JPS6155419B2 - - Google Patents

Info

Publication number
JPS6155419B2
JPS6155419B2 JP55003488A JP348880A JPS6155419B2 JP S6155419 B2 JPS6155419 B2 JP S6155419B2 JP 55003488 A JP55003488 A JP 55003488A JP 348880 A JP348880 A JP 348880A JP S6155419 B2 JPS6155419 B2 JP S6155419B2
Authority
JP
Japan
Prior art keywords
catalyst
supported
copper
approximately
terms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55003488A
Other languages
Japanese (ja)
Other versions
JPS56100633A (en
Inventor
Yoshiji Kishimoto
Takahiko Nakai
Toshihiko Kumazawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP348880A priority Critical patent/JPS56100633A/en
Publication of JPS56100633A publication Critical patent/JPS56100633A/en
Publication of JPS6155419B2 publication Critical patent/JPS6155419B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)

Description

【発明の詳細な説明】 本発明は、アルキレンオキシドの水素添加反応
用触媒およびその製法に関する。詳しく述べると
本発明は炭素数2〜5のアルキレンオキシドを水
素の共存下液相にて水素添加反応せしめ、対応す
るアルカノールを製造するための触媒およびその
製法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a catalyst for the hydrogenation reaction of alkylene oxide and a method for producing the same. Specifically, the present invention relates to a catalyst for producing a corresponding alkanol by hydrogenating an alkylene oxide having 2 to 5 carbon atoms in a liquid phase in the presence of hydrogen, and a method for producing the same.

炭素数2〜5のアルキレンオキシド、たとえば
エチレンオキシド、プロピレンオキシドなどは水
素共存下水素化触媒によつて還元されて対応する
アルカノールとなることは従来から知られてい
る。たとえばドイツ特許第563625号明細書には酸
化バリウム上にニツケルを担持せしめた触媒を用
い水素を過剰に共存せしめて、酸化エチレンを80
℃で水素添加反応させエタノールがえられると記
載されている。
It has been known that alkylene oxides having 2 to 5 carbon atoms, such as ethylene oxide and propylene oxide, are reduced to corresponding alkanols by a hydrogenation catalyst in the presence of hydrogen. For example, in German Patent No. 563,625, 80
It is stated that ethanol can be obtained by hydrogenation reaction at ℃.

しかしながらアルキレンオキシドを液相にて、
常圧〜200Kg/cm2Gの水素圧下50〜250℃という温
度下で水素添加反応せしめる上で工業的に安定し
て高水準で使用しうる触媒はまだ見出されていな
い。たとえば一般の液相での水素添加反応に用い
られるラネ―ニツケル型の触媒はこの種の反応に
もかなりの高い活性を示すものの、同時に副反応
によりアルキレンオキシドの重合物を多量生成さ
せ、触媒を被毒し著しい活性低下を招き目的生成
物のアルカノールの収量低下をもたらすことが見
出されている。また一般に工業的な水素添加反応
に使用されるニツケル―ケイソウ土系の触媒にし
ても、生成アルカノールの選択率が低いばかりで
なく液相での固定床式触媒として使用した場合、
この触媒は成型品であることからその物理的耐久
性が著しく悪く、数日〜数十日の連続運転で崩壊
しはじめとても上記液相反応用触媒としての使用
には耐え得ない。上記ドイツ特許における触媒も
同様である。
However, when alkylene oxide is in the liquid phase,
No catalyst has yet been found that can be used industrially and stably at a high level for hydrogenation reactions at temperatures of 50 to 250° C. under hydrogen pressures of normal pressure to 200 kg/cm 2 G. For example, the Raney-Nickel type catalyst used in general liquid phase hydrogenation reactions shows quite high activity in this type of reaction, but at the same time, a large amount of alkylene oxide polymer is produced due to side reactions, which weakens the catalyst. It has been found that poisoning leads to a significant decrease in activity and a decrease in the yield of the target product, alkanol. Furthermore, nickel-diatomaceous earth catalysts, which are generally used in industrial hydrogenation reactions, not only have a low selectivity for the alkanol produced, but also have a low selectivity when used as a fixed-bed catalyst in the liquid phase.
Since this catalyst is a molded product, its physical durability is extremely poor, and it begins to disintegrate after several days to several tens of days of continuous operation, making it unsuitable for use as a catalyst for liquid phase applications. The same applies to the catalyst in the above German patent.

