JPS6352310A - Composite magnetic head - Google Patents
Composite magnetic headInfo
- Publication number
- JPS6352310A JPS6352310A JP19496086A JP19496086A JPS6352310A JP S6352310 A JPS6352310 A JP S6352310A JP 19496086 A JP19496086 A JP 19496086A JP 19496086 A JP19496086 A JP 19496086A JP S6352310 A JPS6352310 A JP S6352310A
- Authority
- JP
- Japan
- Prior art keywords
- magnetic
- thin film
- films
- head
- thin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000005291 magnetic effect Effects 0.000 title claims abstract description 130
- 239000002131 composite material Substances 0.000 title claims abstract description 31
- 229910001004 magnetic alloy Inorganic materials 0.000 claims abstract description 35
- 239000000696 magnetic material Substances 0.000 claims abstract description 17
- 239000010409 thin film Substances 0.000 claims description 57
- 230000004907 flux Effects 0.000 abstract description 17
- 238000000034 method Methods 0.000 abstract description 17
- 229910000859 α-Fe Inorganic materials 0.000 abstract description 6
- 230000008569 process Effects 0.000 abstract description 5
- 230000006866 deterioration Effects 0.000 abstract description 3
- 229910018125 Al-Si Inorganic materials 0.000 abstract 1
- 229910018520 Al—Si Inorganic materials 0.000 abstract 1
- 239000011162 core material Substances 0.000 description 22
- 239000000203 mixture Substances 0.000 description 14
- 239000010408 film Substances 0.000 description 11
- 230000007797 corrosion Effects 0.000 description 9
- 238000005260 corrosion Methods 0.000 description 9
- 239000000956 alloy Substances 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 8
- 239000000463 material Substances 0.000 description 7
- 230000001105 regulatory effect Effects 0.000 description 7
- 229910045601 alloy Inorganic materials 0.000 description 6
- 239000000654 additive Substances 0.000 description 3
- 230000000996 additive effect Effects 0.000 description 3
- 230000001276 controlling effect Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000005294 ferromagnetic effect Effects 0.000 description 3
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 3
- 239000012528 membrane Substances 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 229910000676 Si alloy Inorganic materials 0.000 description 2
- 229910000808 amorphous metal alloy Inorganic materials 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 238000002425 crystallisation Methods 0.000 description 2
- 230000008025 crystallization Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 229910052733 gallium Inorganic materials 0.000 description 2
- 229910052741 iridium Inorganic materials 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 230000005389 magnetism Effects 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 229910052758 niobium Inorganic materials 0.000 description 2
- 229910052763 palladium Inorganic materials 0.000 description 2
- 230000035699 permeability Effects 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 229910052715 tantalum Inorganic materials 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 238000004804 winding Methods 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- 229910021417 amorphous silicon Inorganic materials 0.000 description 1
- 238000005422 blasting Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000010884 ion-beam technique Methods 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 239000006247 magnetic powder Substances 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 229910052762 osmium Inorganic materials 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 229910052702 rhenium Inorganic materials 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 239000008399 tap water Substances 0.000 description 1
- 235000020679 tap water Nutrition 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Landscapes
- Thin Magnetic Films (AREA)
- Magnetic Heads (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、作動ギャップ近傍部が磁性合金薄膜で構成さ
れ且つ磁気コア半体の大部分が酸化物磁性材料で構成さ
れてなる、いわゆる複合磁気ヘッドに関し、詳細には上
記磁性合金Fij膜の改良に関する。Detailed Description of the Invention [Field of Industrial Application] The present invention is directed to a so-called composite material in which the vicinity of the working gap is composed of a magnetic alloy thin film and the majority of the magnetic core half is composed of an oxide magnetic material. The present invention relates to magnetic heads, and specifically relates to improvements in the above-mentioned magnetic alloy Fij film.
本発明は、酸化物磁性材料と磁性合金薄膜により磁気コ
ア半体が構成されてなる複合磁気ヘッドにおいて、
前記磁性合金薄膜がFe−Ga−Si系軟磁性薄膜であ
ることを特徴とすることにより、磁性合金薄膜の磁気特
性を向上し、記録再生効率の向上を図ろうとするもので
ある。The present invention provides a composite magnetic head in which a magnetic core half is constituted by an oxide magnetic material and a magnetic alloy thin film, characterized in that the magnetic alloy thin film is a Fe-Ga-Si based soft magnetic thin film. , which aims to improve the magnetic properties of magnetic alloy thin films and improve the recording and reproducing efficiency.
例えはVTR(ビデオテープレコーダ)等の磁気記録再
生装置においては、情報信号の高密度化が進められてお
り、この高密度記録に対応して磁気記録媒体として磁性
粉にFe、Co、Ni等の強磁性金属の粉末を用いた、
いわゆるメタルテープや、強磁性金属材料をf着等の真
空薄膜形成技術によりベースフィルム上に直接被着した
、いわゆる京着テープ等が使用されるようになっている
。For example, in magnetic recording and reproducing devices such as VTRs (video tape recorders), the density of information signals is increasing, and in response to this high density recording, magnetic powders such as Fe, Co, Ni, etc. are used as magnetic recording media. using ferromagnetic metal powder,
So-called metal tapes and so-called Kyo-bond tapes, in which a ferromagnetic metal material is directly deposited on a base film using a vacuum thin film forming technique such as f-bonding, are now being used.
