JPS6155417B2 - - Google Patents

Info

Publication number
JPS6155417B2
JPS6155417B2 JP54109722A JP10972279A JPS6155417B2 JP S6155417 B2 JPS6155417 B2 JP S6155417B2 JP 54109722 A JP54109722 A JP 54109722A JP 10972279 A JP10972279 A JP 10972279A JP S6155417 B2 JPS6155417 B2 JP S6155417B2
Authority
JP
Japan
Prior art keywords
weight
catalyst
nickel
reaction
supported
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54109722A
Other languages
Japanese (ja)
Other versions
JPS5637047A (en
Inventor
Hirokazu Kuroda
Futoshi Kitagawa
Takeshi Yamamoto
Minoru Saotome
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP10972279A priority Critical patent/JPS5637047A/en
Publication of JPS5637047A publication Critical patent/JPS5637047A/en
Publication of JPS6155417B2 publication Critical patent/JPS6155417B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はアルキレングリコールエーテル類製造
用の触媒に関する。詳しく述べると、炭素数1〜
4のアルコールに炭素数2〜4のアルキレンオキ
シドを液相下反応せしめ対応するアルキレングリ
コールエーテル類を製造するための触媒に関す
る。さらに詳しく述べると本発明はメタノール、
エタノール、プロパノール類、ブタノール類とエ
チレンオキシド、プロピレンオキシド、ブチレン
オキシド類とを液相下に反応せしめ、不純物の副
生をできるだけ抑制しつつ対応するアルキレング
リコールモノエーテルを効率よく生成することの
可能な触媒およびその製法に関する。 一般にアルキレングリコールエーテル類は、優
れた溶解力と適度の揮発性とを持つ高沸点の水溶
性溶剤であるため、多くの合成樹脂類、脂肪類、
染料などの溶剤として使用されている。たとえ
ば、塗料溶剤、農薬用溶剤、ブレーキ油、自動車
用洗剤、ドライクリーニング剤、印刷インキ用溶
剤、塗料用溶剤、可塑剤、浸透剤、軟化剤など広
い用途がある。 従来アルコールにアルキレンオキシドをアルカ
リまたは酸触媒の存在下に反応させて対応するア
ルキレングリコールエーテル類をえることはよく
知られており、たとえば“GLYCOLS”
(Reinhold Publishing Corporation,New
York,U.S.A.1953,Chapter6)によれば水酸化
ナトリウム、トリメチルアミンなどのアルカリ触
媒を使用してエタノールとエチレンオキシドとを
反応させエチレングリコールモノエチルエーテル
をえており、ドイツ特許明細書第580075(1933)
によれば硫酸、リン酸、β―ナフタリンスルホン
酸などの酸触媒を使用してメタノールとエチレン
オキシドとを反応させエチレングリコールモノメ
チルエーテルをえていることが報告されている。
しかしながら、これらのアルキレングリコールエ
ーテル類は、逐次反応によつて生成するものであ
り、アルキレングリコールモノエーテル(以下モ
ノーGEとする)にさらにアルキレンオキシドが
反応した形のアルキレングリコールジエーテル
(以下ジーGEとする)やアルキレングリコールト
リエーテル(以下トリーGEとする)の副生が不
可避である。しかもジーGEやトリーGEは、モノ
ーGEにくらべ揮発性などの関連からその用途は
限られ塗料溶剤、ブレーキ油、自動車用洗剤に使
用されるぐらいでしかない。したがつてアルコー
ルとアルキレンオキシドからアルキレングリコー
ルエーテル類を製造するに際しては、モノーGE
を選択性よく製造することが望まれるまのであ
り、そのための有用な触媒の開発が必要なのであ
る。 上述したようなアルカリ触媒を使用してアルコ
ールとアルキレンオキシドを反応させた場合、ア
ルコールを5モル倍(対アルキレンオキシド)程
度使用してもモノーGEの選択性が低いためアル
コールとアルキレンオキシドをモル比7:1〜
15:1のようにアルコールを大過剰に用いなけれ
ばならず、未反応アルコールを反応生成液中から
分離回収するために蒸留コストなどの費用が高く
なる欠点がある。 酸を触媒として使用した場合、アルコールとア
ルキレンオキシドをモル比3:1〜7:1の範囲
で反応させても、モノーGEの選択性はほぼ満足
すべき水準にはあるものの、エーテル、アルデヒ
ドおよびアセタール類が副生し反応生成液からの
モノーGE分離が困難である。 一方、特開昭52―51307号公報明細書によれ
ば、上述の反応用触媒としてγ―アルミナ、チタ
ニアあるいはリンタングステン酸などの固体酸触
媒が有利に使用しうることが明らかにされた。こ
の固体酸触媒は、当該反応を遂行する上で以下の
ような有利性を有すると見られる。すなわち、使
用形態が固形であるため反応生成液との分離が簡
単であること、触媒が反応容器を腐蝕しない、副
反応生成物が比較的少なく収量を向上させる、な
どである。 しかしこれらの固体酸触媒でも当該反応条件
(一般には100〜200℃の温度、2〜50Kg/cm2Gの
圧力が採用されている)下、アルキレンオキシド
のアルデヒドへの異性化、アルキレンオキシドの
重合、エーテルおよびアセタール等不純物の副生
化、さらには触媒そのものの耐熱性などが原因で
活性低下や選択性の低下などの諸欠点を有し、未
だ十分に工業的水準での負荷に耐ええない。 本発明者らはこのような現状に鑑み、これら欠
点を補う触媒として固体酸触媒のもつ優れた性質
に注目し鋭意研究した結果、公知の方法の欠点を
克服しかつ長期にわたり安定した活性を持続する
触媒を見い出し本発明を完成するに至つた。 即ち、本発明は多孔性無機質担体、とくに多孔
性シリカアルミナ担体上に鉄族金属およびアルカ
リ土類金属から選ばれた少なくとも1種の金属化
合物を、該金属の元素換算で0.5〜25重量%の範
囲となるように担持せしめた担持組成物を600〜
1100℃の温度範囲で焼成したのちニツケルまた
は、ニツケル、銅、クロムを組合わせた合属化合
物を、該金属の元素換算合計が0.5〜15重量%の
範囲となるように担持せしめ、ついで250〜450℃
の温度範囲で還元し該化合物を金属の形にせしめ
たことを特徴とするアルキレンオキシドとアルコ
ールとからアルキレングリコールエーテル類を製
造するための触媒を開示するものであり、さらに
好ましくは多孔性シリカアルミナ担体として吸水
率30〜100重量%および比表面積200〜800m2/g
のものを使用してなる触媒に関するもので、とく
にアルミナ(Al2O3)含有率が10〜40重量%の範
囲の多孔性シリカアルミナ担体を使用してなる触
媒に関するものである。この多孔性シリカアルミ
ナ担体の形状はその採用するプロセスによつて自
由に変えることができ、モノリス状に一体成形さ
れたものやペレツト状(円柱状、球状あるいは不
定形)に成形されたものが使用されるが、通常は
1〜10mmの大きさをもつペレツトが触媒調製上や
触媒使用上便利である。 焼成までの担持組成物に担持される成分として
ニツケル、鉄、コバルトよりなる鉄族金属および
マグネシウム、カルシウム、ストロンチウム、バ
リウムよりなるアルカリ土類のうちの1種または
2種以上が使用され、とくにニツケル、コバル
ト、マグネシウム、カルシウムのうちの1種また
は2種以上を使用することが好ましい。これらの
成分は金属元素状あるいは酸化物の形で担持さ
れ、完成触媒あたりの元素換算で0.5〜25重量
%、好ましくは1〜10重量%の範囲で担持されて
なる。0.5重量%に満たない担持量では触媒活性
は良好なものの不純物の副生が若干みられ、25重
量%を越えるような担持量にすることは、触媒活
性そのものの低下をきたし、しかもこのような多
量の担持が触媒調製上経済的でない。 上記担持組成物を600〜1100℃、好ましくは800
〜1000℃の温度範囲で還元性ガス、不活性ガスあ
るいは酸化性ガス、好ましくは水素、窒素あるい
は空気で焼成せしめるが、この場合上記焼成温度
が600℃より低い温度ではアルキレンオキシドの
重合能を抑制しえないために触媒の寿命が不十分
で長期使用により、その機械的強度の低下が避け
られず、反対に1100℃を越える温度は触媒の寿命
は長くなるものの活性を著しく低下させ好ましく
ない。 焼成に使用するガスは水素等の還元性ガスを使
用すれば含浸担持された金属化合物は金属元素の
形まで還元されるが、窒素等の不活性ガスや空気
等の酸化性ガスを使用すれば酸化物の形で担持さ
れる。本発明においてはいずれの場合でも効果が
あり、従つて水素と窒素、水素とメタンのような
不活性ガス、あるいは空気と天然ガスのような可
燃性ガスのような組合わせでも行なうことができ
る。 上記焼成ののちニツケルまたは、ニツケル、
銅、クロムを組合わせた金属化合物、即ちニツケ
ルのみ、ニツケルと銅、ニツケルとクロム、およ
びニツケルと銅とクロム、好ましくはニツケルの
みあるいはニツケルと銅とクロムの組合わせで該
金属の元素換算合計が0.5〜15重量%、好ましく
は2〜1.0重量%の範囲となるように担持せしめ
るが、この場合担持金属はニツケルが必須であ
り、触媒活性の安定性、エーテル、アセタール等
の不純物副生の抑制等考慮して銅および/または
クロムを適宜組合わせて担持させる。これらの成
分は金属元素の形で完成触媒あたりの元素換算合
計が0.5〜15重量%の範囲で担持される。0.5重量
%に満たない担持量では触媒活性は良好なものの
エーテル、アセタール等の不純物副生の抑制効果
が十分でなく、反対に15重量%を越えるような担
持量にすることは、触媒活性そのものの低下をき
たし採用しえないところである。 また還元は250〜450℃、好ましくは270〜370℃
の温度範囲で水素、または水素含有ガスで行なわ
しめる。この場合上記還元温度を250℃に満たな
い温度で行なえば還元効果が十分でなく反対に
450℃を越えるような温度で行なえば触媒活性の
低下をきたし好ましくない。 還元ガスについては水素ガス100%で行なうこ
とが好ましいが、窒素、メタン等など不活性ガス
で希釈された水素含有ガスで行なつてもよい。ま
た還元に先立ち、窒素、メタンなどの水素ガスを
含まない不活性ガスを用いて分解し、しかるのち
上記水素含有ガスを用いても良い。いずれにして
も水素ガスを用いて還元することが本触媒の製造
には必須である。 本発明に用いる鉄族金属、アルカリ土類金属、
銅あるいはクロム化合物としては、水に可溶性の
無機ないし有機の塩、たとえば硝酸塩、硫酸塩、
酢酸塩、蟻酸塩の使用が好ましく、とくに水溶性
の大きい硝酸塩が有利であるがこれに限定される
ものではない。たとえば上記金属のアンモニアま
たはエチレンジアミン、エタノールアミンなどの
有機アミンの錯塩も担持還元処理され触媒の性能
上なんら不都合なく有利に採用することができ
る。また含浸に用いる溶液も上記水溶液に限定さ
れるものではなく、アセトン、エーテル類、アル
コール類など公知の有機溶媒の溶液を用いても本
発明の目的を十分に達成することができる。 上記の金属担持量を達成するためには通常上述
した浸漬、含浸、乾燥、焼成、還元操作を1〜2
回行なえば充分であるが、場合によつては数回く
り返して行なつてもよい。 本発明における上述の方法で製造した触媒は、
優れたエーテル化活性と機械的強度をもち、一般
の液相エーテル化反応用触媒として使用でき、な
かんずく、アルコールをグリコールエーテル化し
てアルキレングリコールモノエーテルとなす反応
にとくに安定かつ優れた活性、選択性、不純物副
生の抑制効果を示し、従来実現できなかつた工業
的規模での長期連続生産を可能ならしめるもので
ある。 本発明の触媒を用いたアルコールのグリコール
エーテル化反応は、気相、液相のいずれにも用い
られるが、特に原料のオキシド類とアルコール類
が液相を保つ様不活性ガス(例えば窒素、メタ
ン、水素等)により圧力をかけて反応するのが望
ましく、反応温度は50〜250℃、好ましくは100〜
200℃であり、固定床、懸濁床のいずれもが用い
られる。とくに水素雰囲気下で反応させるとアセ
タール類の副生はさらに抑制される。本反応は発
熱反応であるので、原料希釈剤としての溶媒は反
応に関与しないものであればとくに制限はなく、
ジオキサン、テトラヒドロフラン、ベンゼン、シ
クロヘキサンなど各種溶媒の中から、生成物から
の製品回収分離の難易性等を考慮して適宜選択さ
れる。 以下の実施例により本発明によるすぐれた特性
をもつ触媒をさらに説明し、その調製法ならびに
アルキレングリコールエーテルの製造方法につい
て記述するが、本発明はこれらの実施例に限定さ
れるものではない。 実施例 1 市販のシリカアルミナ担体(Al2O3含有率28重
量%、商品名;N631H―N、日揮化学株式会社
製)50mlを150℃で加熱乾燥後、室温までデシケ
ーター中に静置した。これを室温で硝酸ニツケル
Ni(NO32・6H2O29.2gに70.8mlの水を加えて溶
解させた溶液に30分間浸漬したのち取り出し100
℃に保つて30分間かきまぜることにより含浸、乾
燥を行なつた。この担持処理組成物を触媒1gあ
たり2N/時の空気の流通下に、1000℃で3時
間焼成した。この担持処理組成物のニツケル含有
率は5重量%であつた。その後室温までデシケー
ター中に静置し、これを室温でさらに硝酸ニツケ
ル54.2gに45.8mlの水を加えて溶解させた溶液に
30分間浸漬したのち取り出し100℃に保つて30分
間かきまぜることにより含浸、乾燥を行なつた。
この触媒を、触媒1gあたり1.2N/時の水素
の流通下に、300℃で4時間還元した。この環元
によりさらに金属元素の形でニツケル含有率が5
重量%増加した。 内容量200mlのステンレス製電磁回転撹拌機付
オートクレーブにエタノール48g、エチレンオキ
シド12g、ジオキサン20gおよび上記触媒8ml
(8.4g)を仕込み、窒素にて5Kg/cm2Gとした後
120℃で2時間反応させた。 反応生成液の分析からエチレンオキシドの転化
率92%、モノエチレングリコールエチルエーテル
の選択率72%、ジエチレングリコールエチルエー
テルの選択率18%、トリエチレングリコールエチ
ルエーテルの選択率7%、不純物として副生する
アセトアルデヒドジエチルアセタールの選択率
0.6%がえられた。 なお、ここで転化率、選択率は次のように定義
するものとする(以下同様)。 転化率〔%〕(以下CEOとする) =反応前アルキレンオキシドのモル数―反応後アルキレンオキシドのモル数/反応前アルキレンオキシドのモル
数×100 モノアルキレングリコールエーテルの選択率〔%〕(以下SMGEとする) =生成したモノアルキレングリコールエーテルのモル数/反応したアルキレンオキシドのモル数×100 ジアルキレングリコールエーテルの選択率〔%〕(以下SDGEとする) =生成したジアルキレングリコールエーテルのモル数×2/反応したアルキレンオキシドのモル数×100 トリアルキレングリコールエーテルの選択率〔%〕(以下STGEとする) =生成したトリアルキレングリコールエーテルのモル数×3/反応したアルキレンオキシドのモル数×100 アセタールの選択率〔%〕(以下SACLとする) =生成したアセタールのモル数/反応したアルキレンオキシドのモル数×100 また、後述の実施例13で使用するエーテルの選
択率(SETRとする)は次のように定義する。 SETR〔%〕 =生成したエーテルのモル数/反応したアルキレンオキ
シドのモル数×100 実施例 2〜4 実施例1で使用したのと同じ担体それぞれ50ml
を実施例1と同様にして硝酸ニツケルの代わりに
硝酸コバルトCO(NO32・6H2O12.9gに87.1ml
の水を加えて溶解させた溶液、硝酸マグネシウム
Mg(NO32・6H2O26.3gに73.7mlの水を加えて
溶解させた溶液、および硝酸カルシウムCa
(NO32・4H2O15.2gに84.8mlの水を加えて溶解
させた溶液おのおのに浸漬し、含浸、乾燥を行な
つた。これらの担持処理組成物を実施例1と同じ
条件で焼成して金属含有率がいずれも2重量%の
ものをえた。その後さらに実施例1と同様にニツ
ケルを浸漬、含浸、乾燥および還元して新たに増
加したニツケル含有率が5重量%の触媒をえた。 これらの触媒を実施例1と同じ反応条件で反応
を行ない以下第1表に示すような結果をえた。
The present invention relates to catalysts for producing alkylene glycol ethers. To explain in detail, the number of carbon atoms is 1~
The present invention relates to a catalyst for producing a corresponding alkylene glycol ether by reacting an alkylene oxide having 2 to 4 carbon atoms with a C4 alcohol in a liquid phase. More specifically, the present invention provides methanol,
A catalyst capable of reacting ethanol, propanols, and butanols with ethylene oxide, propylene oxide, and butylene oxide in a liquid phase to efficiently produce the corresponding alkylene glycol monoether while suppressing by-product impurities as much as possible. and its manufacturing method. In general, alkylene glycol ethers are high-boiling water-soluble solvents with excellent dissolving power and moderate volatility, so they are used in many synthetic resins, fats,