一方、比較的機械的強度の大きい担持型の水素
添加触媒としては、成型ガンマ(γ)―アルミナ
担体に熱分解して金属酸化物となるニツケル、銅
およびマンガンの金属塩を含浸担持せしめ、空気
中で250〜500℃、好適には約375゜〜425℃という
高温で力焼したのち水素気流中で還元した触媒が
報告されている(特公昭53―15997号公報明細書
参照)。このような製造工程を経れば確かに強度
の大きい触媒がえられるであろう。しかし、γ―
アルミナを担体として用いた場合、アルキレンオ
キシドの液相水素添加反応での使用では先述のラ
ネー型触媒と同様重合物等の副生物の生成による
影響を受けて次第に活性を失うことが見出された
のである。
On the other hand, as a supported hydrogenation catalyst with relatively high mechanical strength, a shaped gamma (γ)-alumina support is impregnated with metal salts of nickel, copper, and manganese, which become metal oxides by thermal decomposition, and is supported in air. Among them, a catalyst which is calcined at a high temperature of 250 to 500°C, preferably about 375° to 425°C, and then reduced in a hydrogen stream has been reported (see the specification of Japanese Patent Publication No. 15997/1983). If such a manufacturing process is carried out, a catalyst with high strength will certainly be obtained. However, γ-
It has been found that when alumina is used as a carrier in the liquid phase hydrogenation reaction of alkylene oxides, it gradually loses its activity due to the formation of by-products such as polymers, similar to the Raney type catalyst mentioned above. It is.

このような現状にかんがみ、本発明者らはここ
に液相においてアルキレンオキシドと水素とによ
り対応するアルカノールを生成する反応に安定し
て高い活性を示し、かつ物理的耐久性にすぐれ、
長寿命であり、工業的規模での長期生産を可能な
らしめうる触媒の開発を行ない、本発明を完成す
るに至つた。
In view of the current situation, the present inventors have hereby proposed a method that exhibits stable and high activity in the reaction of alkylene oxide and hydrogen to produce the corresponding alkanol in the liquid phase, and has excellent physical durability.
The present invention was completed by developing a catalyst that has a long life and enables long-term production on an industrial scale.

すなわち、本発明はα―アルミナ担体上にニツ
ケル、銅およびクロムを金属または酸化物の形で
担持せしめてなるアルキレンオキシドを液相下に
水素添加せしめるための触媒であり、特に完成触
媒当りニツケルが元素換算で約2〜20重量%、好
ましくは約3〜12重量%、銅が元素換算で約0.05
〜3重量%、好ましくは約0.1〜2重量%、さら
にクロムが元素換算で約0.05〜3重量%、好まし
くは約0.1〜2重量%の範囲で担持されてなる上
記の触媒であり、さらに好ましくは完成触媒の
BET比表面積が約2〜30m2/gの範囲に調整さ
れてなる触媒である。また好ましいα―アルミナ
担体として嵩密度約0.6〜1.5g/c.c.、吸水率15〜
60%、さらにBET比表面積0.01〜10m2/gの範囲
のα―アルミナ担体が使用される。ここでいうα
―アルミナ担体とは上述の如き反応条件下で物理
的安定性を十分に維持し、かつそれ自体が反応に
対し不活性であるα―アルミナを主成分とするも
のであり、一般に担体の結合剤として用いられる
ケイ素、アルカリ金属、アルカリ土類金属などの
酸化物は少量含まれていても特にさしつかえはな
いが、γ―アルミナなどの活性アルミナ分が含ま
れるのは好ましくない。先に述べたように、その
活性のゆえにアルキレンオキシドを重合させ、そ
の重合物が触媒を被毒してしまうからである。担
体はペレツト状、粒状、球体状など種々の形状が
採用される。
That is, the present invention is a catalyst for hydrogenating alkylene oxide in the liquid phase, which is made by supporting nickel, copper, and chromium in the form of metals or oxides on an α-alumina carrier. Approximately 2 to 20% by weight in terms of element, preferably approximately 3 to 12% by weight, copper approximately 0.05% in terms of element
-3% by weight, preferably about 0.1-2% by weight, and more preferably about 0.05-3% by weight, preferably about 0.1-2% by weight of chromium in terms of element, and more preferably is the finished catalyst
The catalyst has a BET specific surface area adjusted to a range of about 2 to 30 m 2 /g. In addition, a preferred α-alumina carrier has a bulk density of about 0.6 to 1.5 g/cc and a water absorption rate of 15 to 1.5 g/cc.
60% and a BET specific surface area in the range from 0.01 to 10 m 2 /g is used. α here
-Alumina carrier is mainly composed of α-alumina, which maintains sufficient physical stability under the above reaction conditions and is itself inert to the reaction, and is generally used as a binder for the carrier. Although there is no particular problem even if small amounts of oxides such as silicon, alkali metals, and alkaline earth metals used as oxides are contained, it is not preferable that active alumina components such as γ-alumina are contained. As mentioned above, because of its activity, it polymerizes alkylene oxide, and the polymer poisons the catalyst. The carrier may be in various shapes such as pellets, granules, and spheres.