この種の磁気記録媒体は高い抗磁力や残留磁束密度を有
しおり、これに伴って磁気ヘッドのコア材料には高飽和
磁束密度及び高う磁率を有する材料が要求されている。This type of magnetic recording medium has high coercive force and residual magnetic flux density, and accordingly, the core material of the magnetic head is required to have a material with high saturation magnetic flux density and high magnetic flux density.
ところが、従来より多用されているフェライト等の酸化
物磁性材料を用いたヘッドは、高透磁率を有するものの
、飽和磁束密度が低いため、記録の高密度化には限界が
ある。一方、Fe−Aff−Si系合金等の磁性合金材
料を用いたヘッドは、飽和磁束密度がフェライトよりも
大きく高抗磁力磁気記録媒体に対しても十分記録が可能
であるものの、−iに使用されるヘッド形状でのコア厚
では使用周波数領域での実効i3磁率が低く再生特性が
劣化する。However, although heads using oxide magnetic materials such as ferrite, which have been widely used in the past, have high magnetic permeability, they have a low saturation magnetic flux density, so there is a limit to high density recording. On the other hand, heads using magnetic alloy materials such as Fe-Aff-Si alloys have a saturation magnetic flux density higher than that of ferrite and are capable of recording sufficiently on high coercive force magnetic recording media, but they cannot be used for -i. With the core thickness of the head shape, the effective i3 magnetic coefficient is low in the frequency range used, and the reproduction characteristics deteriorate.
かかる状況より、磁気コア部が酸化物磁性材料からなり
、これら各磁気コア部に主コア材として磁性合金材料を
被着形成し、これら磁性合金薄膜同士を突き合わせて作
動ギャップを構成するようにした、いわゆる複合磁気ヘ
ッドが提案されている。Under these circumstances, the magnetic core parts are made of an oxide magnetic material, and a magnetic alloy material is deposited on each of these magnetic core parts as the main core material, and these magnetic alloy thin films are butted against each other to form an operating gap. A so-called composite magnetic head has been proposed.
ところが、上述の構成の複合磁気ヘッドにおいては、酸
化171磁性材料と磁性合金薄膜との密着面積が大きい
ため、これらの熱膨張係数の違いにより種々の問題点が
残されている。However, in the composite magnetic head having the above-described structure, various problems remain due to the difference in thermal expansion coefficients between the 171 oxide magnetic material and the magnetic alloy thin film because of the large adhesion area.
すなわち、磁気コア部にM n −Z nフェライト(
熱膨張係数:115〜120 xlO−’/℃)を、磁
性合金薄膜にFe−Af−Si系合金(熱膨張係数=1
50〜160 xlO−7/℃)を使用した磁気ヘッド
においては、熱膨張係数の差に起因する歪が避は難くな
っている。このため、ヘッド作成中に磁気コア部にマイ
クロクラックが発生したり、あるいは磁性合金薄膜の磁
気特性が劣化してしまう。この結果、再生効率に劣る磁
気ヘッドとなってしまうという問題がある。That is, M n -Z n ferrite (
Thermal expansion coefficient: 115 to 120
50 to 160 xlO-7/°C), it is difficult to avoid distortion due to differences in thermal expansion coefficients. As a result, microcracks may occur in the magnetic core portion during head fabrication, or the magnetic properties of the magnetic alloy thin film may deteriorate. As a result, there is a problem in that the magnetic head has poor reproduction efficiency.
また、上記磁性合金薄膜に強磁性アモルファス合金を使
用した場合、磁気コア半体をガラスボンディング等によ
り接合する際に、上記アモルファス材の結晶化温度を考
慮しなくてはならないので、大きな接合強度が得難くな
っている。そこで、上述の条件を満足する結晶化温度を
有するアモルファス合金を使用することも考えられるが
、この場合、十分な飽和磁束密度が得られず、ヘッドの
言己録効率の点で問題がある。In addition, when a ferromagnetic amorphous alloy is used for the magnetic alloy thin film, the crystallization temperature of the amorphous material must be taken into account when joining the magnetic core halves by glass bonding, etc., so the bonding strength is large. It's getting harder to get. Therefore, it is conceivable to use an amorphous alloy having a crystallization temperature that satisfies the above conditions, but in this case, a sufficient saturation magnetic flux density cannot be obtained and there is a problem in terms of recording efficiency of the head.
かかる状況より、本発明は提案されたものであり、磁性
合金薄膜の磁気特性の向上を図り、記録再生効率に優れ
た複合磁気へ、ドを提供することを目的とする。In view of this situation, the present invention was proposed, and an object of the present invention is to improve the magnetic properties of a magnetic alloy thin film and provide a solution to composite magnetism with excellent recording and reproducing efficiency.
