JPS6352296B2 - - Google Patents

Info

Publication number
JPS6352296B2
JPS6352296B2 JP58047640A JP4764083A JPS6352296B2 JP S6352296 B2 JPS6352296 B2 JP S6352296B2 JP 58047640 A JP58047640 A JP 58047640A JP 4764083 A JP4764083 A JP 4764083A JP S6352296 B2 JPS6352296 B2 JP S6352296B2
Authority
JP
Japan
Prior art keywords
layer
radiant
panel
radiation
respect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58047640A
Other languages
Japanese (ja)
Other versions
JPS59173637A (en
Inventor
Kazuhiro Aiso
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP58047640A priority Critical patent/JPS59173637A/en
Publication of JPS59173637A publication Critical patent/JPS59173637A/en
Publication of JPS6352296B2 publication Critical patent/JPS6352296B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D3/00Hot-water central heating systems
    • F24D3/12Tube and panel arrangements for ceiling, wall, or underfloor heating
    • F24D3/14Tube and panel arrangements for ceiling, wall, or underfloor heating incorporated in a ceiling, wall or floor
    • F24D3/141Tube mountings specially adapted therefor
    • F24D3/142Tube mountings specially adapted therefor integrated in prefab construction elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Steam Or Hot-Water Central Heating Systems (AREA)
  • Central Heating Systems (AREA)
  • Domestic Hot-Water Supply Systems And Details Of Heating Systems (AREA)
  • Devices For Blowing Cold Air, Devices For Blowing Warm Air, And Means For Preventing Water Condensation In Air Conditioning Units (AREA)

Abstract

PURPOSE:To contrive to enhance the cooling and heating functions by a structure wherein a radiating surface is covered with substance, which has high transmittance with respect to visible rays and high absorption factor with respect to infrared rays. CONSTITUTION:A back panel 2, at the dent parts of which water pipes 3 is equipped, is arranged on one side of a heat insulating material 1. A radiating surface panel 4 is arranged so as to contact with both the water pipes 3 and the back panel 2. A selective radiation layer 7 comprising an inside layer 5 and an outside layer 6 is formed onto the radiating surface panel 4. The inside layer 5 consists of a layer of substance with high reflection factor with respect to visible rays such as aluminum deposit or the like, while the outside layer 6 consists of a layer of substance with high transmittance with respect to visible rays and high absorption factor with respect to infrared rays such as magnesium oxide film or the like. In such a structure as mentioned above, a radiant panel with excellent performance for cooling and heating due to heat transfer by radiation is obtained while keeping irradiation effect as same as before.

Description

【発明の詳細な説明】 本発明は輻射パネルに係り、特に輻射伝熱によ
つて室内等の冷房及び暖房に供するための輻射パ
ネルに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a radiant panel, and more particularly to a radiant panel for cooling and heating a room or the like by radiant heat transfer.

輻射パネルは断熱材層中に熱媒体を循環させる
ための中空パイプを有し、この中空パイプの片面
側に輻射面を有する構成となつている。そして輻
射面を介して輻射伝熱を行い室内等を冷房又は暖
房するようになつている。
The radiant panel has a hollow pipe for circulating a heat medium through a heat insulating material layer, and has a radiant surface on one side of the hollow pipe. Then, radiant heat is transferred via the radiant surface to cool or heat the room or the like.