本発明の触媒における、ニツケル、銅、クロム
の三元素はそのいずれもが必須であり、ニツケル
単独あるいはニツケル―銅、ニツケル―クロムだ
けの組合わせでは活性の高い触媒は得られない。
また上記制限範囲以上の金属を担持することは活
性の向上に全く寄与しないばかりか、むしろアル
カノールの選択率に悪影響を与える場合があり、
一方、制限範囲以下の金属担持量では活性は著し
く低下する。
In the catalyst of the present invention, all three elements, nickel, copper, and chromium, are essential, and a highly active catalyst cannot be obtained with nickel alone or a combination of nickel-copper or nickel-chromium.
Furthermore, supporting a metal in an amount exceeding the above-mentioned limit does not contribute to improving the activity at all, and may even adversely affect the selectivity of alkanol.
On the other hand, if the amount of metal supported is below the limit range, the activity will be significantly reduced.

本発明の触媒は以下の如くにして製造される。
上記α―アルミナ担体をニツケル、銅およびクロ
ム化合物を溶解した水性媒体中に浸漬し、必要量
を担持せしめたのち50〜150℃、好ましくは100〜
120℃にて乾燥し、ついでそのまま約250〜450
℃、好ましくは270〜330℃の温度範囲で水素また
は水素含有ガスで還元せしめて完成触媒をえる。
この場合、上記乾燥処理は、150℃以下で行う必
要があり、200℃を越えるような熱処理を空気中
ないし窒素気流中で行うことは避けねばならな
い。なぜならば、たとえば300℃での空気中の力
焼過程をへたのちに還元した場合には本発明の方
法による触媒と比べ、触媒比表面積が小さくな
り、しかも水素化活性も大幅に劣ることが見出さ
れたからである。
The catalyst of the present invention is produced as follows.
The above α-alumina support is immersed in an aqueous medium in which nickel, copper and chromium compounds are dissolved, and the required amount is supported at 50-150°C, preferably 100-150°C.
Dry at 120℃, then dry at about 250~450℃
C., preferably in the temperature range of 270 DEG to 330 DEG C., with hydrogen or hydrogen-containing gas to obtain the finished catalyst.
In this case, the drying treatment must be performed at a temperature of 150° C. or lower, and heat treatment at temperatures exceeding 200° C. must be avoided in air or in a nitrogen stream. This is because, for example, if the force calcining process in air at 300°C is reduced, the specific surface area of the catalyst will be smaller and the hydrogenation activity will be significantly lower than that of the catalyst produced by the method of the present invention. Because it was discovered.

ニツケル、銅、クロムの化合物としては、水可
溶性の塩たとえば硝酸塩、酢酸塩、ギ酸塩などの
使用が好ましく、特に溶解性の大きい硝酸塩が有
利である。各金属を目的量α―アルミナ担体に担
持させるための濃度の調製が最も容易となるから
である。水素ガスによる還元処理は、水素ガス
100%で行うことが好ましいが、窒素、メタンな
ど不活性ガスで希釈された水素含有ガスで行つて
もよい。上記制限範囲の金属担持量を達成するた
めには通常上述した含浸、乾燥、還元操作を1回
行えば充分であるが、場合によつては数回くりか
えして行なつてもよい。
As the nickel, copper, and chromium compounds, water-soluble salts such as nitrates, acetates, and formates are preferably used, and nitrates with high solubility are particularly advantageous. This is because it is easiest to adjust the concentration for supporting the desired amount of each metal on the α-alumina support. Reduction treatment with hydrogen gas is performed using hydrogen gas.
Although it is preferable to use 100% hydrogen, it may also be performed using a hydrogen-containing gas diluted with an inert gas such as nitrogen or methane. In order to achieve the amount of metal supported within the above-mentioned limits, it is usually sufficient to carry out the above-mentioned impregnation, drying and reduction operations once, but in some cases they may be repeated several times.