本発明者等は、複合Tn気へ、ドの(d気持性の向上を
図るために、特に作動ギャップを構成し記録再生に関与
する磁性合金薄膜について検討を重ねた結果、Fe−G
a−Si系軟磁性薄膜が高い飽和磁束密度を有し、同時
に磁気コア部となる酸化物磁性材料と同程度の臥膨張係
数を有することより、複合磁気ヘッドの磁性合金薄膜と
して有用であるとの知見を得るに至った。In order to improve the feelability of composite Tn, Fe-G
The a-Si based soft magnetic thin film has a high saturation magnetic flux density and at the same time has a flat expansion coefficient comparable to that of the oxide magnetic material that forms the magnetic core, making it useful as a magnetic alloy thin film for composite magnetic heads. We have obtained the following knowledge.
本発明の複合磁気ヘッドは、このような知見に基づいて
完成されたものであって、酸化4Mf性材料と磁性合金
薄膜により磁気コア半体が構成されてなる複合磁気ヘッ
ドにおいて、前記磁性合金薄膜がFe−Ga−Si系軟
磁性薄膜であることを特徴とするものである。The composite magnetic head of the present invention was completed based on such knowledge, and in the composite magnetic head in which a magnetic core half is constituted by a 4Mf oxide material and a magnetic alloy thin film, the magnetic alloy thin film is is a Fe-Ga-Si based soft magnetic thin film.
Fe−Ga−Si系軟磁性y!膜は、その会包和磁束密
度が13000ガウス程度であり、Fe−Aβ−8l系
軟磁性3膜(11000ガウス)より大きいことより、
記録効率が向上する。Fe-Ga-Si soft magnetic y! The film has a total magnetic flux density of about 13,000 Gauss, which is larger than the Fe-Aβ-8L soft magnetic 3 film (11,000 Gauss).
Recording efficiency is improved.
同時に、上記Fe−Ga−Si系軟磁性薄膜の熱膨張係
数は130X10−’/”C程度であり、酸化物磁性材
料(Mn−Znフェライト)の熱膨張係数(115〜1
20 Xl0−’/℃) ニかナリ近ツ<タメ、ヘッド
作成過程における酸化物磁性材料等のマイクロクランク
やそり等が抑えられ、Fe−Ga−Si系合金の磁気特
性を十分に発揮できるので、再生効率が向上する。At the same time, the thermal expansion coefficient of the Fe-Ga-Si soft magnetic thin film is about 130X10-'/''C, which is about 130X10-'/''C, which is about 115-1
20 Xl0-'/°C) Micro-cranks and warping of oxide magnetic materials during the head manufacturing process are suppressed, and the magnetic properties of the Fe-Ga-Si alloy can be fully demonstrated. , regeneration efficiency is improved.
以下、本発明を適用した複合磁気ヘッドの一実施例につ
いて、図面を参照しながら説明する。An embodiment of a composite magnetic head to which the present invention is applied will be described below with reference to the drawings.
第1図は本発明を適用した複合磁気へノドの−例を示す
外観斜視図であり、第2図はその磁気記録媒体摺接面を
示す要部拡大平面図である。FIG. 1 is an external perspective view showing an example of a composite magnetic head to which the present invention is applied, and FIG. 2 is an enlarged plan view of the main part showing the sliding surface of the magnetic recording medium.
この複合磁気ヘッドにおいては、磁気コア部(1)、
(11)が酸化物磁性材料、例えばM n −Z nフ
ェライトで形成され、その当接面近傍には、トランク幅
を規制するためのトラック幅規制溝(2) 、 (12
)によって両側が略円弧状に切り欠かれている。In this composite magnetic head, a magnetic core part (1),
(11) is formed of an oxide magnetic material such as Mn-Zn ferrite, and near the contact surface there are track width regulating grooves (2) and (12) for regulating the trunk width.
) is cut out on both sides in a roughly arc shape.
また、一方の磁気コア半体(1)には、この磁気ヘッド
に信号を供給するコイルを巻装するための巻線孔(21
)が穿設されている。In addition, one magnetic core half (1) has a winding hole (21) for winding a coil that supplies signals to the magnetic head.
) are drilled.
そして、上記各磁気コア部(1)、(11)の当接面に
は、上記トラック幅規制溝(2) 、 (12)内も含
んで、それぞれフロントギャップ形成面からバックギャ
ップ形成面に至るまで連続して、高飽和磁束密度合金、
本発明においてはFe−Ge−3t系軟磁性薄膜よりな
る磁性合金薄膜(3) 、 (13)が被着形成され、
磁気コア半体(1)、 (11)が構成されている。さ
らに、これら磁性合金薄膜(3)、(13)の当接面に
形成される平行部分(3a) 、 (13a)同士を突
き合わせることにより作動ギャップgが構成されている
。なお、上記トランク幅規制溝(2) 、 (12)内
には、トランク幅を規制し、磁性合金薄膜(3) 、
(13)の摩耗を防止するための非磁性材(22) 、
(22)が溶融充填されている。The abutment surfaces of the respective magnetic core portions (1) and (11) include the insides of the track width regulating grooves (2) and (12), and extend from the front gap forming surface to the back gap forming surface, respectively. Continuously up to, high saturation magnetic flux density alloy,
In the present invention, magnetic alloy thin films (3) and (13) made of Fe-Ge-3t-based soft magnetic thin films are deposited,
It consists of magnetic core halves (1) and (11). Further, an operating gap g is formed by abutting parallel portions (3a) and (13a) formed on the contact surfaces of these magnetic alloy thin films (3) and (13). In addition, inside the trunk width regulating grooves (2) and (12), there are magnetic alloy thin films (3), which regulate the trunk width.