Used as a solvent for dyes, etc. For example, it has a wide range of uses, including paint solvents, pesticide solvents, brake oils, automobile detergents, dry cleaning agents, printing ink solvents, paint solvents, plasticizers, penetrants, and softeners. It is well known that the corresponding alkylene glycol ethers can be obtained by reacting alcohol with alkylene oxide in the presence of an alkali or acid catalyst, such as "GLYCOLS".
(Reinhold Publishing Corporation, New
York, USA 1953, Chapter 6), ethylene glycol monoethyl ether was obtained by reacting ethanol and ethylene oxide using an alkali catalyst such as sodium hydroxide and trimethylamine, and German Patent Specification No. 580075 (1933)
reported that ethylene glycol monomethyl ether was obtained by reacting methanol with ethylene oxide using an acid catalyst such as sulfuric acid, phosphoric acid, or β-naphthalene sulfonic acid.
However, these alkylene glycol ethers are produced through sequential reactions, and are produced by reacting alkylene glycol monoether (hereinafter referred to as mono-GE) with alkylene oxide (hereinafter referred to as G-GE). The by-products of tri-GE) and alkylene glycol triethers (hereinafter referred to as tri-GE) are unavoidable. Furthermore, G-GE and Tory-GE are less volatile than Mono-GE, so their uses are limited to paint solvents, brake oil, and automobile detergents. Therefore, when producing alkylene glycol ethers from alcohol and alkylene oxide, monoge
It is desired to produce these with good selectivity, and it is necessary to develop useful catalysts for this purpose. When alcohol and alkylene oxide are reacted using the above-mentioned alkali catalyst, the selectivity of mono-GE is low even if the alcohol is used by about 5 times the mole (relative to alkylene oxide), so the molar ratio of alcohol and alkylene oxide must be adjusted. 7:1~
A large excess of alcohol, such as 15:1, must be used, and there is a drawback that costs such as distillation costs are high because unreacted alcohol is separated and recovered from the reaction product liquid. When an acid is used as a catalyst, even when alcohol and alkylene oxide are reacted at a molar ratio of 3:1 to 7:1, the selectivity of mono-GE is almost at a satisfactory level, but ether, aldehyde and Acetals are produced as by-products, making it difficult to separate mono-GE from the reaction product solution. On the other hand, according to the specification of JP-A-52-51307, it has been revealed that solid acid catalysts such as γ-alumina, titania, or phosphotungstic acid can be advantageously used as catalysts for the above-mentioned reaction. This solid acid catalyst is considered to have the following advantages in carrying out the reaction. That is, since it is used in a solid form, it is easy to separate it from the reaction product liquid, the catalyst does not corrode the reaction container, and the yield is improved because there are relatively few side reaction products. However, even with these solid acid catalysts, under the relevant reaction conditions (generally a temperature of 100 to 200°C and a pressure of 2 to 50 kg/cm 2 G are used), the isomerization of alkylene oxide to aldehyde and the polymerization of alkylene oxide are possible. However, it has various drawbacks such as a decrease in activity and selectivity due to the formation of by-products of impurities such as ethers and acetals, and the heat resistance of the catalyst itself, and it is still not able to sufficiently withstand the load at an industrial level. In view of the current situation, the present inventors focused on the excellent properties of solid acid catalysts as a catalyst that compensates for these drawbacks, and as a result of intensive research, we have succeeded in overcoming the drawbacks of known methods and maintaining stable activity over a long period of time. The present invention was completed by discovering a catalyst that does the following. That is, the present invention provides at least one metal compound selected from iron group metals and alkaline earth metals on a porous inorganic support, particularly a porous silica alumina support, in an amount of 0.5 to 25% by weight in terms of the metal element. 600 ~
After firing in a temperature range of 1100°C, nickel or a composite compound combining nickel, copper, and chromium is supported so that the total elemental equivalent of the metal is in the range of 0.5 to 15% by weight, and then 250 to 450℃
The present invention discloses a catalyst for producing alkylene glycol ethers from alkylene oxide and alcohol, which is characterized in that the compound is reduced to a metal form by reduction at a temperature range of As a carrier, water absorption rate is 30-100% by weight and specific surface area is 200-800m 2 /g.
The present invention relates to a catalyst using a porous silica-alumina carrier having an alumina (Al 2 O 3 ) content of 10 to 40% by weight. The shape of this porous silica alumina support can be freely changed depending on the process used, and it can be integrally molded into a monolith shape or formed into a pellet shape (cylindrical, spherical, or irregular shape). However, pellets having a size of 1 to 10 mm are usually convenient for catalyst preparation and catalyst use. One or more of iron group metals consisting of nickel, iron, and cobalt and alkaline earth metals consisting of magnesium, calcium, strontium, and barium are used as components to be supported on the supported composition until calcination. It is preferable to use one or more of the following: , cobalt, magnesium, and calcium. These components are supported in the form of metallic elements or oxides, and are supported in an amount of 0.5 to 25% by weight, preferably 1 to 10% by weight in terms of elements per finished catalyst. If the supported amount is less than 0.5% by weight, the catalytic activity is good, but some impurity by-products are observed, and if the supported amount exceeds 25% by weight, the catalytic activity itself decreases. Supporting a large amount is not economical in catalyst preparation. The above supporting composition is heated to 600 to 1100°C, preferably 800°C.
Calcination is carried out in a reducing gas, inert gas or oxidizing gas, preferably hydrogen, nitrogen or air, at a temperature range of ~1000°C, but in this case, if the above firing temperature is lower than 600°C, the polymerization ability of the alkylene oxide is suppressed. Therefore, the life of the catalyst is insufficient and its mechanical strength inevitably decreases after long-term use.On the other hand, temperatures exceeding 1100°C are undesirable because although the life of the catalyst is extended, the activity is significantly reduced. If a reducing gas such as hydrogen is used for firing, the impregnated and supported metal compound will be reduced to the form of a metal element, but if an inert gas such as nitrogen or an oxidizing gas such as air is used, Supported in oxide form. In the present invention, any combination is effective, and therefore combinations such as hydrogen and nitrogen, hydrogen and inert gases such as methane, or air and flammable gases such as natural gas can be used. After the above firing, nickel or nickel,
A metal compound containing a combination of copper and chromium, that is, nickel alone, nickel and copper, nickel and chromium, and nickel, copper and chromium, preferably nickel alone or a combination of nickel, copper and chromium, in which the total elemental equivalent of the metal is It is supported in a range of 0.5 to 15% by weight, preferably 2 to 1.0% by weight, but in this case, the supported metal is essential to be nickel, which is important for stability of catalyst activity and suppression of impurity by-products such as ether and acetal. In consideration of the above, copper and/or chromium are supported in an appropriate combination. These components are supported in the form of metal elements in an amount ranging from 0.5 to 15% by weight in terms of element per finished catalyst. If the supported amount is less than 0.5% by weight, the catalyst activity is good, but the effect of suppressing impurity by-products such as ether and acetal is insufficient.On the other hand, if the supported amount exceeds 15% by weight, the catalytic activity itself may be affected. This has resulted in a decline in performance, making it unsuitable for adoption. Also, reduction is 250-450℃, preferably 270-370℃