本発明における上述の方法で製造した触媒はす
ぐれた水素化活性と機械的強度を持ち、一般の液
相水添連続反応用触媒としても使用できるが、ア
ルキレンオキシドを水素添加してアルカノールと
なす反応に、特に安定かつすぐれた活性選択性を
示し、従来実現できなかつた工業的規模での長期
連続生産を可能ならしめるものである。
The catalyst produced by the above method of the present invention has excellent hydrogenation activity and mechanical strength, and can be used as a catalyst for general continuous liquid phase hydrogenation reactions. In addition, it exhibits particularly stable and excellent activity selectivity, and enables long-term continuous production on an industrial scale, which has not been possible in the past.

本発明の触媒を用いたアルキレンオキシドの水
添反応は、温度約50〜250℃、好ましくは約80〜
200℃かつ水素圧は常圧〜200Kg/cm2G好ましくは
約20〜100Kg/cm2Gにて行なうことができる。こ
の反応に用いる原料希釈剤としての溶媒は反応に
関与しないものであれば特に制限はなく、ジオキ
サン、テトラヒドロフラン、炭素数1〜8の低給
アルキル基よりなるエーテル類、ベンゼン、シク
ロヘキサンなど各種溶媒のなかから、生成物から
の製品の回収分離の難易性などを考慮して適宜選
択される。
The hydrogenation reaction of alkylene oxide using the catalyst of the present invention is carried out at a temperature of about 50 to 250°C, preferably about 80 to 250°C.
The reaction can be carried out at 200° C. and at a hydrogen pressure of normal pressure to 200 Kg/cm 2 G, preferably about 20 to 100 Kg/cm 2 G. The solvent used as a raw material diluent for this reaction is not particularly limited as long as it does not participate in the reaction, and various solvents such as dioxane, tetrahydrofuran, ethers consisting of low-paying alkyl groups having 1 to 8 carbon atoms, benzene, and cyclohexane can be used. From among them, an appropriate selection is made taking into account the difficulty of recovering and separating the product from the product.

この反応における生成物は、主生成物であるア
ルカノールの他、副生物としてグリコールエーテ
ル類が一部えられ、さらにごく微量のグリコール
類、メタン、エタン等の分解ガスなども検出され
る。
In addition to alkanol as the main product, the products of this reaction include some glycol ethers as by-products, and trace amounts of glycols and decomposed gases such as methane and ethane are also detected.

以下の実施例により本発明によるすぐれた特性
をもつ触媒を更に説明し、その製造ならびにアル
キレンオキシドの水素添加反応について説明す
る。特に指示なき限りパーセントはすべて重量基
準である。
The following examples further illustrate the excellent properties of the catalyst according to the invention and illustrate its preparation as well as the hydrogenation reaction of alkylene oxides. All percentages are by weight unless otherwise indicated.

実施例 1 ペレツト状にしたα―アルミナ担体(かさ比重
1.3、吸水率24%、BET比表面積3m2/g)2.5
を回転式ブレンダー内にて100℃にて加熱し、脱
気した。これに対しNi(NO32・6H2O892g、Cu
(NO32・3H2O34g、Cr(NO33・9H2O69gに
190mlの水を加えて加熱溶解させた溶液を添加
し、100℃に保つて1時間半回転混合することに
より含浸、乾燥を行なつた。この触媒を直ちに常
圧にて触媒1g当り0.15N/時の純水素を流通
する事により305℃、6時間還元した。この触媒
の各金属含有率はニツケル5.1%、銅0.25%、ク
ロム0.25%であつた。触媒のBET比表面積は8
m2/gであつた。
Example 1 α-alumina carrier made into pellets (bulk specific gravity
1.3, water absorption rate 24%, BET specific surface area 3m 2 /g) 2.5
was heated at 100°C in a rotary blender and degassed. On the other hand, Ni(NO 3 ) 2・6H 2 O892g, Cu
(NO 3 ) 2・3H 2 O34g, Cr(NO 3 ) 3・9H 2 O69g
A solution obtained by adding 190 ml of water and dissolving it by heating was added, and impregnation and drying were performed by keeping the mixture at 100° C. and mixing by rotating for one and a half hours. This catalyst was immediately reduced at 305° C. for 6 hours by flowing pure hydrogen at 0.15 N/hour per gram of catalyst at normal pressure. The metal content of this catalyst was 5.1% nickel, 0.25% copper, and 0.25% chromium. The BET specific surface area of the catalyst is 8
m 2 /g.