(13) Non-magnetic material (22) to prevent wear;
(22) is melt-filled.
ここで、本発明においては、上記磁性合金薄膜(3)
、 (13)が、Fe−Qa−Si系軟磁性薄膜により
構成されている。Here, in the present invention, the above magnetic alloy thin film (3)
, (13) is composed of a Fe-Qa-Si based soft magnetic thin film.
上記Fe−Ga−Si系軟磁性薄膜において、所定の磁
気特性を確保するために、基本成分であるFe、Ga、
Siについては、Ga1〜23原子%、Si9〜31原
子%、残部Feとする。但し、Feの含有量は68〜8
4原子%の範囲である。これら基本成分が上記範囲を外
れると、飽和磁束密度、透磁率、抗磁力等の磁気特性を
確保することが難しくなる。In the Fe-Ga-Si-based soft magnetic thin film mentioned above, in order to ensure predetermined magnetic properties, the basic components Fe, Ga,
Regarding Si, Ga is 1 to 23 atomic %, Si is 9 to 31 atomic %, and the balance is Fe. However, the Fe content is 68-8
It is in the range of 4 atom%. When these basic components are out of the above range, it becomes difficult to ensure magnetic properties such as saturation magnetic flux density, magnetic permeability, and coercive force.
すなわち、上記Fe−Ga−Si系軟磁性薄MAの組成
を、
Fe5GabSic
(但し、a、b、(はそれぞれ組成比を原子%として表
す。)
とした場合に、その組成範囲は、
68≦a+b≦84
1≦b≦23
9≦C≦31
a+b+c=100
なる関係を満足するものとする。That is, when the composition of the Fe-Ga-Si-based soft magnetic thin MA is Fe5GabSic (where a, b, (each represents the composition ratio as atomic %)), the composition range is 68≦a+b It is assumed that the following relationships are satisfied: ≦84 1≦b≦23 9≦C≦31 a+b+c=100.
また、上記Fe−Ga−Si系軟磁性薄膜において、F
eの一部をCoがr換してもよい。この場合、Coの増
加とともに飽和磁束密度のみならず耐蝕性、耐摩耗性が
向上するが、Co置換量が多過ぎると飽和磁束密度の劣
化が顕著になるばかりか、軟磁気特性も悪化するので、
Feに対するCo置換量は0〜15原子%に抑えるのが
好ましい。In addition, in the above Fe-Ga-Si-based soft magnetic thin film, F
A part of e may be replaced by r. In this case, as Co increases, not only the saturation magnetic flux density but also corrosion resistance and wear resistance improve, but if the amount of Co substitution is too large, not only will the deterioration of the saturation magnetic flux density become noticeable, but also the soft magnetic properties will deteriorate. ,
The amount of Co substitution relative to Fe is preferably suppressed to 0 to 15 atomic %.
すなわち、上記Fe−Ga−Si系軟磁性薄膜の組成を
、
FedCo、Ga+S i9
(但し、d、e、f、gはそれぞれ組成比を原子%とし
て表す。)
とした場合に、その組成範囲は、
68 ≦d+e ≦84
0〈 e≦ 15
1 ≦ f ≦35
1 ≦g≦35
d+e十f+g=100
なる関係を満足するものとする。That is, when the composition of the Fe-Ga-Si-based soft magnetic thin film is FedCo, Ga+Si9 (where d, e, f, and g each represent the composition ratio as atomic %), the composition range is , 68≦d+e≦84 0< e≦15 1≦f≦35 1≦g≦35 d+e×f+g=100.
また、上記Fe−Ca−Si系軟磁性〕膜の耐蝕性や耐
摩耗性の一層の向上を図るために、Fe。Further, in order to further improve the corrosion resistance and wear resistance of the above-mentioned Fe--Ca--Si based soft magnetic film, Fe is added.
Ga、Co (Feの一部をCoでご換したものを含
む)を基本組成とする合金にT i 、 Cr 、
M n 。Ti, Cr,
M n .
Zr、Nb、Mo、Ta、W、Ru、Os、I r。Zr, Nb, Mo, Ta, W, Ru, Os, Ir.
Re、Ni、Pd、Pt、Hrの少なくとも1種を添加
しても良い。At least one of Re, Ni, Pd, Pt, and Hr may be added.
すなわち、上記Fe−Ga−Si系軟磁性薄膜の組成を
、
Fet、CotGa、S imM+
(但し、h、 i、 j、 k、 lはそれぞ
れ組成比を原子%として表し、MはTi、Cr、Mn、
Zr。That is, the composition of the Fe-Ga-Si-based soft magnetic thin film is Fet, CotGa, SimM+ (where h, i, j, k, and l each represent the composition ratio as atomic %, and M is Ti, Cr, Mn,
Zr.
Nb、MO,Ta、%J Ru、 ○s、I r、
Re。Nb, MO, Ta, %J Ru, ○s, Ir,
Re.