The process is carried out using hydrogen or a hydrogen-containing gas within a temperature range of . In this case, if the above reduction temperature is lower than 250℃, the reduction effect will not be sufficient and on the contrary,
If the temperature exceeds 450°C, the catalyst activity will decrease, which is not preferable. As for the reducing gas, it is preferable to use 100% hydrogen gas, but hydrogen-containing gas diluted with an inert gas such as nitrogen or methane may also be used. Furthermore, prior to reduction, decomposition may be performed using an inert gas that does not contain hydrogen gas, such as nitrogen or methane, and then the above hydrogen-containing gas may be used. In any case, reduction using hydrogen gas is essential for the production of this catalyst. Iron group metals, alkaline earth metals used in the present invention,
Copper or chromium compounds include water-soluble inorganic or organic salts such as nitrates, sulfates,
It is preferable to use acetates and formates, and nitrates, which have high water solubility, are particularly advantageous, but are not limited thereto. For example, complex salts of the above-mentioned metals such as ammonia or organic amines such as ethylenediamine and ethanolamine can also be supported and reduced and can be advantageously employed without any disadvantage in terms of catalyst performance. Further, the solution used for impregnation is not limited to the above-mentioned aqueous solution, and the objects of the present invention can be sufficiently achieved using solutions of known organic solvents such as acetone, ethers, and alcohols. In order to achieve the above metal loading, the above-mentioned dipping, impregnation, drying, calcination, and reduction operations are usually carried out 1 to 2 times.
It is sufficient to repeat the process several times, but depending on the situation, it may be repeated several times. The catalyst produced by the above method in the present invention is
It has excellent etherification activity and mechanical strength, and can be used as a catalyst for general liquid phase etherification reactions. Above all, it is particularly stable and has excellent activity and selectivity in the reaction of glycol etherification of alcohol to alkylene glycol monoether. , which exhibits the effect of suppressing impurity by-products and enables long-term continuous production on an industrial scale, which was previously unachievable. The glycol etherification reaction of alcohol using the catalyst of the present invention can be carried out in either the gas phase or the liquid phase. In particular, inert gas (e.g. nitrogen, methane, , hydrogen, etc.), and the reaction temperature is 50-250℃, preferably 100-250℃.
The temperature is 200°C, and both fixed bed and suspended bed systems are used. In particular, when the reaction is carried out under a hydrogen atmosphere, the by-product of acetals is further suppressed. Since this reaction is an exothermic reaction, there are no particular restrictions on the solvent used as the raw material diluent as long as it does not participate in the reaction.
The solvent is appropriately selected from various solvents such as dioxane, tetrahydrofuran, benzene, and cyclohexane, taking into consideration the difficulty of recovering and separating the product from the product. The following examples further illustrate the excellent properties of the catalyst according to the invention and describe the method for its preparation as well as the method for producing alkylene glycol ethers, but the invention is not limited to these examples. Example 1 50 ml of a commercially available silica-alumina carrier (Al 2 O 3 content 28% by weight, trade name: N631H-N, manufactured by JGC Chemical Co., Ltd.) was heated and dried at 150° C., and then allowed to stand in a desiccator until the temperature reached room temperature. Add this to nickel nitrate at room temperature.
After immersing in a solution of 9.2 g of Ni (NO 3 ) 2 6H 2 O and 70.8 ml of water dissolved in it for 30 minutes, take it out and remove it.
Impregnation and drying were performed by keeping at ℃ and stirring for 30 minutes. This supported treatment composition was calcined at 1000° C. for 3 hours under air flow of 2 N/hour per gram of catalyst. The nickel content of this supported treatment composition was 5% by weight. After that, let it stand in a desiccator until it reaches room temperature, and then dissolve it in a solution of 54.2 g of nickel nitrate and 45.8 ml of water at room temperature.
After soaking for 30 minutes, the sample was taken out, kept at 100°C, and stirred for 30 minutes to perform impregnation and drying.
The catalyst was reduced at 300° C. for 4 hours with a flow of 1.2 N/h of hydrogen per gram of catalyst. This ring element further increases the nickel content in the form of metallic elements by 5
increased by % by weight. 48 g of ethanol, 12 g of ethylene oxide, 20 g of dioxane, and 8 ml of the above catalyst in a 200 ml stainless steel autoclave equipped with an electromagnetic rotary stirrer.
(8.4g) and adjusted to 5Kg/cm 2 G with nitrogen.
The reaction was carried out at 120°C for 2 hours. Analysis of the reaction product liquid revealed a conversion rate of ethylene oxide of 92%, a selectivity of monoethylene glycol ethyl ether of 72%, a selectivity of diethylene glycol ethyl ether of 18%, a selectivity of triethylene glycol ethyl ether of 7%, and acetaldehyde as a by-product as an impurity. Selectivity of diethyl acetal
0.6% was obtained. Note that the conversion rate and selectivity are defined as follows (the same applies hereinafter). Conversion rate [%] (hereinafter referred to as C EO ) = Number of moles of alkylene oxide before reaction - Number of moles of alkylene oxide after reaction / Number of moles of alkylene oxide before reaction × 100 Selectivity of monoalkylene glycol ether [%] (hereinafter S MGE ) = Number of moles of monoalkylene glycol ether produced/Number of moles of reacted alkylene oxide x 100 Selectivity of dialkylene glycol ether [%] (hereinafter referred to as S DGE ) = Number of moles of produced dialkylene glycol ether Number of moles x 2/Number of moles of reacted alkylene oxide x 100 Selectivity of trialkylene glycol ether [%] (hereinafter referred to as S TGE ) = Number of moles of trialkylene glycol ether produced x 3/Mole of reacted alkylene oxide number × 100 Selectivity of acetal [%] (hereinafter referred to as S ETR ) is defined as follows. S ETR [%] = Number of moles of ether produced/Number of moles of alkylene oxide reacted x 100 Examples 2 to 4 50 ml each of the same carrier used in Example 1
In the same manner as in Example 1, 87.1 ml of cobalt nitrate CO (NO 3 ) 2.6H 2 O was added to 12.9 g instead of nickel nitrate.
A solution of magnesium nitrate dissolved in water
Mg(NO 3 ) 2・6H 2 O26.3g was dissolved in 73.7ml of water, and calcium nitrate Ca
Each sample was immersed in a solution prepared by adding 84.8 ml of water to 15.2 g of (NO 3 ) 2.4H 2 O, and was then impregnated and dried. These supported treatment compositions were fired under the same conditions as in Example 1 to obtain metal contents of 2% by weight. Thereafter, nickel was further soaked, impregnated, dried and reduced in the same manner as in Example 1 to obtain a catalyst with a newly increased nickel content of 5% by weight. A reaction was carried out using these catalysts under the same reaction conditions as in Example 1, and the results shown in Table 1 below were obtained.