内容積0.5のステンレス製電磁回転撹拌機付
オートクレーブにジオキサン75g、エチレンオキ
シド25g(0.57モル)および上記触媒10ml(13.7
g)を仕込み、水素ガスにて70Kg/cm2Gとしたの
ち120℃2時間反応した。反応生成液の分析か
ら、エチレンオキシドの転化率98%、エタノール
選択率は90%となつた。エタノール以外の副生成
物としてはエタノールと原料エチレンオキシドと
の反応によるモノ、ジ、トリエチレングリコール
エチルエーテルが選択率として合わせて6%、エ
チレングリコール類が選択率として2%、エチレ
ンオキシド重合体は痕跡程度であり、他に分解ガ
ス(メタン、エタン等)が認められた。
75 g of dioxane, 25 g (0.57 mol) of ethylene oxide, and 10 ml (13.7 mol) of the above catalyst were placed in a stainless steel autoclave with an internal volume of 0.5 and equipped with an electromagnetic stirrer.
g) was charged, the pressure was adjusted to 70 Kg/cm 2 G with hydrogen gas, and the reaction was carried out at 120° C. for 2 hours. Analysis of the reaction product liquid showed that the conversion rate of ethylene oxide was 98% and the ethanol selectivity was 90%. As for by-products other than ethanol, mono-, di-, and triethylene glycol ethyl ether produced by the reaction between ethanol and raw material ethylene oxide have a total selectivity of 6%, ethylene glycols have a selectivity of 2%, and ethylene oxide polymer has only a trace. Other decomposed gases (methane, ethane, etc.) were also observed.

ここで転化率、選択率は次のように定義する。 Here, the conversion rate and selectivity are defined as follows.

転化率=導入されたアルキレンオキシドのモル数―未反応アルキレンオキシドのモル数/導入されたアルキレンオキ
シドのモル数×100 選択率=当該生成物に転化したアルキレンオキシドのモル数/反応に消費された全アルキレンオキシドのモル数×10
0 実施例 2 実施例1でえられたと同じ触媒725ml(990g)
を固定床触媒としてエチレンオキシドと水素によ
るアルカノール生成反応の連続実験を行なつた。
50Kg/cm2Gの水素圧下130℃でジオキサンを希釈
剤としたエチレンオキシド25%を含む原料を供給
速度(SV)2.0g(原料)/ml(触媒)時で供給
し、水素をこれと並流に180N/時で供給して
反応を行なつた。反応器出口での生成液およびガ
スの組成分析からエチレンオキシドの当初の転化
率99%で各生成物の選択率は次のとおりであつ
た。
Conversion rate = Number of moles of alkylene oxide introduced - Number of moles of unreacted alkylene oxide / Number of moles of alkylene oxide introduced × 100 Selectivity = Number of moles of alkylene oxide converted to the product / Consumed in the reaction Number of moles of total alkylene oxide x 10
0 Example 2 725 ml (990 g) of the same catalyst obtained in Example 1
Continuous experiments were carried out on the alkanol production reaction between ethylene oxide and hydrogen using ethylene oxide as a fixed bed catalyst.
A raw material containing 25% ethylene oxide using dioxane as a diluent was supplied at a feed rate (SV) of 2.0 g (raw material)/ml (catalyst) at 130°C under a hydrogen pressure of 50 Kg/cm 2 G, and hydrogen was fed in parallel with this. The reaction was carried out by supplying 180 N/hour. Analysis of the composition of the produced liquid and gas at the reactor outlet revealed that the initial conversion rate of ethylene oxide was 99% and the selectivity of each product was as follows.