Ni、Pd、Pt、Hf(7)少なくとも1種を表す、
)とした場合に、その組成範囲が、
68≦h+i≦84
0≦1≦15
1≦j≦23
6≦に≦31
0.5≦1≦6
h+i+j↓に+1=100
なる関係を満足するFe−Ga−5i系軟磁性薄膜とし
ても良い。上記添加元素Mの添加量を0.5〜6原子%
としたのは、添加量が0.5原子%未満では耐ff耗性
や耐蝕性の改善に十分な効果が期待できず、一方、添加
量が6原子%を越えると軟磁気特性の劣化や飽和磁束密
度の減少をもたらし好ましくない。但し、添加元素Mを
2種以上使用する場合には、各添加元素の添加1はそれ
ぞれO〜5原子%の範囲内とするのが好ましい。Representing at least one type of Ni, Pd, Pt, Hf (7),
), the composition range satisfies the following relationships: 68≦h+i≦84 0≦1≦15 1≦j≦23 6≦≦31 0.5≦1≦6 h+i+j↓+1=100 - It may also be a Ga-5i based soft magnetic thin film. Addition amount of the above additive element M is 0.5 to 6 atomic%
The reason for this is that if the amount added is less than 0.5 at%, a sufficient effect in improving wear resistance and corrosion resistance cannot be expected, whereas if the amount added exceeds 6 at%, the soft magnetic properties may deteriorate. This is undesirable because it causes a decrease in saturation magnetic flux density. However, when two or more kinds of additive elements M are used, it is preferable that the amount of each additive element M is within the range of O to 5 atomic %.
なお、これら何れの場合にも、上記組成式中、Gaの一
部がANで置換されていてもよく、またSiの一部がG
eで置換されていてもよい。In any of these cases, in the above compositional formula, part of Ga may be replaced by AN, and part of Si may be replaced by G.
It may be replaced with e.
ここで、上記Fe−Ga−Si系軟磁性薄膜の形成方法
としては、従来公知の種々の方法が考えられるが、なか
でも真空薄膜形成技術の手法が好適である。Here, as a method for forming the Fe--Ga--Si based soft magnetic thin film, various conventionally known methods can be considered, but among them, a vacuum thin film forming technique is preferable.
この真空薄膜形成技術の手法としては、スパッタリング
やイオンブレーティング、真空蔑着法。The techniques for forming this vacuum thin film include sputtering, ion blasting, and vacuum deposition.
クラスター・イオンビーム法等が挙げられる。特に、酸
素ガスあるいは窒素ガスを含む不活性ガス(Arガス等
)雰囲気中でスパッタリングを行い、得られる軟(f性
y!膜の耐蝕性等をより一層改善するようにしても良い
。Examples include cluster ion beam method. In particular, sputtering may be performed in an atmosphere of an inert gas (such as Ar gas) containing oxygen gas or nitrogen gas to further improve the corrosion resistance of the resulting soft film.
また、上記各成分元素の組成を調節する方法としては、
I)各成分元素を所定の割合となるように秤量し、これ
らをあらかじめ例えば高周波溶解炉等で溶解して合金イ
ンゴットを形成しておき、この合金インゴットを芸発源
として使用する方法、ii)各成分の単独元素の芸発ぶ
を用意し、これら芸発源の数で組成を制御する方法、
iii )各成分の単独元素の芸発源を用意し、これら
芸発源に加える出力(印加電圧)を制御して蒸発スピー
ドをコントロールし組成を制御する方法、
iv)合金を尖発源として芸着しながら他の元素を打ち
込む方法、
等が挙げられる。In addition, as a method for adjusting the composition of each of the above component elements, I) Weigh each component element to a predetermined ratio and melt them in advance, for example, in a high frequency melting furnace to form an alloy ingot. , a method of using this alloy ingot as a material, ii) a method of preparing a single element material of each component and controlling the composition by the number of these materials, iii) a method of using a material of a single element of each component. A method of preparing a source and controlling the output (applied voltage) applied to these sources to control the evaporation speed and composition; iv) A method of implanting other elements while using an alloy as a source. , etc.
なお、上述の真空薄膜形成技術等により膜付けされた軟
磁性薄膜は、そのままの状りでは保磁力が若干高い値を
示し良好な軟磁気特性が得られないので、執処理を施し
て膜の歪を除去し、軟石d気持性を改善することが好ま
しい。Note that the soft magnetic thin film formed by the above-mentioned vacuum thin film forming technology has a slightly high coercive force in its original state, and good soft magnetic properties cannot be obtained. It is preferable to remove strain and improve soft stone feelability.
このような構成の複合磁気ヘッドにおいて、上記6荘性
合金薄膜(3L(13)の組成を種々変えて複合磁気ヘ
ッドを作成し、それぞれについて記録及び再生特性、耐
蝕性を測定した。結果を第1表に示す。比較のために、
磁性合金gt膜(3) 、 (13)にFe−、Af−
Si系軟磁性薄膜を使用した磁気へ、ドについても同様
に測定し、結果を第1表に示した。In composite magnetic heads with such a configuration, composite magnetic heads were fabricated by varying the composition of the above-mentioned hexagonal alloy thin film (3L (13)), and the recording and reproducing characteristics and corrosion resistance of each were measured. Table 1 shows.For comparison,
Fe-, Af- in the magnetic alloy gt films (3) and (13)
Similar measurements were made for magnetism using a Si-based soft magnetic thin film, and the results are shown in Table 1.