【表】 実施例 5〜8 市販のシリカアルミナ担体(Al2O3含有率13
%、商品名;N631―L、日揮化学株式会社製)
を実施例1と同様にしてNi(NO32・6H2O4.0g
に水96.0mlを加えた溶液に、50ml、Ni(NO32
6H2O34.1gに水65.9mlを加えた溶液に、50ml、
およびNi(NO32・6H2O58.0gに水42.0mlを加え
た溶液に、50mlそれぞれ浸漬し、含浸、乾燥を行
なつた。 これらの担持処理組成物を、1gあたり2Nl/
時の窒素を流通することにより600℃、3時間焼
成した。これらの担持処理組成物のニツケル含有
率はそれぞれ順に0.5重量%、5重量%、および
10重量%であつた。またニツケル含有率10重量%
の組成物についてはその半分をとり上記浸漬、含
浸、乾燥、焼成をもう1回くり返してニツケル含
有率18重量%のものもえた。その後さらにこれら
触媒組成物を実施例1と同様にNi
(NO32.6H2O29.9gに水70.1ml加えて溶解させた
溶液に浸漬し、含浸、乾燥後水素を流通させつ
つ、350℃、4時間還元した。これらの触媒のニ
ツケル含有率は上記の還元によりさらに金属元素
の形で2重量%増加した。 これらの触媒を実施例1と同じ反応条件で反応
を行ない以下第2表に示すような結果をえた。
[Table] Examples 5 to 8 Commercially available silica alumina carrier (Al 2 O 3 content 13
%, product name: N631-L, manufactured by JGC Chemical Co., Ltd.)
Ni(NO 3 ) 2.6H 2 O 4.0 g in the same manner as in Example 1.
Add 96.0 ml of water to the solution, add 50 ml of Ni(NO 3 ) 2 .
Add 50 ml to a solution of 34.1 g of 6H 2 O and 65.9 ml of water.
and Ni(NO 3 ) 2 ·6H 2 O (58.0 g) and 42.0 ml of water (50 ml each) for impregnation and drying. These supported treatment compositions were added at a concentration of 2Nl/g/g.
It was fired at 600°C for 3 hours by passing nitrogen through it. The nickel content of these supported treatment compositions is 0.5% by weight, 5% by weight, and 5% by weight, respectively.
It was 10% by weight. Also, nickel content is 10% by weight.
Regarding the composition, half of it was taken and the above-mentioned dipping, impregnation, drying and firing were repeated one more time to obtain a composition with a nickel content of 18% by weight. Thereafter, these catalyst compositions were added to Ni in the same manner as in Example 1.
It was immersed in a solution prepared by dissolving 29.9 g of (NO 3 ) 2.6H 2 O in 70.1 ml of water, and after impregnating and drying, it was reduced at 350° C. for 4 hours while flowing hydrogen. The nickel content of these catalysts increased by an additional 2% by weight in the form of metallic elements due to the reduction described above. A reaction was carried out using these catalysts under the same reaction conditions as in Example 1, and the results shown in Table 2 below were obtained.