エタノール 89% グリコールエーテル類 7% エチレングリコール類 2% 分解ガス 1% エチレンオキシド重合体 1% この反応を同条件で約3ケ月連続で行なつても
触媒の活性、選択性に変化はなく、触媒自体の物
理的外観も重合体で汚されておらず、破砕、粉化
などは全くおこつていなかつた。
Ethanol 89% Glycol ethers 7% Ethylene glycols 2% Cracking gas 1% Ethylene oxide polymer 1% Even if this reaction was continued under the same conditions for about 3 months, there was no change in the activity or selectivity of the catalyst, and the catalyst itself The physical appearance of the material was not contaminated with polymer, and no crushing or pulverization occurred.

実施例 3 球状のα―アルミナ担体(かさ比重1.0、吸水
率35%、BET比表面積5m2/g)120mlに対し、
Ni(NO32・6H2O42.8g、Cu(NO32・3H2O1.6
g、Cr(NO33・9H2O3.3gに水15mlを加えて加
熱溶解させた溶液を含浸し実施例1と同じ条件で
乾燥、還元を行ない触媒をえた。この触媒の各金
属含有率はニツケル6.4%、銅0.3%、クロム0.3
%、BET比表面積は9.5m2/gであつた。
Example 3 For 120 ml of spherical α-alumina carrier (bulk specific gravity 1.0, water absorption rate 35%, BET specific surface area 5 m 2 /g),
Ni (NO 3 ) 2・6H 2 O42.8g, Cu (NO 3 ) 2・3H 2 O1.6
The catalyst was impregnated with a solution prepared by adding 15 ml of water to 3.3 g of Cr(NO 3 ) 3 ·9H 2 O and dissolving it under heating, followed by drying and reduction under the same conditions as in Example 1 to obtain a catalyst. The metal content of this catalyst is 6.4% nickel, 0.3% copper, and 0.3% chromium.
%, and the BET specific surface area was 9.5 m 2 /g.

この触媒10ml(10.7g)をとりオートクレーブ
にて実施例1と同じ反応条件で反応を行なつた。
エチレンオキシドの転化率98%、エタノール選択
率は88%となつた。
10 ml (10.7 g) of this catalyst was taken and reacted in an autoclave under the same reaction conditions as in Example 1.
The conversion rate of ethylene oxide was 98% and the ethanol selectivity was 88%.

実施例 4 実施例1で使用したと同じ担体300mlに対し、
Ni(NO32・6H2O107.0g、Cu(NO32
3H2O8.2g、Cr(NO33・9H2O8.3gに水24mlを
加えて加熱溶解させた溶液を含浸し、乾燥を行な
つた後270℃で6時間還元した。この触媒の各金
属含有率はニツケル5.0%、銅0.5%、クロム0.3
%、BET比表面積は8.5m2/gであつた。
Example 4 For 300 ml of the same carrier used in Example 1,
Ni (NO 3 ) 2・6H 2 O107.0g, Cu (NO 3 ) 2
A solution prepared by adding 24 ml of water to 8.2 g of 3H 2 O and 8.3 g of Cr(NO 3 ) 3 ·9H 2 O and dissolving them under heating was impregnated, dried, and then reduced at 270° C. for 6 hours. The metal content of this catalyst is 5.0% nickel, 0.5% copper, and 0.3% chromium.
%, and the BET specific surface area was 8.5 m 2 /g.

この触媒10ml(10.7g)をとり、オートクレー
ブにて実施例1と同じ反応条件で反応を行なつ
た。エチレンオキシドの転化率97%、エタノール
選択率88%となつた。
10 ml (10.7 g) of this catalyst was taken and reacted in an autoclave under the same reaction conditions as in Example 1. The ethylene oxide conversion rate was 97% and the ethanol selectivity was 88%.

実施例 5 実施例1で使用したと同じ担体を用い、同じ含
浸、乾燥、還元操作を二度くりかえして触媒をえ
た。この触媒の各金属含有率はニツケル10.0%、
銅0.5%、クロム0.5%であり、触媒のBET比表面
積は13m2/gであつた。
Example 5 Using the same carrier as used in Example 1, the same impregnation, drying and reduction operations were repeated twice to obtain a catalyst. The content of each metal in this catalyst is nickel 10.0%,
The content was 0.5% copper and 0.5% chromium, and the BET specific surface area of the catalyst was 13 m 2 /g.