なお、上述の記録・再生特性の測定に8いて、記録特性
の場合は再生に、再生特性の場合は記録に後述の第3図
に示す複合(d気ヘッドを使用した。Incidentally, in measuring the recording/reproducing characteristics described above, a composite head shown in FIG. 3 (described later) was used for reproduction in the case of the recording characteristics and for recording in the case of the reproducing characteristics.
また、使用した磁気テープは、抗磁力が略15000e
程度のものを使用した。さらに、各ヘッドの耐蝕性は、
室温で水道水に約1週間浸した後の膜面の表面の観察に
依った。この耐蝕性の評価は、下記のような表面状態か
ら判定した。In addition, the magnetic tape used has a coercive force of approximately 15,000e.
I used a moderate amount. Furthermore, the corrosion resistance of each head is
The surface of the membrane was observed after being immersed in tap water at room temperature for about one week. The corrosion resistance was evaluated based on the following surface conditions.
A:膜面に変化がなく、鏡面を保ったままの状態。A: There is no change in the film surface and it remains mirror-like.
B:膜面に薄く錆が発生した状態。B: A state in which a thin layer of rust has formed on the film surface.
C:膜面に/農<錆が発生した状態。C: A state in which rust has occurred on the membrane surface.
D二M自体が消失する程度に錆が発生した状容。Rust has occurred to the extent that D2M itself has disappeared.
(以下余白)
第1表
この表からも明らかなようにFe−Ga−Si系軟磁性
薄膜を磁性合金薄膜に使用した複合磁気ヘッドは、この
軟磁性薄膜が高飽和磁束密度(略13000’ガウス)
を有することに起因して、記録特性が向上することがわ
かった。(Leaving space below) Table 1 As is clear from this table, a composite magnetic head using a Fe-Ga-Si based soft magnetic thin film as a magnetic alloy thin film has a high saturation magnetic flux density (approximately 13,000' Gauss). )
It was found that the recording characteristics were improved due to the presence of the above.
また、上記Fe−Ga−Si系軟磁性薄膜の執膨張係数
は135 X 10づ/℃程度であり、Fa−Aβ−S
i系軟磁性薄膜(160xlO−’/℃)に比べて磁気
コア部(例えば〜fn−Znフェライト)の熱膨張係数
120xlQ−’z/℃にかなり近づくため、iff性
合金薄膜の成膜時等に発生する膜応力等がかなり小さく
なる。したがって、ヘッド製造過程におけるマイクロク
ラック等が有効に解消できるため、良好な再生特性が得
られる。さらに、均一なヘッド特性の複合磁気ヘッドが
得られるとともに、歩留まりの向上が図れる。The coefficient of expansion of the Fe-Ga-Si soft magnetic thin film is approximately 135 x 10/°C, and the Fe-Aβ-S
Compared to the i-based soft magnetic thin film (160xlO-'/°C), the thermal expansion coefficient of the magnetic core (for example ~fn-Zn ferrite) is much closer to 120xlQ-'z/°C, so when forming an IF alloy thin film, etc. The membrane stress, etc. generated in the process is considerably reduced. Therefore, microcracks and the like during the head manufacturing process can be effectively eliminated, and good playback characteristics can be obtained. Furthermore, a composite magnetic head with uniform head characteristics can be obtained, and the yield can be improved.
このように本発明によれば、磁性合金薄膜のルd気特性
を十分に発揮できる?j合磁気ヘッドが提供できる。As described above, according to the present invention, it is possible to fully exhibit the magnetic properties of the magnetic alloy thin film. J combined magnetic head can be provided.
また、上記Fe−Ga−Si系軟磁性薄膜は、耐摩耗性
や耐蝕性にも優れているので、ヘッドの寿命が伸び、長
期に亘って良好な記録再生特性が持続できる。しかも、
高密度記録に要求される媒体とヘッドとの相対速度の上
昇に対しても、初期のヘッドの電磁変換特性を長期間維
持できる。したがって、磁気記録媒体摺接面の偏摩耗に
よるスペーシングロス等が解消できるので、高周波数領
域の記録再生に好適な複合磁気ヘッドが提供できる。Furthermore, the Fe--Ga--Si based soft magnetic thin film has excellent wear resistance and corrosion resistance, so that the life of the head is extended and good recording and reproducing characteristics can be maintained over a long period of time. Moreover,
Even when the relative speed between the medium and the head increases, which is required for high-density recording, the initial electromagnetic conversion characteristics of the head can be maintained for a long period of time. Therefore, it is possible to eliminate spacing loss due to uneven wear of the sliding contact surface of the magnetic recording medium, so that a composite magnetic head suitable for recording and reproducing in a high frequency region can be provided.
さらに、本発明は従来の構造、製法、工程等を何等変更
することな〈実施できるので、この実用価値は極めて高
いといえる。Furthermore, since the present invention can be implemented without any changes to the conventional structure, manufacturing method, process, etc., it can be said that its practical value is extremely high.
以上、本発明の一実施例について説明したが、本発明は
、この実施例に限定されず本発明の趣旨を逸脱しない範
囲で種々の構造の複合は気ヘッドに適用できる。Although one embodiment of the present invention has been described above, the present invention is not limited to this embodiment, and various combinations of structures can be applied to the air head without departing from the spirit of the present invention.