【表】 実施例 9 実施例1で使用したのと同じ担体50mlをNi
(NO32・6H2O12.8gとMg(NO32・6H2O26.3g
とを水60.9mlに同時溶解させた溶液に浸漬し、含
浸、乾燥後この担持処理組成物を1gあたり
1.2Nl/時の水素を流通させつつ、600℃、3時間
焼成しニツケル含有率2重量%、マグネシウム含
有率2重量%のものをえた。焼成後実施例1と同
様にニツケルを浸漬、含浸、乾燥し、400℃、3
時間還元してニツケル含有率がさらに5重量%増
加した触媒を調製した。 この触媒を実施例1と同じ反応条件で反応を行
ない以下に示すような結果をえた。 CEO 97% SMGE 67% SDGE 19% STGE 6% SACL 0.8% 実施例 10〜12 実施例1で使用したのと同じ担体1を実施例
1と同様にして乾燥後、氷で冷却したアンモニア
水(アンモニア成分28%)310gに127gの酢酸ニ
ツケルNi(CH3COO)2・4H2Oを徐々に加えて溶
解させた溶液に2時間浸漬した後、100℃に保つ
て1時間かき混ぜることにより含浸、乾燥を行な
つた。この担持処理組成物を1gあたり1Nl/時
の空気を流通させつつ1000℃にて6時間焼成し
た。この組成物のニツケル含有率は5重量%であ
つた。 その後この組成物をおのおの50mlとり実施例1
と同様にしてNi(NO32・6H2O67.5gを水32.5ml
加えて加熱溶解させた溶液、Ni(NO32
6H2O67.5gと硝酸銅Cu(NO32・3H2O7.6gとを
水24.9ml加えて加熱溶解させた溶液、およびNi
(NO32・6H2O67.5gとCu(NO32・3H2O3.7g
と硝酸クロムCr(NO33・9H2O7.5gとを水21.3
ml加えて加熱溶解させた溶液とにそれぞれ浸漬
し、含浸、乾燥を行なつた。これらの担持処理組
成物を実施例1と同じ条件で還元を行ない、それ
ぞれ順に新たにニツケル5重量%、ニツケル5重
量%と銅0.5重量%、およびニツケル5重量%と
銅0.25重量%とクロム0.25重量%増加した触媒を
えた。 内容量50mlのステンレス製電磁回転撹拌機付オ
ートクレーブにエタノール180g、エチレンオキ
シド45g、ジオキサン75gおよび上記触媒30mlを
仕込み、窒素にて5Kg/cm2Gとした後、120℃で
2時間反応し第3表に示すような結果をえた。ま
た比較例1として上記の後段の担持還元を行なつ
ていないニツケル含有率5重量%の1000℃、6時
間焼成しただけのものについても実験を行ない結
果を示した。
[Table] Example 9 50ml of the same carrier used in Example 1 was
(NO 3 ) 2・6H 2 O12.8g and Mg (NO 3 ) 2・6H 2 O26.3g
and was simultaneously dissolved in 60.9 ml of water, and after impregnating and drying, this supported treatment composition was added per 1 g.
The product was calcined at 600°C for 3 hours while flowing hydrogen at 1.2 Nl/hr to obtain a product with a nickel content of 2% by weight and a magnesium content of 2% by weight. After firing, nickel was soaked, impregnated and dried in the same manner as in Example 1, and heated at 400°C for 3
A catalyst with an additional 5% by weight increase in nickel content was prepared by time reduction. A reaction was carried out using this catalyst under the same reaction conditions as in Example 1, and the results shown below were obtained. C EO 97% S MGE 67% S DGE 19% S TGE 6% S ACL 0.8% Examples 10 to 12 The same carrier 1 used in Example 1 was dried in the same manner as in Example 1, and then cooled with ice. 127g of nickel acetate (CH 3 COO) 2.4H 2 O was gradually added to 310g of aqueous ammonia (ammonia content 28 % ), and the mixture was immersed in the solution for 2 hours, then kept at 100℃ and stirred for 1 hour. Impregnation and drying were performed by this method. This supported treatment composition was calcined at 1000° C. for 6 hours while circulating air at 1 Nl/hour per gram. The nickel content of this composition was 5% by weight. Then, take 50 ml of this composition and apply Example 1
Similarly, add 67.5 g of Ni(NO 3 ) 2・6H 2 O to 32.5 ml of water.
In addition, the solution heated and dissolved, Ni(NO 3 ) 2 .
A solution of 67.5 g of 6H 2 O and 7.6 g of copper nitrate Cu(NO 3 ) 2.3H 2 O added to 24.9 ml of water and dissolved by heating, and Ni
(NO 3 ) 2・6H 2 O67.5g and Cu (NO 3 ) 2・3H 2 O3.7g
and chromium nitrate Cr (NO 3 ) 3・9H 2 O7.5g and water 21.3
ml of the solution was added and heated to dissolve, and the samples were immersed, impregnated, and dried. These supporting treatment compositions were reduced under the same conditions as in Example 1, and 5% by weight of nickel, 5% by weight of nickel and 0.5% by weight of copper, and 5% by weight of nickel, 0.25% by weight of copper, and 0.25% by weight of chromium were respectively added. A catalyst with a weight % increase was obtained. 180 g of ethanol, 45 g of ethylene oxide, 75 g of dioxane, and 30 ml of the above catalyst were placed in a stainless steel autoclave with an internal capacity of 50 ml and equipped with an electromagnetic rotary stirrer, and after adjusting to 5 Kg/cm 2 G with nitrogen, they were reacted at 120°C for 2 hours. The results shown are obtained. Further, as Comparative Example 1, an experiment was also conducted on a product which had a nickel content of 5% by weight and was simply calcined at 1000° C. for 6 hours without carrying out the latter supported reduction described above, and the results were shown.

【表】 実施例 13 実施例12の触媒725mlを固定床触媒としてエチ
レンオキシドとエタノールによるアルキレングリ
コールエーテル生成反応の連続実験を行なつた。 エタノール75重量%、エチレンオキシド10重量
%およびジオキサン15重量%の組成の原料を供給
速度(SV)2.0g(原料)/ml(触媒)・時で供
給し水素をこれと並流に30Nl/時で供給して10
Kg/cm2Gの圧力下140℃で反応を行なつた。反応
器出口での生成液およびガスの組成分析からエチ
レンオキシドの当初の転化率は92%で各生成物の
選択率は次の第4表の通りであつた。
[Table] Example 13 Using 725 ml of the catalyst of Example 12 as a fixed bed catalyst, continuous experiments were conducted on the alkylene glycol ether production reaction between ethylene oxide and ethanol. A raw material with a composition of 75% by weight of ethanol, 10% by weight of ethylene oxide, and 15% by weight of dioxane is supplied at a feed rate (SV) of 2.0 g (raw material)/ml (catalyst)/hour, and hydrogen is cocurrent with this at a rate of 30 Nl/hour. supply 10
The reaction was carried out at 140° C. under a pressure of Kg/cm 2 G. Analysis of the composition of the produced liquid and gas at the reactor outlet revealed that the initial conversion rate of ethylene oxide was 92% and the selectivity of each product was as shown in Table 4 below.

【表】 この反応を同じ条件で約2カ月連続で行なつて
も触媒の活性、選択性にはほとんど変化はなく、
触媒自体の外観も重合体で汚されておらず、強度
も十分維持されていた。 また比較例として、比較例1での触媒(ニツケ
ル担持後1000℃での焼成のみ行ない、後段の担持
還元操作は行なわず)についても同様の反応条件
で連続実験を行なつた。当初の結果および同じ条
件で約2カ月連続で行なつた結果は以下の第5表
の通りであつた。
[Table] Even if this reaction is carried out continuously for about two months under the same conditions, there is almost no change in the activity or selectivity of the catalyst.
The appearance of the catalyst itself was not contaminated with polymer, and its strength was sufficiently maintained. As a comparative example, continuous experiments were conducted under the same reaction conditions for the catalyst in Comparative Example 1 (only calcination was performed at 1000° C. after supporting nickel, and the subsequent supporting reduction operation was not performed). The initial results and the results obtained under the same conditions for about two consecutive months are shown in Table 5 below.

【表】 触媒自体の外観も良好で、強度もほぼ維持され
ていたが、上記結果のように長期の連続実験でエ
チレンオキシドの転化率とグリコールエチルエー
テルの選択率の低下、および不純物の選択率の増
加がみられた。 実施例 14 市販のシリカアルミナ担体(Al2O3含有率28重
量%、商品名:N631H―N、日揮化学株式会社
製)50mlを150℃で加熱乾燥後、室温までデシケ
ーター中に静置した。これを室温で硝酸鉄Fe
(NO32・6H2O29.2gに70.8mlの水を加えて溶解
させた溶液に30分間浸漬した後、取り出して100
℃にたもつて30分間かきまぜることにより含浸、
乾燥を行なつた。この担持処理組成物に触媒1g
あたり2Nl/時の空気の流通下に、1000℃で3時
間焼成した。この担持処理組成物の鉄含有率は5
重量%であつた。その後室温までデシケーター中
に静置し、これを室温でさらに硝酸鉄54.2gに
45.8mlの水を加えて溶解させた溶液に30分間浸漬
した後、取り出し100℃に保つて30分間かきまぜ
ることにより含浸、乾燥を行なつた。この触媒を
触媒1gあたり1.2Nl/時の水素の流通下に、300
℃で4時間還元した。この還元にりさらに金属元
素の型で鉄含有率が5重量%増加した。 内容量200mlのステンレス製電磁回転撹拌機月
オートクレーブにエタノール48g、エチレンオキ
シド12g、ジオキサン20gおよび上記触媒8ml
(8.4g)を仕込み、窒素にて5Kg/cm2Gとした後
120℃で2時間反応させた。 反応生成液の分析からエチレンオキシドの転化
率98%、モノエチレングリコールエチルエーテル
の選択率70%、ジエチレングリコールエチルエー
テルの選択率19%、トリエチレングリコールエチ
ルエーテルの選択率7%、不純物として副生する
アセトアルデヒドジエチルアセタールの選択率
0.8%が得られた。
[Table] Although the appearance of the catalyst itself was good and the strength was almost maintained, as shown in the results above, long-term continuous experiments showed that the conversion rate of ethylene oxide and the selectivity of glycol ethyl ether decreased, and the selectivity of impurities decreased. An increase was seen. Example 14 50 ml of a commercially available silica-alumina carrier (Al 2 O 3 content 28% by weight, trade name: N631H-N, manufactured by JGC Chemical Co., Ltd.) was heated and dried at 150° C., and then allowed to stand in a desiccator until the temperature reached room temperature. This is heated to iron nitrate (Fe) at room temperature.
(NO 3 ) 2・6H 2 After immersing in a solution of 29.2 g of O2 and 70.8 ml of water for 30 minutes, take it out and
Impregnation by stirring for 30 minutes at ℃
I did drying. 1 g of catalyst is added to this supported treatment composition.
Calcining was performed at 1000°C for 3 hours under air flow of 2Nl/h. The iron content of this supported treatment composition is 5
It was in weight%. After that, let it stand in a desiccator until it reaches room temperature, and then add 54.2 g of iron nitrate at room temperature.
After immersing it in a solution prepared by adding 45.8 ml of water for 30 minutes, it was taken out, kept at 100° C., and stirred for 30 minutes to perform impregnation and drying. This catalyst was heated at 300 m
Reduced at ℃ for 4 hours. This reduction further increased the iron content by 5% by weight in the form of metallic elements. 48 g of ethanol, 12 g of ethylene oxide, 20 g of dioxane, and 8 ml of the above catalyst in a stainless steel electromagnetic rotary stirrer autoclave with a capacity of 200 ml.
(8.4g) and adjusted to 5Kg/cm 2 G with nitrogen.
The reaction was carried out at 120°C for 2 hours. Analysis of the reaction product liquid revealed a conversion rate of ethylene oxide of 98%, a selectivity of monoethylene glycol ethyl ether of 70%, a selectivity of diethylene glycol ethyl ether of 19%, a selectivity of triethylene glycol ethyl ether of 7%, and acetaldehyde as a by-product as an impurity. Selectivity of diethyl acetal
0.8% was obtained.