このような輻射パネルにおいて、従来輻射面に
は黒色塗装を施したもの、又は熱媒体からの輻射
面への熱移動を容易にする目的で金属アルミニウ
ムを用いられていた。しかしながら、黒色塗装の
輻射面の場合、輻射率は高いが可視光線の吸収率
も高く、外界から太陽光線をはじめとする自然光
及び室内の照明などの光線をも吸収するため、輻
射量が少ないばかりでなく、室内が暗くなり照明
効果が悪い問題がある。一方、金属アルミニウム
の輻射面の場合、反射率が高いため、(1−反射
率)=放射率(輻射率)の法則から輻射伝熱が不
十分なものであつた。したがつて従来の輻射面を
有する輻射パネルはいずれも吸収及び輻射をそれ
ぞれ十分に行い得ないものであるため室内等の冷
房及び暖房としての効率が低いものであつた。
In such a radiant panel, the radiant surface has conventionally been painted black, or metal aluminum has been used for the purpose of facilitating heat transfer from the heat medium to the radiant surface. However, in the case of a black-painted radiation surface, the radiation rate is high, but the absorption rate of visible light is also high, and it absorbs natural light such as sunlight from the outside, as well as light rays from indoor lighting, so the amount of radiation is only small. However, there is a problem that the room becomes dark and the lighting effect is poor. On the other hand, in the case of a radiating surface made of metal aluminum, since the reflectance is high, radiant heat transfer is insufficient due to the law of (1-reflectance)=emissivity. Therefore, all conventional radiant panels having a radiant surface are unable to absorb and radiate sufficiently, and therefore have low efficiency in cooling and heating indoor rooms.

本発明の目的は、照射効果を維持しつつ、輻射
伝熱による冷房及び暖房用としての性能の良好な
輻射パネルを提供することにある。
An object of the present invention is to provide a radiant panel that maintains the irradiation effect and has good performance for cooling and heating by radiant heat transfer.

本発明は、輻射面が可視光線に対して高い反射
率を有する物質を、可視光線に対しては透過率が
高く赤外線に対して高い吸収率を有する物質で覆
う構成とし、可視光線及び赤外線に対して選択輻
射性を有するようにしたものである。
The present invention has a structure in which the radiation surface is covered with a material that has a high reflectance for visible light and a material that has a high transmittance for visible light and a high absorption for infrared rays. It is designed to have selective radiation properties.

以下、添付図面に基いて本発明の実施例を説明
する。
Embodiments of the present invention will be described below based on the accompanying drawings.

第1図は本発明の一実施例を示す断面図であつ
て、断熱材1の片面側に裏面パネル2が設けら
れ、この裏面パネル2の凹部分に水管3を有して
いる。この水管3と裏面パネル2に接した状態で
輻射面パネル4が設けられ、次いで内側層5及び
外側層6からなる選択輻射層7が形成されてい
る。内側層5は可視光線に対して反射率が高い物
質からなる層であり、外側層6は可視光線に対し
透過率が高く赤外線に対して高い吸収率を有する
物質からなる層である。
FIG. 1 is a sectional view showing an embodiment of the present invention, in which a back panel 2 is provided on one side of a heat insulating material 1, and a water pipe 3 is provided in a concave portion of the back panel 2. A radiation surface panel 4 is provided in contact with the water tube 3 and the back panel 2, and then a selective radiation layer 7 consisting of an inner layer 5 and an outer layer 6 is formed. The inner layer 5 is a layer made of a material that has a high reflectance for visible light, and the outer layer 6 is a layer that is made of a material that has a high transmittance for visible light and a high absorption for infrared rays.

内側層5としては、例えばアルミニウムの蒸着
層、ニツケルのメツキ層のように鏡面に近い表面
が形成されるものが望ましいが、可視光線に対し
て反射率が比較的高い白色面が得られるもの、例
えばマグネシウムの溶射法によつて形成される酸
化マグネシウム膜を用いることもできる。外側層
6としては、ガラスやアクリル樹脂などの透明樹
脂がよく、これらの材料を溶着などの手段で内側
層5の全面を覆うようにする。
As the inner layer 5, it is preferable to use one that forms a surface close to a mirror surface, such as a vapor-deposited layer of aluminum or a plating layer of nickel, but one that provides a white surface with a relatively high reflectance to visible light; For example, a magnesium oxide film formed by a magnesium thermal spraying method can also be used. The outer layer 6 is preferably made of glass or a transparent resin such as acrylic resin, and these materials are made to cover the entire surface of the inner layer 5 by means of welding or the like.