この触媒10ml(14.4g)をとり、オートクレー
ブにて実施例1と同じ反応条件で反応を行なつ
た。エチレンオキシドの転化率99%、エタノール
選択率91%となつた。
10 ml (14.4 g) of this catalyst was taken and reacted in an autoclave under the same reaction conditions as in Example 1. The ethylene oxide conversion rate was 99% and the ethanol selectivity was 91%.

実施例 6 球状のα―アルミナ担体(かさ比重0.92、吸水
率27%、BET比表面積0.3m2/g)2.5に対し、
Ni(NO32・6H2O714g、Cu(NO32・3H2O27.2
g、Cr(NO33・9H2O55.2gに水152mlを加えて
加熱溶解させた溶液を実施例1と同様に含浸、乾
燥を行なつた後触媒1g当り0.3N/時の水素
を流通する事により295℃、6時間還元した。こ
の操作を二度くりかえして最終的な触媒をえた。
この触媒の各金属含有率はニツケル10.9%、銅
0.54%、クロム0.54%であつた。BET比表面積は
7.5m2/gであつた。
Example 6 For a spherical α-alumina carrier (bulk specific gravity 0.92, water absorption rate 27%, BET specific surface area 0.3 m 2 /g) 2.5,
Ni (NO 3 ) 2・6H 2 O714g, Cu (NO 3 ) 2・3H 2 O27.2
A solution prepared by adding 152 ml of water to 55.2 g of Cr(NO 3 ) 3 ·9H 2 O and dissolving it under heating was impregnated and dried in the same manner as in Example 1, and then hydrogen was added at 0.3 N/h per 1 g of catalyst. It was reduced by circulation at 295°C for 6 hours. This operation was repeated twice to obtain the final catalyst.
The metal content of this catalyst is nickel 10.9%, copper
0.54% and chromium 0.54%. BET specific surface area is
It was 7.5m 2 /g.

この触媒725mlを固定床触媒として、実施例2
と同じ反応条件で反応を行なつた。エチレンオキ
シドの転化率97%で各生成物の選択率は次のとお
りであつた。
Using 725 ml of this catalyst as a fixed bed catalyst, Example 2
The reaction was carried out under the same reaction conditions. At a conversion rate of ethylene oxide of 97%, the selectivity of each product was as follows.

エタノール 90% グリコールエーテル 7% エチレングリコール 2% その他 1% この反応を同条件で約3ケ月連続で行なつても
触媒の活性、選択性に変化はなく、触媒の物理的
外観にも変化は認められなかつた。
Ethanol 90% Glycol ether 7% Ethylene glycol 2% Others 1% Even if this reaction was carried out under the same conditions for about 3 consecutive months, there was no change in the activity or selectivity of the catalyst, and no change was observed in the physical appearance of the catalyst. I couldn't help it.

Claims (1)

【特許請求の範囲】 1 α―アルミナ担体上に、ニツケル、銅および
クロムを金属または酸化物の形で担持せしめてな
る、アルキレンオキシドを液相下に水素添加せし
めるための触媒。 2 完成触媒当りニツケルが元素換算で約2〜20
重量%、銅が元素換算で約0.05〜3重量%、さら
にクロムが元素換算で約0.05〜3重量%の範囲で
担持されてなる特許請求の範囲1記載の触媒。 3 完成触媒当りニツケルが元素換算で約3〜12
重量%、銅が元素換算で約0.1〜2重量%、さら
にクロムが元素換算で約0.1〜2重量%の範囲で
担持されてなる特許請求の範囲1記載の触媒。 4 BET比表面積が約2〜30m2/gの範囲であ
る特許請求の範囲1記載の触媒。 5 嵩密度が約0.6〜1.5g/c.c.、吸水率約15〜60
%、さらにBET比表面積が約0.01〜10m2/gの範
囲のα―アルミナを使用することを特徴とする特
許請求の範囲1記載の触媒。 6 α―アルミナ担体上に、ニツケル、銅および
クロムの化合物を含浸担持せしめ、50〜150℃に
て乾燥後、そのまま約250〜450℃の温度範囲で水
素または水素含有ガスで還元することを特徴とす
るアルキレンオキシドの液相水素添加用触媒の製
法。
[Claims] 1. A catalyst for hydrogenating alkylene oxide in a liquid phase, which comprises nickel, copper and chromium supported in the form of metals or oxides on an α-alumina carrier. 2 Approximately 2 to 20 nickels per finished catalyst in elemental terms
2. The catalyst according to claim 1, wherein copper is supported in an amount of about 0.05 to 3% by weight in terms of element, and further chromium is supported in an amount of about 0.05 to 3% by weight in terms of element. 3 Approximately 3 to 12 nickels per finished catalyst in elemental terms
The catalyst according to claim 1, wherein copper is supported in an amount of about 0.1 to 2% by weight in terms of element, and further chromium is supported in an amount of about 0.1 to 2% by weight in terms of element. 4. The catalyst according to claim 1, having a BET specific surface area in the range of about 2 to 30 m 2 /g. 5 Bulk density is approximately 0.6 to 1.5 g/cc, water absorption rate is approximately 15 to 60
% and a BET specific surface area of approximately 0.01 to 10 m 2 /g. 6. Nickel, copper, and chromium compounds are impregnated and supported on an α-alumina carrier, dried at 50 to 150°C, and then reduced with hydrogen or hydrogen-containing gas at a temperature range of approximately 250 to 450°C. A method for producing a catalyst for liquid phase hydrogenation of alkylene oxide.
JP348880A 1980-01-18 1980-01-18 Catalyst for hydrogenation of alkylene oxide and its manufacture Granted JPS56100633A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP348880A JPS56100633A (en) 1980-01-18 1980-01-18 Catalyst for hydrogenation of alkylene oxide and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP348880A JPS56100633A (en) 1980-01-18 1980-01-18 Catalyst for hydrogenation of alkylene oxide and its manufacture

Publications (2)

Publication Number Publication Date
JPS56100633A JPS56100633A (en) 1981-08-12
JPS6155419B2 true JPS6155419B2 (en) 1986-11-27

Family

ID=11558715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP348880A Granted JPS56100633A (en) 1980-01-18 1980-01-18 Catalyst for hydrogenation of alkylene oxide and its manufacture

Country Status (1)

Country Link
JP (1) JPS56100633A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0325670B2 (en) * 1986-06-13 1991-04-08 Kinugawa Rubber Ind

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0325670B2 (en) * 1986-06-13 1991-04-08 Kinugawa Rubber Ind

Also Published As

Publication number Publication date
JPS56100633A (en) 1981-08-12

Similar Documents

Publication Publication Date Title
KR100924620B1 (en) Advances in amination catalysis
US4083809A (en) Hydrogenation catalyst and method of producing same
EP1262232B1 (en) Catalysts and process for producing aromatic amines
EP0318129B1 (en) Hydrogenation catalyst
EP0101645B1 (en) Catalytic process for the production of methanol
US4885411A (en) Hydrogenation process for converting lactones to diols
JP2807053B2 (en) Decomposition method of methanol
JPS6155419B2 (en)
JPS6362525B2 (en)
JPH09221437A (en) Production of ethanol
US4018831A (en) Production of 2-ethyl hexanal
JP2874017B2 (en) Method for producing gamma-butyrolactone
JP2874016B2 (en) Production method of γ-butyrolactone
JPS6256788B2 (en)
EP0075952A1 (en) Hydrogenolysis process for the production of monoethylene glycol monomethyl ether, monoethylene glycol and ethanol
JP4189068B2 (en) Method for producing dimethyl ether from lower hydrocarbon gas
JPH0260375B2 (en)
US4661643A (en) Hydrogenolysis process for the production of monoethylene glycol monomethyl ether, monoethylene glycol and ethanol
JPS6155417B2 (en)
GB1590309A (en) Cobalt catalyst and its use for hydrogenating adipodinitrile
JPH0314293B2 (en)
JPS58146519A (en) Preparation of methyl chloride and ammonia
JPH0136448B2 (en)
JPH10109949A (en) Production of alpha-phenylethyl alcohol
CN116425702A (en) Synthesis method of dimorpholinodiethyl ether