Claims (1)

【特許請求の範囲】[Claims] 1 多孔性シリカアルミナ担体上に鉄族金属およ
びアルカリ土類金属から選ばれた少なくとも1種
の金属の化合物を、該金属の元素換算で0.5〜25
重量%の範囲となるように担持せしめた担持組成
物を600〜1100℃の温度範囲で焼成したのち、さ
らに元素換算でニツケル0.5〜15重量%、銅0〜
2重量%およびクロム0〜2重量%(ただし合計
が元素換算で0.5〜15重量%)の範囲となるよう
に金属の化合物を担持せしめ、250〜450℃の温度
範囲で該化合物を還元し金属元素の形にせしめた
ことを特徴とするアルキレンオキシドとアルコー
ルとからアルキレングリコールエーテーテル類を
製造するための触媒。
1 A compound of at least one metal selected from iron group metals and alkaline earth metals is placed on a porous silica alumina support in an amount of 0.5 to 25 in terms of the element of the metal.
After firing the supported composition in a temperature range of 600 to 1100°C, it is further added with 0.5 to 15% by weight of nickel and 0 to 15% of copper in terms of elements.
2% by weight of chromium and 0 to 2% by weight of chromium (however, the total is 0.5 to 15% by weight in elemental terms). A catalyst for producing alkylene glycol ethers from an alkylene oxide and an alcohol, characterized in that the alkylene oxide is formed into an elemental form.
JP10972279A 1979-08-30 1979-08-30 Catalyst for preparing alkylene glycol ethers Granted JPS5637047A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10972279A JPS5637047A (en) 1979-08-30 1979-08-30 Catalyst for preparing alkylene glycol ethers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10972279A JPS5637047A (en) 1979-08-30 1979-08-30 Catalyst for preparing alkylene glycol ethers

Publications (2)

Publication Number Publication Date
JPS5637047A JPS5637047A (en) 1981-04-10
JPS6155417B2 true JPS6155417B2 (en) 1986-11-27

Family

ID=14517558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10972279A Granted JPS5637047A (en) 1979-08-30 1979-08-30 Catalyst for preparing alkylene glycol ethers

Country Status (1)

Country Link
JP (1) JPS5637047A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6075441A (en) * 1983-10-03 1985-04-27 Mitsui Toatsu Chem Inc Production of glycol ether
US4884400A (en) * 1984-11-29 1989-12-05 Nissan Motor Co., Ltd. Exhaust manifold of internal combustion engine
US4946984A (en) * 1988-09-30 1990-08-07 Union Carbide Chemicals And Plastics Company Inc. Alkoxylation using a calcium sulfate catalyst

Also Published As

Publication number Publication date
JPS5637047A (en) 1981-04-10

Similar Documents

Publication Publication Date Title
EP1440048B1 (en) Hydrogenolysis of 5-carbon sugars and sugar alcohols
CA1311739C (en) Aldehyde hydrogenation catalyst and process
US5817593A (en) Catalyst and process for producing amines
EP0175558A1 (en) Process for the vapor phase hydrogenation of carboxylic acids to esters and alcohols
JPWO2009136537A1 (en) Catalyst for production of acrolein and acrylic acid by dehydration reaction of glycerin and production method thereof
JP4130361B2 (en) Coated catalysts for hydrogenating maleic anhydride and related compounds to .GAMMA.-butyrolactone and tetrahydrofuran and their derivatives
CN113797931A (en) Dimethyl oxalate hydrogenation catalyst, preparation method and application thereof
BRPI0709821A2 (en) process for the hydrogenation of an aldehyde
CN109647394B (en) Catalyst for preparing unsaturated alcohol by selective hydrogenation of alpha, beta-unsaturated aldehyde and preparation method and application thereof
JP4149808B2 (en) Process for hydrogenating C4-dicarboxylic acids and / or their derivatives in the gas phase
US4628128A (en) Process for the preparation of ethylene glycol by catalytic hydrogenation
TWI549751B (en) Promoted copper/zinc catalyst for hydrogenating aldehydes to alcohols, process for preparing the same and process of hydrogenating aldehydes to alcohols using the same
CN114054041A (en) Dimethyl oxalate hydrogenation catalyst, preparation method and application thereof
CN111167515B (en) Monomolecular heteropoly acid inlaid honeycomb-shaped carbon material loaded nano metal catalyst and preparation method and application thereof
US4333858A (en) Catalyst with Mo, V, Ti and process
CA1045106A (en) Catalyst with mo, v, ti and process for preparing unsaturated acids
WO2023134779A1 (en) Hydrogenation catalyst and preparation method therefor, and method for preparing isohexanediol and methyl isobutyl carbinol
US4111983A (en) Oxidation of unsaturated aldehydes to unsaturated acids
JPS6155417B2 (en)
US4482753A (en) Catalyst for use in the hydrogenolysis of methyl glycol formals
CN111848354B (en) Preparation method of trimethylolpropane
JPS6155418B2 (en)
JPS6035174B2 (en) Catalyst for producing alkylene glycol ethers
JPS6362525B2 (en)
CA1037054A (en) Catalyst with mo, v, ta and process for preparing unsaturated acids