metals, or mixtures thereof, as disclosed in U.S. Pat. No. 3,151,112; is a catalyst containing about 60 to 85 mole percent nickel, about 14 to 37 mole percent copper, and about 1 to 5 mole percent chromium, U.S. Pat.
No. 3155657 contains approximately 0.2 to 5% by weight of metallic ruthenium.
JP-B No. 46-32188 uses a Raney nickel alloy or a nickel-based Raney alloy, and JP-B No. 1987-32189 uses a Raney nickel alloy or a nickel-based Raney alloy that has been brought into contact with water or steam in advance. The resulting alumina-supported catalyst, Japanese Patent Publication No. 47-41908, contains 50 to 90% nickel, 9 to 45% copper, 1 to 5% molybdenum oxide, and 20 to 70% as nickel.
(Weight) Containing catalyst, Japanese Patent Publication No. 49-32699
From 40-65 mol% nickel as NiO, 15-40 mol% copper as CuO, 1-10 mol% chromium as Cr 2 O 3 and 3-20 mol % aluminum as Al 2 O 3 A nickel-copper-chromium-titanium catalyst has been proposed in JP-A-54-100383. However, these conventionally known catalysts still have many points to be improved in terms of life, activity, selectivity, etc., and cannot be said to be sufficient. As a result of intensive studies aimed at developing an industrially practical catalyst, the present inventors found that a catalyst in which nickel, chromium, and rhenium are supported on an α-alumina support has not only high activity and selectivity, but also a sustained high activity. It has been found that this catalyst has excellent durability including mechanical strength, and is a useful catalyst for producing morpholine that is superior to conventionally known catalysts. Therefore, an object of the present invention is to provide a novel highly active and durable catalyst for producing morpholine in high yield by reacting diethylene glycol and ammonia. The present invention is a morpholine production catalyst used when diethylene glycol and ammonia are reacted in the presence of hydrogen to produce morpholine, and is characterized in that nickel, chromium, and rhenium are supported on an α-alumina carrier. This invention relates to catalysts for production. In general, many catalyst carriers other than α-alumina are known, but in the catalyst of the present invention, it is essential to use an α-alumina carrier, and when using other carriers, However, only catalysts with defects in any or all of the following, such as activity, selectivity, and life span, can be obtained. for example,
As shown in the comparative examples described below, the nickel catalyst using γ-alumina as a carrier shows a relatively high initial activity, but its activity decreases rapidly over time, making it difficult to put it into practical use industrially. However, not all nickel catalysts using alpha-alumina supports are useful. While the α-alumina support has excellent mechanical strength, it has a relatively small specific surface area, and therefore, catalysts in which nickel alone, nickel-chromium, or nickel-rhenium is supported on it have low activity as shown in the comparative examples below. However, when nickel, chromium, and rhenium were supported together on an α-alumina carrier, not only did they mutually enhance the activity, but also a catalyst with excellent performance in terms of selectivity and durability was obtained. Therefore, the catalyst of the present invention requires all three elements, nickel, chromium and rhenium, to be supported on the α-alumina carrier. The α-alumina carrier used in the present invention has a packing density of 0.6 to 1.5 g/ml, a water absorption rate of 15 to 60%, and a BET specific surface area of 0.01 to 10 m 2 /g.
The α-alumina carrier can be in a wide range of shapes, including pellets, spheres, granules, cylinders, extrudates, and similar shapes.
Spherical pellets or diameters within ~6 mm
Cylindrical pellets with a length of 0.8 to 6.0 mm and a length of 0.8 to 12.7 mm are preferably used. The amount of each metal supported on the α-alumina support of the present invention is 2 for nickel for α-alumina.
~20% by weight, nickel to chromium atomic ratio of 1:
When the atomic ratio of nickel to rhenium is within the range of 0.5 to 1:0.05 and 1:0.3 to 1:0.01, a catalyst with excellent activity, selectivity, and service life that can withstand industrial use can be obtained. Nitrate,
It is used in the form of inorganic salts such as sulfates, carbonates, oxides, and hydroxides, organic salts such as acetates, oxalates, citrates, and lactates, or in the form of simple metals.
In particular, highly water-soluble salts are preferred. Raw materials for rhenium include ammonium perrhenate,
Used in forms such as rhenium peroxide. The catalyst for producing morpholine of the present invention is produced as follows. An α-alumina support is immersed in an aqueous medium in which nickel, chromium, and rhenium compounds are dissolved, and the required amount is supported.