例えば、第3図に示すように、酸化物磁性材料よりなる
磁気コア部(30) 、 (31)の突き合わせ面をそ
れぞれ斜めに切欠き傾斜面(30a) 、 (31a)
とし、この傾斜面(30a) 、 (31a)上にF
e−Ga−Si系軟磁性薄膜よりなる磁性合金薄膜(3
2) 、 (33)を形成しそれぞれ磁気コア半体を構
成し、これら磁性合金薄膜(32) 、 (33)の当
接面を作動ギヤノブgとした複合磁気ヘッドであっても
良い。なお、各磁気コア部<30)、(31)には、ト
ランク幅規制溝(34) 。For example, as shown in FIG. 3, the abutting surfaces of the magnetic core parts (30) and (31) made of oxide magnetic material are obliquely cut out to form inclined surfaces (30a) and (31a), respectively.
F on these slopes (30a) and (31a)
Magnetic alloy thin film (3) consisting of e-Ga-Si soft magnetic thin film
2) and (33) may be formed to form magnetic core halves, respectively, and a composite magnetic head may be provided in which the contact surfaces of these magnetic alloy thin films (32) and (33) serve as operating gear knobs g. In addition, each magnetic core part <30), (31) has a trunk width regulating groove (34).
(35)が切欠かれトラック幅を規制し、このトランク
幅規制溝(34) 、 (35)及び磁性合金3膜(3
2) 。(35) are notched to regulate the track width, and the trunk width regulating grooves (34), (35) and the three magnetic alloy films (3
2).
(33)内には非磁性材(36) 、 (37)が)溶
融充填されている。この複合磁気ヘッドは、磁性合金3
孜(32) 、 (33)の膜厚によりトランク幅を規
制できるので、狭トラツク化が可能となり一高密度記録
化に好適な磁気へノドである。(33) is filled with non-magnetic materials (36) and (37) by melting. This composite magnetic head uses magnetic alloy 3
Since the trunk width can be controlled by controlling the thickness of the (32) and (33) films, it is possible to make the track narrower, making it a magnetic node suitable for high-density recording.
あるいは、第41;2Iに示すように、作動ギャップg
に対して所要角度傾斜した磁気コア部(40) 、 (
41)の−斜平面(40a) 、 (41a)上と、こ
の−斜平面(40a) 、 (41a)の両側に切欠か
れトラック幅を規制するためのトランク幅規制a(42
) 、 (43) 、 (44) 、 (45〕内に連
続的にFe−Ga−Si系軟磁性薄膜よりなる磁性合金
薄膜(46) 、 (47)を被着形成してなる複合磁
気ヘッドにも本発明は適用される。このように、作動ギ
ヤノブgに対して非平行に磁性金属薄膜形成面となる上
記−斜平面(40a) 、 (41a)を配置すること
により、第1UA及び第2図に示すヘッドで発生する擬
似ギャップの影響が解消できさらには、第5図に示すよ
うに、磁気コア部(50) 、 (51)の突き合わせ
面を全幅に亘って斜めに切欠き傾斜面(50a) 、
(51a)とし、この傾斜面(50a) 。Alternatively, as shown in No. 41; 2I, the working gap g
The magnetic core part (40) inclined at a required angle with respect to (
Trunk width regulation a (42) is cut out on the oblique planes (40a) and (41a) of 41) and on both sides of the oblique planes (40a) and (41a) to regulate the track width.
), (43), (44), and (45), in which magnetic alloy thin films (46) and (47) made of Fe-Ga-Si soft magnetic thin films are continuously deposited. The present invention is also applicable to the first UA and the second UA by arranging the above-mentioned oblique planes (40a) and (41a), which serve as magnetic metal thin film forming surfaces, non-parallel to the operating gear knob g. The influence of the pseudo gap that occurs in the head shown in the figure can be eliminated.Furthermore, as shown in Fig. 50a),
(51a), and this inclined surface (50a).
(51a)上にFe−Ga−Si系軟磁性薄膜よりなる
磁性合金薄膜(52) 、 (53)を被着し、磁気コ
ア部(50) 、 (51)の厚みによりトラック幅を
規制してなる複合磁気ヘッドとしても良い。Magnetic alloy thin films (52) and (53) made of Fe-Ga-Si soft magnetic thin films are deposited on (51a), and the track width is regulated by the thickness of the magnetic core parts (50) and (51). It may also be a composite magnetic head.
以上の説明からも明らかなように、本発明の複合磁気へ
ノドにおいては、作動ギャップを構成し主コアとなる磁
性合金11iをFeGa−Si系軟磁性薄膜としている
ので、ヘッド作成過程で酸化物磁性材料と磁性合金薄膜
との軌膨張係数の差に起因する磁性体への応力寄与が少
なくなり、磁気特性の劣化を抑えることができる。した
がって、再生効率が格段に向上する
また、上記Fe−Ga−3’i系軟磁性薄膜は、飽和磁
束密度が大きいため、高抗磁力磁気記録媒体に対して良
好な記録特性を示す。As is clear from the above explanation, in the composite magnetic head of the present invention, since the magnetic alloy 11i that constitutes the working gap and serves as the main core is a FeGa-Si soft magnetic thin film, oxides are removed during the head fabrication process. Stress contribution to the magnetic body due to the difference in orbital expansion coefficient between the magnetic material and the magnetic alloy thin film is reduced, and deterioration of magnetic properties can be suppressed. Therefore, the reproduction efficiency is significantly improved. Furthermore, since the Fe-Ga-3'i-based soft magnetic thin film has a large saturation magnetic flux density, it exhibits good recording characteristics for high coercive force magnetic recording media.