次に第1図に示す構成の輻射パネルの作用を第
2図及び第3図を参照して説明する。
Next, the operation of the radiant panel having the structure shown in FIG. 1 will be explained with reference to FIGS. 2 and 3.

第2図中、Aはアクリル樹脂3mm層の光線吸収
率、Bはガラス3.2mm層の光線吸収率をそれぞれ
示し、これらの外側層を構成しうる物質はいずれ
も可視光線の範囲では非常に高い透過率を示して
いる。したがつて外側層は波長0.35〜0.75μm付
近の太陽光線及び室内等の照明の光線を良く透過
する性質を有する。
In Figure 2, A indicates the light absorption rate of a 3 mm layer of acrylic resin, and B indicates the light absorption rate of a 3.2 mm layer of glass.The materials that can make up these outer layers are both extremely high in the visible light range. It shows the transmittance. Therefore, the outer layer has a property of transmitting sunlight and indoor illumination light having a wavelength of around 0.35 to 0.75 μm.

第2図中、Cは40℃における黒体輻射率分布、
Dは10℃における黒体輻射率分布を示している。
ここでDは40℃における黒体輻射率を100とした
場合の相対的輻射率を示されている。40℃におけ
る黒体輻射率分布Dは波長約9μmを中心に約3
〜30μmにわたつている。一方、外側層(Aの場
合)はおよそ2.5μmから長波長の範囲で透過がな
くなり吸収する性質となつている。このことは外
側層は40℃前後の物体からの輻射線をよく吸収す
ることを示すことになる。
In Figure 2, C is the blackbody emissivity distribution at 40°C.
D shows the blackbody emissivity distribution at 10°C.
Here, D is the relative emissivity when the black body emissivity at 40° C. is taken as 100. The blackbody emissivity distribution D at 40°C is approximately 3 around the wavelength of approximately 9 μm.
It spans ~30μm. On the other hand, the outer layer (in the case of A) has a property of absorbing and not transmitting in the long wavelength range from approximately 2.5 μm. This indicates that the outer layer absorbs radiation from objects at around 40°C well.

また、キルヒホツフの法則によれば、次の法則
が厳密に成立する。ελ=αλ ελ:単色輻射率 αλ:単色吸収率 したがつて外側層はその温度が40℃前後であれ
ば、40℃前後の黒体と同程度の輻射を行うことに
なる。更に物体の輻射能は物体表面の絶体温度の
4乗に比例するので、物体表面の温度が20℃では
40℃の輻射能の71%に低下し、物体表面の温度が
10℃では第2図中、Dは示すように40℃の輻射能
の60%に低下する。第2図中、Eは黒色塗装面の
スペクトル吸収特性を示し、波長9μmから長い
波長に向つて吸収が低下している。したがつて黒
色塗装面では赤外線の輻射も低下することが判
る。
Also, according to Kirchhoff's law, the following law strictly holds. ελ=αλ ελ: Monochromatic emissivity αλ: Monochromatic absorption rate Therefore, if the temperature of the outer layer is around 40°C, it will emit the same amount of radiation as a blackbody at around 40°C. Furthermore, the radiation of an object is proportional to the fourth power of the absolute temperature of the object's surface, so if the temperature of the object's surface is 20℃,
The temperature of the surface of the object decreases to 71% of the radiation of 40℃.
At 10°C, D decreases to 60% of the radiation at 40°C, as shown in Figure 2. In FIG. 2, E indicates the spectral absorption characteristics of the black painted surface, and the absorption decreases from a wavelength of 9 μm toward longer wavelengths. Therefore, it can be seen that infrared radiation is also reduced on a black painted surface.

このようなスペクトル分布特性から、輻射パネ
ルによる冷房及び暖房の作用を説明する。
The cooling and heating effects of the radiant panel will be explained based on such spectral distribution characteristics.

冷房の場合、第3図に示すように可視光線Xは
外側層6を透過し、内側層5で反射されて外界に
出ていく。この結果、可視光線Xはポテンシヤル
の高いエネルギーの光としてそのまま利用され
る。赤外線Yは外側層6に達するとここで吸収さ
れ熱に変化するが、室温よりも熱媒体(ここでは
水管3を流動する水)3Aの方が低温となつてい
るため熱媒体3A側に熱伝導をはじめる。このと
き、すなわち冷房を行つている場合、外側層の表
面温度は15℃前後となつているため、室内への再
輻射Zは抑えられる。したがつて、冷房時、光と
して利用できる可視光線を吸収することなく、人
体又は室内の他の物体からの赤外線のみを一方的
に吸収する。更にアクリル樹脂やガラス等の外側
層は第2図に示すように黒色塗装面よりも赤外線
の吸収率が高いので冷房効率が高くなる。
In the case of cooling, visible light X passes through the outer layer 6, is reflected by the inner layer 5, and exits to the outside world, as shown in FIG. As a result, the visible light rays X are used as they are as high potential energy light. When the infrared rays Y reach the outer layer 6, they are absorbed there and changed into heat. However, since the temperature of the heat medium (water flowing through the water tube 3 in this case) 3A is lower than the room temperature, heat is transferred to the heat medium 3A side. Begin conduction. At this time, that is, when cooling is being performed, the surface temperature of the outer layer is around 15°C, so re-radiation Z into the room can be suppressed. Therefore, during cooling, only infrared rays from the human body or other objects in the room are unilaterally absorbed without absorbing visible rays that can be used as light. Furthermore, as shown in FIG. 2, the outer layer made of acrylic resin or glass has a higher absorption rate of infrared rays than the black painted surface, resulting in higher cooling efficiency.

暖房の場合、可視光線は冷房の場合同様内側層
5で反射され、室内の明るさと照明の効率を保持
する。赤外線は外側層6で吸収されるが、暖房
時、熱媒体3A側が高温となつているので熱媒体
側に熱伝導されることなく、外側層6から輻射さ
れる。このとき、外側層6は黒色塗装面よりも赤
外線の吸収率(したがつて赤外線の輻射率)が高
いので暖房効率がよい。
In the case of heating, visible light is reflected by the inner layer 5 as in the case of cooling, maintaining the brightness and lighting efficiency of the room. Infrared rays are absorbed by the outer layer 6, but during heating, since the heat medium 3A side is at a high temperature, the heat is not conducted to the heat medium side, but is radiated from the outer layer 6. At this time, since the outer layer 6 has a higher infrared absorption rate (and therefore infrared radiation emissivity) than the black painted surface, the heating efficiency is good.

本発明において、第1図に示す2層構造からな
る選択輻射層の他に1層構造の選択輻射層とする
こともできる。この場合、第1図に示す輻射面パ
ネル4の面に可視光線に対して反射率が高い物質
を、可視光線に対し透過率が高く赤外線に対して
高い吸収率を有する物質中に分散させて被覆させ
た層が形成される。このような選択輻射層とし
て、例えば酸化チタン及び/又は酸化亜鉛の粉末
を有機溶媒等によつて溶解したアクリル樹脂等の
透明樹脂中に分散させ、これを第1図に示す輻射
面パネル4面に塗布し、乾燥させた層が好適であ
る。
In the present invention, in addition to the selective radiation layer having the two-layer structure shown in FIG. 1, it is also possible to use a selective radiation layer having a single-layer structure. In this case, a material with a high reflectance for visible light is dispersed on the surface of the radiation panel 4 shown in FIG. A coated layer is formed. As such a selective radiation layer, for example, powder of titanium oxide and/or zinc oxide is dispersed in a transparent resin such as acrylic resin dissolved in an organic solvent, etc., and this is applied to the four radiant panels shown in FIG. A layer coated on and dried is suitable.

1層構造の選択輻射層の場合においても、可視
光線は透明樹脂中に被覆された物質によつて反射
されそのまま光として利用され、赤外線は透明樹
脂からなる被覆層に吸収されるので2層構造同様
室内の明るさを維持しつつ、冷房及び暖房の効率
を高めることができる。
Even in the case of a selective radiation layer with a single layer structure, visible light is reflected by the material coated in the transparent resin and is used as light, while infrared rays are absorbed by the coating layer made of transparent resin, so it is a two-layer structure. Similarly, the efficiency of cooling and heating can be increased while maintaining the brightness of the room.

更に本発明において、第1図に示す輻射面パネ
ル4がステンレス、アルミニウム等の金属面の場
合、この金属面を研磨などの方法によつて鏡面状
態とした後、その面にアクリル樹脂などの透明樹
脂やガラスからなる外側層を設け、輻射面パネル
4に輻射面パネルとしての機能と第1図に示す内
側層5として機能とを有するようにしてもよい。
この場合、可視光線は外側層を透過した後、鏡面
状態の輻射面パネルで反射され、赤外線は外側層
で吸収されるので前記実施例同様、室内の明るさ
を維持しつつ、冷房及び暖房の効率を高めること
ができる。
Furthermore, in the present invention, when the radiation surface panel 4 shown in FIG. An outer layer made of resin or glass may be provided so that the radiation surface panel 4 has the function of the radiation surface panel and the function of the inner layer 5 shown in FIG. 1.
In this case, after visible light passes through the outer layer, it is reflected by the mirror-like radiant panel, and infrared rays are absorbed by the outer layer, so as in the previous example, the brightness of the room can be maintained while cooling and heating can be controlled. Efficiency can be increased.

以上のように本発明によれば、可視光線は反射
し、人体及び室内の各物体からの赤外線のみを吸
収するので室内の明るさを維持しつつ、効率のよ
い冷房を行うことができ、また輻射面が黒色面の
場合と比較しても高い輻射率を有するので効率の
よい暖房を行うことができる。
As described above, according to the present invention, visible light is reflected and only infrared rays from the human body and objects in the room are absorbed, so efficient cooling can be performed while maintaining the brightness of the room. Since the radiation surface has a higher radiation rate than a black surface, efficient heating can be performed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の輻射パネルの一実施例を示す
断面図、第2図は各種材料のスペクトル吸収特性
を示す図、第3図は第1図に示す輻射パネルにお
ける冷暖房作用を示すための説明図である。 1……断熱材、2……裏面パネル、3……水
管、4……輻射面パネル、5……内側層、6……
外側層、X……可視光線、Y……赤外線、3A…
…熱媒体。
Figure 1 is a cross-sectional view showing one embodiment of the radiant panel of the present invention, Figure 2 is a diagram showing the spectral absorption characteristics of various materials, and Figure 3 is a diagram showing the heating and cooling effect of the radiant panel shown in Figure 1. It is an explanatory diagram. 1...Insulating material, 2...Back panel, 3...Water pipe, 4...Radiation surface panel, 5...Inner layer, 6...
Outer layer, X...visible light, Y...infrared rays, 3A...
...Heating medium.

Claims (1)

【特許請求の範囲】 1 熱媒体が循環する中空パイプを内部に備えた
輻射冷暖房用の輻射パネルにおいて、前記輻射パ
ネルの輻射面の内側層としてニツケルメツキ層等
の鏡面に近い表面層を形成し、該内側層をガラ
ス、アクリル樹脂等の透明樹脂より成る外側層で
掩つた選択輻射層を形成することを特徴とする輻
射パネル。 2 輻射パネルの輻射面として透明樹脂からなる
層中に酸化チタン、酸化亜鉛等の粉末が分散され
ている選択輻射層を形成することを特徴とする特
許請求の範囲第1項記載の輻射パネル。
[Scope of Claims] 1. In a radiant panel for radiant cooling and heating equipped with a hollow pipe in which a heat medium circulates, a near-mirror surface layer such as a nickel plating layer is formed as an inner layer of the radiant surface of the radiant panel, A radiation panel characterized in that a selective radiation layer is formed by covering the inner layer with an outer layer made of a transparent resin such as glass or acrylic resin. 2. The radiant panel according to claim 1, wherein a selective radiant layer in which powders of titanium oxide, zinc oxide, etc. are dispersed in a layer made of transparent resin is formed as a radiant surface of the radiant panel.
JP58047640A 1983-03-22 1983-03-22 Radiant panel Granted JPS59173637A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58047640A JPS59173637A (en) 1983-03-22 1983-03-22 Radiant panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58047640A JPS59173637A (en) 1983-03-22 1983-03-22 Radiant panel

Publications (2)

Publication Number Publication Date
JPS59173637A JPS59173637A (en) 1984-10-01
JPS6352296B2 true JPS6352296B2 (en) 1988-10-18

Family

ID=12780834

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58047640A Granted JPS59173637A (en) 1983-03-22 1983-03-22 Radiant panel

Country Status (1)

Country Link
JP (1) JPS59173637A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202015103786U1 (en) 2015-07-17 2015-09-10 Almeco Gmbh Ceiling element, in particular heating and cooling ceiling element, based on aluminum or steel

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0623910Y2 (en) * 1986-05-31 1994-06-22 株式会社石野製作所 Microwave drying device for band-shaped or string-shaped objects having a heating cylinder roller inside
EP0278489A1 (en) * 1987-02-13 1988-08-17 Hans Josef May Construction element for floor heating or cooling systems, and process for manufacturing such an element
JP2505246B2 (en) * 1988-04-18 1996-06-05 矢崎総業株式会社 Ceiling radiant panel

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4935784A (en) * 1972-08-10 1974-04-02
JPS5633633A (en) * 1979-08-27 1981-04-04 Fuji Photo Optical Co Ltd Composite camera

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4935784A (en) * 1972-08-10 1974-04-02
JPS5633633A (en) * 1979-08-27 1981-04-04 Fuji Photo Optical Co Ltd Composite camera

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202015103786U1 (en) 2015-07-17 2015-09-10 Almeco Gmbh Ceiling element, in particular heating and cooling ceiling element, based on aluminum or steel

Also Published As

Publication number Publication date
JPS59173637A (en) 1984-10-01

Similar Documents

Publication Publication Date Title
JP6761673B2 (en) Passive radiative cooling panel improved by metamaterial
US20190152410A1 (en) Transparent radiative cooling films and structures comprising the same
JPH10504936A (en) Rapid heat treatment apparatus and method
US4586350A (en) Selective radiative cooling with MgO and/or LiF layers
MX2007001448A (en) Solar absorber.
JPH07220696A (en) Lamp of reflection type
US4181926A (en) Illuminating fixture for surgical light
US20050167612A1 (en) Passive fluorescent cooling
JPS6352296B2 (en)
US4195124A (en) Solar radiation energy absorber
JPH0711143Y2 (en) Building window glass
US4037014A (en) Semiconductor absorber for photothermal converter
JPS59219701A (en) Light reflector
JP2909538B1 (en) Wavelength-selective heat radiation material for heating and heating
JPS61223468A (en) Radiational cooler
JP2505246B2 (en) Ceiling radiant panel
JPS5839039Y2 (en) Planar far infrared heater
Youngquist et al. Simplistic Solar Shield Analysis
JP2585539B2 (en) Halogen bulb
JPH0231976Y2 (en)
JPH0420036Y2 (en)
JPS59202335A (en) Radiator
GB1532338A (en) Photon absorbers
JPS6328325Y2 (en)
SU367202A1 (en) LIBRARY Institute for Rural Construction