The catalyst is dried at a temperature of 80 to 120°C, preferably 80 to 120°C, and then subjected to reduction treatment with hydrogen or a hydrogen-containing gas at a temperature of 200 to 450°C, preferably 250 to 350°C to obtain a finished catalyst. The reduction treatment with hydrogen gas is preferably performed with 100% hydrogen gas, but may be performed with a hydrogen-containing gas diluted with an inert gas such as nitrogen or methane. The catalyst produced by the above method of the present invention can be used in the reaction of producing morpholine by reacting diethylene glycol and ammonia in the presence of hydrogen,
With its excellent activity, selectivity, and lifespan, it is capable of producing morpholine in high yield by conducting the reaction at relatively low temperatures and low pressures, making long-term continuous production possible on an industrial scale. As for the reaction method, either fixed bed or suspended bed can be used. In particular, a continuous process using a fixed bed of catalyst is preferred since it makes the features of the present invention effective. For continuous reactions, the reaction temperature
The reaction can be carried out at a temperature of 150 to 300°C and a reaction pressure of 15 to 300 Kg/cm 2 . The following examples will explain in more detail the catalyst having excellent characteristics according to the present invention, and will specifically explain the method for producing the catalyst and the method for producing morpholine, but the present invention is not limited to these examples. . Here, conversion rate of diethylene glycol, selectivity of morpholine and 2-(2-aminoethoxy)
The selectivity of ethanol is derived from the following equation. Conversion rate of diethylene glycol (%) = Number of moles of diethylene glycol reacted/Number of moles of diethylene glycol subjected to reaction x 100 Selectivity of morpholine (%) = Number of moles of morpholine produced/Number of moles of diethylene glycol reacted x
100 Selectivity of 2-(2-aminoethoxy)ethanol (%) = Number of moles of 2-(2-aminoethoxy)ethanol produced/Number of moles of reacted diethylene glycol x 100 Example 1 Specific surface area 1 m 2 /g, 16.15 g of nickel nitrate [Ni(NO 3 ) 2.6H 2 O] and chromium nitrate [Cr
17 ml of an aqueous solution containing 6.67 g of (NO 3 ) 3.9H 2 O] and 0.74 g of ammonium perrhenate [NH 4 ReO 4 ]
and dried at 100°C for 1 hour. This catalyst was subsequently subjected to hydrogen reduction treatment at 300° C. for 2 hours in a hydrogen gas atmosphere. The content of each metal in this catalyst was 6.5% by weight of nickel with respect to the carrier, chromium with an atomic ratio of 0.30 with respect to nickel, and rhenium with an atomic ratio of 0.05 with respect to nickel. Put 15 ml of the above catalyst and 150 g of diethylene glycol into a stainless steel autoclave with an internal volume of 0.5 and equipped with an electromagnetic rotary stirrer, and after replacing with hydrogen, add 120 g of ammonia.
After adding hydrogen and then injecting hydrogen equivalent to 27 atmospheres,
The reaction was carried out at 240°C for 2 hours. Analysis of the reaction product liquid showed a conversion rate of diethylene glycol of 74%, selectivity to morpholine of 43%, and 2-(2-aminoethoxy).
The selectivity to ethanol was 42%. Display the results -
Shown in 1. Examples 2 to 6 In Example 1, the catalysts were prepared in the same manner as in Example 1 except that the supported metals shown in Table 1 were used as catalysts, and the reaction was carried out in the same manner as in Example 1 to obtain the results shown in Table 1. . Example 7 Using the catalyst used in Example 1, the reaction was repeated under the same reaction conditions as in Example 1, using new raw materials each time. The results of analyzing the reaction product liquid after the fifth use of the catalyst were as shown in Table 1. Example 8 Repeat the reaction of Example 7 and use the catalyst 10 times.
The results of the analysis of the reaction product liquid for the second time were as shown in Table 1. Comparative Examples 1 to 3 In Example 1, the catalysts were prepared in the same manner as in Example 1 except that the supported metals shown in Table 1 were used as catalysts, and the reaction was carried out in the same manner as in Example 1 to obtain the results shown in Table 1. . Comparative example 4 Specific surface area 150m 2 /g, 3φ x 3mm pellet-shaped γ
-Nickel nitrate [Ni] on 50 ml of alumina carrier
It was impregnated with 20 ml of an aqueous solution containing 26.42 g of (NO 3 ) 2 ·6H 2 O and dried. The obtained catalyst was subsequently subjected to hydrogen reduction treatment at 300° C. for 2 hours in a hydrogen gas atmosphere.
The nickel content of this catalyst is
It was 10.0% by weight. A reaction was carried out under the same reaction conditions as in Example 1 using 15 ml of the obtained catalyst.
The results were as shown in Table-1. Comparative Example 5 Using the catalyst used in Comparative Example 4, the reaction was repeated under the same reaction conditions as in Example 1, using new raw materials each time. The results of analyzing the reaction product liquid after the fifth use of the catalyst were as shown in Table 1. Comparative Example 6 Continue the repeated reaction of Comparative Example 5 and use the catalyst 10 times.
The results of analyzing the reaction product liquid for the second time were as shown in Table 1. 【table】

Claims (1)

【特許請求の範囲】 1 ジエチレングリコールとアンモニアとを水素
の共存下反応せしめてモルホリンを製造するに際
して使用されるモルホリン製造用触媒として、α
−アルミナ担体上にニツケル、クロムおよびレニ
ウムを担持したことを特徴とするモルホリン製造
用触媒。 2 α−アルミナに対してニツケルが2〜20重量
%、ニツケル対クロムの原子比が1:0.5〜1:
0.05およびニツケル対レニウムの原子比が1:
0.3〜1:0.01の範囲内で担持されてなる特許請
求の範囲第1項記載の触媒。
[Scope of Claims] 1. As a catalyst for producing morpholine used in producing morpholine by reacting diethylene glycol and ammonia in the presence of hydrogen, α
- A catalyst for producing morpholine, characterized in that nickel, chromium, and rhenium are supported on an alumina carrier. 2 Nickel is 2 to 20% by weight relative to α-alumina, and the atomic ratio of nickel to chromium is 1:0.5 to 1:
0.05 and the atomic ratio of nickel to rhenium is 1:
The catalyst according to claim 1, which is supported in a ratio of 0.3 to 1:0.01.
JP57110696A 1982-06-29 1982-06-29 Catalyst for manufacture of morpholine Granted JPS594444A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57110696A JPS594444A (en) 1982-06-29 1982-06-29 Catalyst for manufacture of morpholine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57110696A JPS594444A (en) 1982-06-29 1982-06-29 Catalyst for manufacture of morpholine

Publications (2)

Publication Number Publication Date
JPS594444A JPS594444A (en) 1984-01-11
JPS6352533B2 true JPS6352533B2 (en) 1988-10-19

Family

ID=14542129

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57110696A Granted JPS594444A (en) 1982-06-29 1982-06-29 Catalyst for manufacture of morpholine

Country Status (1)

Country Link
JP (1) JPS594444A (en)

Also Published As

Publication number Publication date
JPS594444A (en) 1984-01-11

Similar Documents

Publication Publication Date Title
US4625030A (en) Potentiated nickel catalysts for amination
US4123462A (en) Amination process using nickel-rhenium catalysts
US7635790B2 (en) Method for producing ethylene amines and ethanol amines by the hydrogenating amination of monoethylene glycol and ammonia in the presence of a catalyst
US20090240084A1 (en) Method for producing ethylene amines ethanol amines from monoethylene glycol (meg)
JP3223440B2 (en) Improved reductive amination catalyst
EP1409447B1 (en) A process for the manufacture of diethylenetriamine and higher polyethylenepolyamines
US7468342B2 (en) Catalysts and process for producing aromatic amines
JP2001501524A (en) Amine production catalyst and amine production method
KR100216935B1 (en) Reductive amination processes for the selective production of aminoethylethanolamine and reductive amination rocesses using them
US4822936A (en) Selective hydrogenation of phenylacetylene in the presence of styrene
CA2477085C (en) Method for the production of primary amines by hydrogenating nitriles
CA1224492A (en) Alkylation process
JPH0260375B2 (en)
JPS6256788B2 (en)
US4642303A (en) Catalyst composition
JP2807053B2 (en) Decomposition method of methanol
JPS6352533B2 (en)
JPS6362525B2 (en)
JPS6256787B2 (en)
JP3080695B2 (en) Method for simultaneously producing morpholine and 2- (2-aminoalkoxy) alkanol
JP3265508B2 (en) Method for producing nickel alloy catalyst and method for producing ethyleneamine
JP2980161B2 (en) Disproportionation of amines to produce secondary amines
JPS6155419B2 (en)
PL104070B1 (en) NICKEL CATALYST FOR HYDROGENIZATION OF FURAN COMPOUNDS AND THE METHOD OF OBTAINING A NICKEL CATALYST FOR HYDROGENIZATION OF FURAN COMPOUNDS
JPS62149646A (en) Production of n-substituted amine