さらに、本発明によれば、複合磁気ヘッドの製造プロセ
スの変更は必要なく、生産効率の低下や精度の低下等の
心配はない。Further, according to the present invention, there is no need to change the manufacturing process of the composite magnetic head, and there is no need to worry about reductions in production efficiency or accuracy.
さらに、ヘッド作成過程における歪を有効に抑えること
ができるので、マイクロクランクやそり等が有効に除去
される、ヘッド特性や歩留まりが向上する。Furthermore, since distortion in the head manufacturing process can be effectively suppressed, microcranks, warpage, etc. can be effectively eliminated, and head characteristics and yields can be improved.
さらに、Fe−Ga−Si系軟磁性薄膜は、耐蝕性や耐
摩耗性にも優れているので、複合磁気ヘッドの耐久性の
点でも有利である。Furthermore, since the Fe--Ga--Si based soft magnetic thin film has excellent corrosion resistance and wear resistance, it is also advantageous in terms of the durability of the composite magnetic head.
これらの利点は、複合磁気ヘッドの構成に由来する小型
化の容易性、高生産性、高信鯨性、高密度記録化等の特
徴と相俟って複合磁気ヘッドの性能の向上に有効に働き
、実用価値の高い複合磁気ヘッドの提供が可能となる。These advantages, together with features such as ease of miniaturization, high productivity, high reliability, and high density recording derived from the composition of the composite magnetic head, are effective in improving the performance of the composite magnetic head. This makes it possible to provide a composite magnetic head with high practical value.
第1図は本発明を適用した複合磁気へノドの一実施例を
示す外観斜視図であり、第2図はその磁気記録媒体対接
面を示す要部拡大平面図である。
第3図ないし第5図はそれぞれ本発明の他の例の磁気記
録媒体対接面を示す要部拡大平面図である。FIG. 1 is an external perspective view showing an embodiment of a composite magnetic sensor to which the present invention is applied, and FIG. 2 is an enlarged plan view of the main part showing the surface in contact with a magnetic recording medium. FIGS. 3 to 5 are enlarged plan views of main parts showing the surface in contact with a magnetic recording medium according to other examples of the present invention.
Claims (1)
成されてなる複合磁気ヘッドにおいて、前記磁性合金薄
膜がFe−Ga−Si系軟磁性薄膜であることを特徴と
する複合磁気ヘッド。1. A composite magnetic head in which a magnetic core half is constituted by an oxide magnetic material and a magnetic alloy thin film, wherein the magnetic alloy thin film is a Fe-Ga-Si based soft magnetic thin film.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19496086A JPH0795362B2 (en) | 1986-08-20 | 1986-08-20 | Composite magnetic head |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19496086A JPH0795362B2 (en) | 1986-08-20 | 1986-08-20 | Composite magnetic head |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6352310A true JPS6352310A (en) | 1988-03-05 |
JPH0795362B2 JPH0795362B2 (en) | 1995-10-11 |
Family
ID=16333192
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP19496086A Expired - Lifetime JPH0795362B2 (en) | 1986-08-20 | 1986-08-20 | Composite magnetic head |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0795362B2 (en) |
-
1986
- 1986-08-20 JP JP19496086A patent/JPH0795362B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH0795362B2 (en) | 1995-10-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5084795A (en) | Magnetic head and method of manufacturing the same | |
JP2513205B2 (en) | Composite magnetic head | |
JPS62145510A (en) | Magnetic head | |
JPH01229408A (en) | Magnetic head | |
JP2635422B2 (en) | Magnetic head | |
JPS6352310A (en) | Composite magnetic head | |
US5786103A (en) | Soft magnetic film and magnetic head employing same | |
JPH0827908B2 (en) | Magnetic head | |
JP2565173B2 (en) | Composite magnetic head | |
JP2775770B2 (en) | Method for manufacturing soft magnetic thin film | |
JP2523854B2 (en) | Magnetic head | |
JP2513206B2 (en) | Composite magnetic head for overwriting | |
JPS58118015A (en) | Magnetic head | |
JPS63302406A (en) | Magnetic head | |
KR940008644B1 (en) | Magnetic alloy thin film for magnetic head | |
JPH06309620A (en) | Magnetic head | |
JP2798315B2 (en) | Composite magnetic head | |
JPS6174109A (en) | Magnetic head | |
JPH0746654B2 (en) | Soft magnetic thin film | |
JPH04214831A (en) | Soft magnetic film | |
JPH0376102A (en) | Multilayer magnetic thin film and magnetic head using the same | |
JP2000003505A (en) | Magnetic head and its production | |
JPH04147410A (en) | Magnetic disk | |
JPS6288113A (en) | Composite magnetic head | |
JPH0828298B2 (en) | Soft magnetic thin film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |