JPS6352107B2 - - Google Patents
Info
- Publication number
- JPS6352107B2 JPS6352107B2 JP8641382A JP8641382A JPS6352107B2 JP S6352107 B2 JPS6352107 B2 JP S6352107B2 JP 8641382 A JP8641382 A JP 8641382A JP 8641382 A JP8641382 A JP 8641382A JP S6352107 B2 JPS6352107 B2 JP S6352107B2
- Authority
- JP
- Japan
- Prior art keywords
- plastic molded
- solvent
- film
- modified layer
- plasma treatment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 229920003023 plastic Polymers 0.000 claims description 27
- 238000000034 method Methods 0.000 claims description 26
- 239000004033 plastic Substances 0.000 claims description 25
- 239000002904 solvent Substances 0.000 claims description 21
- 239000000463 material Substances 0.000 claims description 13
- 238000001556 precipitation Methods 0.000 claims description 2
- 238000001771 vacuum deposition Methods 0.000 claims description 2
- 238000009832 plasma treatment Methods 0.000 description 17
- 238000004140 cleaning Methods 0.000 description 13
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 12
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 12
- 238000012360 testing method Methods 0.000 description 11
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 10
- 229910052814 silicon oxide Inorganic materials 0.000 description 10
- 230000000052 comparative effect Effects 0.000 description 8
- 239000000126 substance Substances 0.000 description 8
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 6
- 239000011248 coating agent Substances 0.000 description 6
- 238000000576 coating method Methods 0.000 description 6
- 239000007789 gas Substances 0.000 description 5
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 5
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 4
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 4
- 229920001577 copolymer Polymers 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 238000000151 deposition Methods 0.000 description 3
- 150000002148 esters Chemical class 0.000 description 3
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 3
- 239000000178 monomer Substances 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 3
- 239000004417 polycarbonate Substances 0.000 description 3
- 229920000515 polycarbonate Polymers 0.000 description 3
- -1 polyethylene terephthalate Polymers 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 239000004926 polymethyl methacrylate Substances 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 2
- 238000005336 cracking Methods 0.000 description 2
- 239000004744 fabric Substances 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 2
- 238000006116 polymerization reaction Methods 0.000 description 2
- 230000001376 precipitating effect Effects 0.000 description 2
- 239000001294 propane Substances 0.000 description 2
- 238000007738 vacuum evaporation Methods 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- 229910001928 zirconium oxide Inorganic materials 0.000 description 2
- WBIQQQGBSDOWNP-UHFFFAOYSA-N 2-dodecylbenzenesulfonic acid Chemical compound CCCCCCCCCCCCC1=CC=CC=C1S(O)(=O)=O WBIQQQGBSDOWNP-UHFFFAOYSA-N 0.000 description 1
- 229920000298 Cellophane Polymers 0.000 description 1
- 229920002319 Poly(methyl acrylate) Polymers 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 239000005456 alcohol based solvent Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 239000003849 aromatic solvent Substances 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 229920002301 cellulose acetate Polymers 0.000 description 1
- 238000007334 copolymerization reaction Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000007850 degeneration Effects 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- 229940060296 dodecylbenzenesulfonic acid Drugs 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 229910052809 inorganic oxide Inorganic materials 0.000 description 1
- 238000007733 ion plating Methods 0.000 description 1
- 239000005453 ketone based solvent Substances 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- ORUIBWPALBXDOA-UHFFFAOYSA-L magnesium fluoride Chemical compound [F-].[F-].[Mg+2] ORUIBWPALBXDOA-UHFFFAOYSA-L 0.000 description 1
- 229910001635 magnesium fluoride Inorganic materials 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000010137 moulding (plastic) Methods 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 239000002985 plastic film Substances 0.000 description 1
- 229920006255 plastic film Polymers 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 229920000193 polymethacrylate Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Treatments Of Macromolecular Shaped Articles (AREA)
- Physical Vapour Deposition (AREA)
Description
本発明はプラスチツク成型品の表面改質方法に
関する。
一般に、透明性プラスチツク成型品は、無機ガ
ラスに比べて耐擦傷性、耐摩耗性、耐薬品性が劣
るため、その表面にスパツタリング、イオンプレ
ーテイング、真空蒸着等により、金属や無機酸化
物、例えば酸化ケイ素、酸化ジルコニウム、酸化
アルミニウムの無機硬質物を析出させて被膜を形
成して表面改質する方法が採用されている。ま
た、プラスチツク成型品の反射防止を目的とし
て、屈折率の異なる無機硬質物を上記方法によつ
て該成型品の表面に交互に積層し、反射防止膜を
得る方法がある。しかし、該方法により得られる
無機硬質物の被膜は、プラスチツク生地との密着
性が悪く、耐熱水性、耐高湿性が不良でクラツク
が発生したり、被膜の剥離などの欠点がある。
本発明者は、上記課題を解決すべく鋭意研究を
重ねた。その結果、プラスチツク成型品をプラズ
マ処理して表面に変性層を形成させ、該変性層を
溶剤で洗浄することにより、前記無機硬質物によ
つて形成される被膜の密着性が著しく向上される
ことを見出し本発明を提案するに至つた。
本発明は、プラスチツク成型品をプラズマ処理
して表面に変性層を形成させ、次いで該変性層を
溶剤で洗浄して変性層の一部を除去した後、該表
面に無機硬質物を析出させて被膜を形成すること
を特徴とするプラスチツク成型品の表面改質方法
である。
本発明において、変性層とはプラスチツク成型
品をプラズマ処理することにより分子鎖の切鎖、
変性等が生じた層部分をいう。
本発明において、プラスチツク成型品は特に制
限されない。例えば、ポリメチルメタクリレー
ト、ポリメタクリレート、ポリエチレンテレフタ
レート、ポリアクリレート、ポリメチルアクリレ
ート等のポリ不飽和エステル類;ポリスチレン;
ポリ塩化ビニル;エポキシ樹脂;ポリアミド類、
ポリカーボネート;ポリジエチレングリコールビ
スアリルカーボネート等のポリアリルカーボネー
ト類;酢酸繊維素プラスチツク等の重合体、或い
はこれらの重合体を形成するモノマー相互又は該
モノマーと他のモノマーとの共重合体よりなる成
型品が挙げられる。就中、ポリメタクリル酸エス
テル類、ポリアクリル酸エステル類、ポリカーボ
ネート類、ポリアリルカーボネート類等の重合体
よりなる透明性に優れたプラスチツク成型品に対
しては、その光学特性を失なうことなく表面を改
質することが可能な本発明の方法が特に効果的で
ある。
本発明の最大の特徴は、プラスチツク成型品を
プラズマ処理して表面に変性層を形成させ、次い
で該変性層を溶剤で洗浄することにある。
従来、プラズマ処理をプラスチツク成型品、例
えばプラスチツクフイルムの接着性を改良する目
的で使用した例はある。しかしながら、後述する
無機硬質物によつて形成される被膜の密着性は、
プラスチツク成型品を単にプラズマ処理しただけ
では充分満足できるものではない。
本発明にあつては、プラズマ処理によつて形成
された変性層を溶剤で洗浄することにより、プラ
スチツク成型品と無機硬質物の被膜との密着性を
著しく向上させることができる。
本発明において、プラズマ処理は公知の方法で
行なうことができる。例えば、雰囲気ガスとして
酸素、酸素とアルゴンなどの不活性ガスとの混合
ガス等が好適に用いられる。特に酸素と不活性ガ
スとの混合ガスがプラズマ処理による効果が大き
く好ましい。また、圧力は0.5〜2Torr程度が、
ガス流量は10〜300ml/min程度が適当である。
更に放電電力は一般に50〜500Wの範囲内で選択
すればよい。更にまた、処理時間は、放電電力の
大きさによつて多少異なり一概に決定することは
できないが、一般に0.2〜10分が好適である。
また、本発明において、プラスチツク成型品の
表面に形成された変性層の洗浄は、変性層の一部
が残存する程度に行なわれる。即ち、変性層を全
て除去する洗浄は、プラズマ処理による効果をほ
ぼ完全に失ない被膜の密着性を充分得ることがで
きないので好ましくない。洗浄に用いる溶剤は変
性層内に存在する少なくとも一部の物質を除去し
得る能力を有するものであれば特に制限なく使用
できる。一般には、プラスチツク成型品の基材を
実質的に溶解しない溶剤を用いることが、変性層
の全部を溶解するおそれがなく好適である。代表
的な溶剤を例示すれば、メタノール、エタノー
ル、イソプロパノール等のアルコール系溶剤、ア
セトン等のケトン系溶剤、ベンゼン、トルエン等
の芳香族系溶剤等を単独又は組合せてなる有機溶
剤、ドデシルベンゼンスルホン酸等の中性洗剤水
溶液等が挙げられる。また、プラスチツク成型品
との具体的な組合せ例としては、例えばポリメチ
ルメタクリレートに対してはメタノール、ポリジ
エチレングリコールビスアリルカーボネートに対
してはアセトンが夫々好適である。溶剤による洗
浄方法は特に制限されない。例えば、溶剤に浸漬
する方法、該方法と超音波洗浄機を用いる洗浄を
組合せる方法、溶剤を散布する方法、溶剤を含ん
だ布、紙等で拭く方法などが一般に行なわれる。
特に超音波洗浄機を用いる洗浄を組合せる方法は
単時間で洗浄を終了することができ好ましい。
本発明において、プラスチツク成型品は変性層
を溶剤で洗浄した後、該表面に無機硬質物を析出
させることによつて表面改質される。勿論、無機
硬質物を析出させる際には、表面に残存する溶剤
を乾燥などの手段により除去しておくべきであ
る。
プラスチツク成型品に無機硬質物の被膜を析出
させる方法は公知の方法が特に制限なく使用され
る。例えば、真空蒸着法、イオンプレーテイング
法、スパツタリング法等が一般的である。就中、
真空蒸着法によつて被膜を形成させる場合は、前
記処理による効果が顕著で、該被膜がプラスチツ
ク成型品の表面と優れた密着性を示すため、本発
明に好適に採用される。また、被膜の厚みは特に
限定されるものではないが、0.1〜10μが一般的で
ある。更に、無機硬質物は上記方法によりプラス
チツク表面に析出させることができる無機物質が
特に制限なく使用でき、その目的に応じて適宜選
択すれば良い。例えば耐擦傷性を付与するために
は酸化ケイ素(SiOx,X=1〜2)、酸化アルミ
ニウム等が一般に使用される。また反射防止性を
付与するためには、低屈折率物として酸化アルミ
ニウム、酸化ケイ素、弗化マグネシウム等が、ま
た、高屈折率物として酸化チタン、酸化ジルコニ
ウム等が用いられ、上記低屈折率物と高屈折率物
とを交互に光学的厚さとなるように積層すればよ
い。また、アルミニウム等の金属も使用できる。
以上の説明より理解される如く、本発明の方法
によれば、プラスチツク成型品との密着性が極め
て優れた被膜を形成させることができる。このよ
うな効果が発現される機構については未だ明らか
ではないが、プラズマ処理及び溶剤による洗浄処
理したプラスチツク成型品の表面が、無機硬質物
の該表面における析出時に何らかの影響を与える
ものと推定している。
以下、本発明を具体的に説明するため実施例を
示すが、本発明はこれらの実施例に限定されるも
のではない。
実施例 1
プラスチツク成型品として、注型重合により製
造したポリジエチレングリコールビスアリルカー
ボネート板を用いた。まず、該成型品をアセトン
で洗浄して充分に風乾し清澄な状態とした後、第
1表に示す条件でプラズマ処理した。次いでアセ
トンを溶剤として用い5分間超音波洗浄機によつ
て洗浄し、再び風乾した後、10-6Torrの条件下
に真空蒸着を行ない厚み3μの酸化ケイ素被膜を
得た。
かかる方法により形成された酸化ケイ素被膜に
ついて次の各種密着性試験を行なつた。
(1) ゴバン目試験;先端が鋭利なカツターナイフ
で試料表面に1mm×1mmのマス目を100個つけ
た後、市販のセロテープを貼り付け、すばやく
剥した時に残つたマス目の数を表示した。
(2) 耐熱水性試験;煮沸水中に2時間浸漬し、引
き上げて被膜の外観を目視により観察した。被
膜にはく離、ひび割れ、ふくれが生じているも
のは×、外観が変化なく良好なものを〇と評価
した。
(3) 耐高湿性試験;60℃、湿度100%の状態に3
日間放置し、被膜の外観を目視により観察し
た。被膜にはく離、ひび割れ、ふくれが生じて
いるものは×、外観が変化なく良好なものを〇
と評価した。
結果を第1表に併せて示す。また、前記方法に
おいて、プラズマ処理を行なわなかつたもの及び
プラズマ処理後溶剤による洗浄を行なわなかつた
ものを比較例として併せて示す。
The present invention relates to a method for surface modification of plastic molded articles. In general, transparent plastic molded products have inferior scratch resistance, abrasion resistance, and chemical resistance compared to inorganic glass, so they are coated with metal or inorganic oxides, such as A method of surface modification by precipitating inorganic hard substances such as silicon oxide, zirconium oxide, and aluminum oxide to form a coating has been adopted. Furthermore, for the purpose of preventing reflection in plastic molded products, there is a method of obtaining an antireflection film by alternately laminating inorganic hard substances having different refractive indexes on the surface of the molded product using the above method. However, the hard inorganic coating obtained by this method has disadvantages such as poor adhesion to plastic fabrics, poor hot water resistance and high humidity resistance, cracks, and peeling of the coating. The present inventor has conducted extensive research in order to solve the above problems. As a result, by plasma-treating a plastic molded product to form a modified layer on its surface and cleaning the modified layer with a solvent, the adhesion of the film formed by the inorganic hard material can be significantly improved. This discovery led us to propose the present invention. The present invention involves plasma-treating a plastic molded product to form a modified layer on its surface, then washing the modified layer with a solvent to remove a portion of the modified layer, and then precipitating an inorganic hard substance on the surface. This is a method for surface modification of plastic molded products, which is characterized by forming a film. In the present invention, the modified layer refers to the cutting of molecular chains by plasma treatment of a plastic molded product.
Refers to the layer portion where degeneration etc. have occurred. In the present invention, the plastic molded product is not particularly limited. For example, polyunsaturated esters such as polymethyl methacrylate, polymethacrylate, polyethylene terephthalate, polyacrylate, polymethyl acrylate; polystyrene;
Polyvinyl chloride; Epoxy resin; Polyamides,
Polycarbonate; Polyallyl carbonates such as polydiethylene glycol bisallyl carbonate; Polymers such as cellulose acetate plastic, or molded products made of copolymers of monomers forming these polymers or copolymers of the monomers and other monomers. Can be mentioned. In particular, for highly transparent plastic molded products made of polymers such as polymethacrylic esters, polyacrylic esters, polycarbonates, and polyallyl carbonates, it can be used without losing its optical properties. The method of the present invention, which allows surface modification, is particularly effective. The most important feature of the present invention is that a plastic molded product is plasma-treated to form a modified layer on its surface, and then the modified layer is washed with a solvent. In the past, plasma treatment has been used to improve the adhesion of plastic molded articles, such as plastic films. However, the adhesion of the film formed by the inorganic hard material described below is
Mere plasma treatment of plastic molded products is not fully satisfactory. In the present invention, by cleaning the modified layer formed by plasma treatment with a solvent, the adhesion between the plastic molded product and the inorganic hard material coating can be significantly improved. In the present invention, plasma treatment can be performed by a known method. For example, oxygen, a mixed gas of oxygen and an inert gas such as argon, etc. are preferably used as the atmospheric gas. In particular, a mixed gas of oxygen and an inert gas is preferable because it has a large effect on plasma treatment. In addition, the pressure is about 0.5 to 2 Torr,
Appropriate gas flow rate is about 10 to 300 ml/min.
Furthermore, the discharge power may generally be selected within the range of 50 to 500W. Furthermore, the treatment time varies somewhat depending on the magnitude of the discharge power and cannot be determined unconditionally, but generally 0.2 to 10 minutes is suitable. Furthermore, in the present invention, the modified layer formed on the surface of the plastic molded product is cleaned to such an extent that only a portion of the modified layer remains. That is, cleaning to remove all the modified layer is not preferred because the effect of plasma treatment is almost completely lost and sufficient adhesion of the film cannot be obtained. The solvent used for cleaning can be used without any particular restriction as long as it has the ability to remove at least part of the substances present in the modified layer. Generally, it is preferable to use a solvent that does not substantially dissolve the base material of the plastic molded article, since there is no risk of dissolving the entire modified layer. Examples of typical solvents include alcohol solvents such as methanol, ethanol, and isopropanol, ketone solvents such as acetone, organic solvents consisting of aromatic solvents such as benzene and toluene, etc. alone or in combination, and dodecylbenzenesulfonic acid. Examples include neutral detergent aqueous solutions such as . Further, as specific examples of combinations with plastic molded products, for example, methanol is suitable for polymethyl methacrylate, and acetone is suitable for polydiethylene glycol bisallyl carbonate. The cleaning method using a solvent is not particularly limited. For example, commonly used methods include immersion in a solvent, a combination of this method and cleaning using an ultrasonic cleaner, a method of spraying a solvent, and a method of wiping with a cloth, paper, etc. containing a solvent.
In particular, a method in which cleaning using an ultrasonic cleaner is combined is preferred because the cleaning can be completed in a single hour. In the present invention, the surface of the plastic molded article is modified by washing the modified layer with a solvent and then depositing an inorganic hard substance on the surface. Of course, when depositing an inorganic hard material, the solvent remaining on the surface should be removed by drying or other means. Any known method can be used without any particular restriction as a method for depositing a coating of an inorganic hard material on a plastic molded product. For example, vacuum evaporation method, ion plating method, sputtering method, etc. are common. In particular,
When the film is formed by vacuum evaporation, the effect of the treatment is remarkable and the film exhibits excellent adhesion to the surface of the plastic molded product, and is therefore preferably employed in the present invention. Further, the thickness of the coating is not particularly limited, but is generally 0.1 to 10μ. Further, as the inorganic hard substance, any inorganic substance that can be deposited on the plastic surface by the above method can be used without particular limitation, and it may be selected as appropriate depending on the purpose. For example, silicon oxide (SiOx, X=1-2), aluminum oxide, etc. are generally used to impart scratch resistance. In addition, in order to provide antireflection properties, aluminum oxide, silicon oxide, magnesium fluoride, etc. are used as low refractive index materials, and titanium oxide, zirconium oxide, etc. are used as high refractive index materials. and a high refractive index material may be alternately laminated so as to have an optical thickness. Additionally, metals such as aluminum can also be used. As can be understood from the above explanation, according to the method of the present invention, it is possible to form a film that has extremely excellent adhesion to plastic molded products. Although the mechanism by which such an effect is expressed is not yet clear, it is assumed that the surface of the plastic molded product that has been subjected to plasma treatment and solvent cleaning has some influence on the precipitation of inorganic hard materials on the surface. There is. Examples are shown below to specifically explain the present invention, but the present invention is not limited to these Examples. Example 1 A polydiethylene glycol bisallyl carbonate plate produced by cast polymerization was used as a plastic molded product. First, the molded product was washed with acetone and thoroughly air-dried to a clear state, and then subjected to plasma treatment under the conditions shown in Table 1. Next, it was washed in an ultrasonic cleaner using acetone as a solvent for 5 minutes, air-dried again, and then vacuum evaporated under conditions of 10 -6 Torr to obtain a silicon oxide film with a thickness of 3 μm. The following various adhesion tests were conducted on the silicon oxide film formed by this method. (1) Goban test: After making 100 squares of 1 mm x 1 mm on the surface of the sample using a cutter knife with a sharp tip, commercially available cellophane tape was attached and quickly peeled off, and the number of squares remaining was displayed. (2) Hot water resistance test: The film was immersed in boiling water for 2 hours, pulled out, and the appearance of the film was visually observed. A film with peeling, cracking, or blistering was rated as ×, and a film with good appearance without change was rated as ○. (3) High humidity resistance test: 3 at 60℃ and 100% humidity
The film was left to stand for a day, and the appearance of the film was visually observed. A film with peeling, cracking, or blistering was rated as ×, and a film with good appearance without change was rated as ○. The results are also shown in Table 1. In addition, in the above method, a case in which plasma treatment was not performed and a case in which cleaning with a solvent after plasma treatment was not performed are also shown as comparative examples.
【表】
尚、No.1、2、4、6は比較例である。
実施例 2
注型重合により製造した2,2−ビス−〔4−
(2−メタクリロキシ)−エトキシ−3,5−ジブ
ロモフエニル〕−プロパンとスチレンの重量比が
2/3よりなる共重合体の板状体について、実施
例1と同様にして、3μの厚みの酸化ケイ素被膜
を形成した。この酸化ケイ素被膜について実施例
1と同様にして密着性試験を行なつた。その結果
を第2表に示す。また、プラズマ処理後溶剤によ
る洗浄を行なわなかつたものを比較例として併せ
て示す。[Table] Note that Nos. 1, 2, 4, and 6 are comparative examples.
Example 2 2,2-bis-[4-
A plate of a copolymer (2-methacryloxy)-ethoxy-3,5-dibromophenyl]-propane and styrene with a weight ratio of 2/3 was prepared in the same manner as in Example 1. A silicon oxide film was formed. An adhesion test was conducted on this silicon oxide film in the same manner as in Example 1. The results are shown in Table 2. In addition, a comparative example in which cleaning with a solvent was not performed after plasma treatment is also shown.
【表】
尚、1、2、4、6は比較例である。
実施例 3
プラスチツク成型品として、市販のポリメチル
メタクリレート板、及び市販のポリカーボネート
を用いた。まず、夫々の成型板をメタノールで洗
浄して充分に風乾し清澄な状態とした後、O2/
Ar(10/30ml/min)の混合ガスで全圧0.7Torr、
放電電力50Wの条件で1分間プラズマ処理した。
次いで、メタノールを溶剤として用い、5分間超
音波洗浄機を用いて洗浄し再び風乾した後、実施
例1と同様にして真空蒸着を行ない3μの厚みの
酸化ケイ素被膜を得た。かかる方法で形成した酸
化ケイ素被膜について、実施例1と同様な方法で
密着性試験を行ない、その結果を第3表に示す。
また、前記方法において、プラズマ処理しないも
の及びプラズマ処理後に溶剤による洗浄を行なわ
なかつたものを比較例として併せて示す。[Table] Note that 1, 2, 4, and 6 are comparative examples.
Example 3 A commercially available polymethyl methacrylate plate and a commercially available polycarbonate were used as plastic moldings. First, each molded plate was washed with methanol and thoroughly air-dried to a clear state, and then O 2 /
Total pressure 0.7 Torr with mixed gas of Ar (10/30 ml/min),
Plasma treatment was performed for 1 minute at a discharge power of 50W.
Next, using methanol as a solvent, it was washed in an ultrasonic cleaner for 5 minutes, air-dried again, and then vacuum evaporated in the same manner as in Example 1 to obtain a silicon oxide film with a thickness of 3 μm. The silicon oxide film formed by this method was subjected to an adhesion test in the same manner as in Example 1, and the results are shown in Table 3.
In addition, in the above method, a case in which plasma treatment was not performed and a case in which cleaning with a solvent was not performed after plasma treatment are also shown as comparative examples.
【表】
尚、1、2、4、5は比較例である。
実施例 4
実施例1,2と夫々同様の注型重合により製造
したポリエチレングリコールビスアリルカーボネ
ート板と、2,2−ビス−〔4−(2−メタクリロ
キシ)−エトキシ−3,5−ジブロモフエニル〕−
プロパンとスチレンの共重合による板状体(TB
−St共重合体と略す)を、まずアセトンで洗浄し
て充分に風乾し清澄な状態とした後、実施例3と
同様の条件でプラズマ処理し、次いでアセトンに
より5分間超音波洗浄機を用いて洗浄し再び風乾
した。そして、実施例1と同様にして真空蒸着を
行ない3μの厚みの酸化アルミニウム被膜を得た。
かかる方法で形成した酸化アルミニウム被膜につ
いて、実施例1と同様の方法で密着性試験を行な
つた。その結果を第4表に示す。また、前記方法
において、プラズマ処理しないもの及びプラズマ
処理後に溶剤による洗浄を行なわなかつたものを
比較例として併せて示す。[Table] Note that 1, 2, 4, and 5 are comparative examples.
Example 4 A polyethylene glycol bisallyl carbonate plate produced by the same cast polymerization as in Examples 1 and 2, and 2,2-bis-[4-(2-methacryloxy)-ethoxy-3,5-dibromophenyl] ]−
Plates (TB) made by copolymerization of propane and styrene
-St copolymer) was first washed with acetone and thoroughly air-dried to a clear state, then plasma treated under the same conditions as in Example 3, and then treated with acetone in an ultrasonic cleaner for 5 minutes. It was washed and air-dried again. Then, vacuum evaporation was performed in the same manner as in Example 1 to obtain an aluminum oxide film with a thickness of 3 μm.
An adhesion test was conducted on the aluminum oxide film formed by this method in the same manner as in Example 1. The results are shown in Table 4. In addition, in the above method, a case in which plasma treatment was not performed and a case in which cleaning with a solvent was not performed after plasma treatment are also shown as comparative examples.
【表】
尚、1、2、4、5は比較例である。
実施例 5
実施例4のNo.3において、無機硬質物をアルミ
ニウムに代えた以外は同様な実験を行なつた。得
られた被膜について実施例1と同様な方法で密着
性試験を行なつた。その結果、ゴバン目試験100、
耐熱水性試験〇、耐高湿性試験〇であつた。[Table] Note that 1, 2, 4, and 5 are comparative examples.
Example 5 An experiment similar to Example 4 No. 3 was conducted except that the inorganic hard material was replaced with aluminum. An adhesion test was conducted on the obtained film in the same manner as in Example 1. As a result, Goban eye test 100,
The results were 0 in the hot water resistance test and 0 in the high humidity resistance test.
Claims (1)
に変性層を形成させ、次いで該変性層を溶剤で洗
浄して変性層の一部を除去した後、該表面に無機
硬質物を析出させて被膜を形成することを特徴と
するプラスチツク成形品の表面改質方法。 2 真空蒸着によつて無機硬質物を析出させる特
許請求の範囲第1項記載の方法。[Claims] 1 A plastic molded product is plasma-treated to form a modified layer on its surface, and then the modified layer is washed with a solvent to remove a part of the modified layer, and then an inorganic hard material is applied to the surface. A method for modifying the surface of a plastic molded product, characterized by forming a film through precipitation. 2. The method according to claim 1, wherein the inorganic hard material is deposited by vacuum deposition.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8641382A JPS58204031A (en) | 1982-05-24 | 1982-05-24 | Surface modification of plastic molding |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8641382A JPS58204031A (en) | 1982-05-24 | 1982-05-24 | Surface modification of plastic molding |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58204031A JPS58204031A (en) | 1983-11-28 |
JPS6352107B2 true JPS6352107B2 (en) | 1988-10-18 |
Family
ID=13886178
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8641382A Granted JPS58204031A (en) | 1982-05-24 | 1982-05-24 | Surface modification of plastic molding |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58204031A (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0619481B2 (en) * | 1984-10-03 | 1994-03-16 | 東レ株式会社 | Method for producing composite |
EP0195493B1 (en) * | 1985-03-22 | 1993-03-24 | Toray Industries, Inc. | Transparent article and process for preparation thereof |
JP5417202B2 (en) * | 2010-01-27 | 2014-02-12 | Hoya株式会社 | Method for producing dyed plastic lens |
-
1982
- 1982-05-24 JP JP8641382A patent/JPS58204031A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS58204031A (en) | 1983-11-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TW562841B (en) | Multilayer interference pigment with transparent middle layer | |
JP2002507665A (en) | Organic substrate having an optical layer deposited by magnetron sputtering and method of making the same | |
JP2012027300A (en) | Lens manufacturing method and lens | |
JPH09272567A (en) | Coating film and its manufacture | |
Kumar et al. | Broadband and wide angle anti-reflective nanoporous surface on poly (ethylene terephthalate) substrate using a single step plasma etching for applications in flexible electronics | |
JPS6352107B2 (en) | ||
JPH07151914A (en) | Plastic film having scratching resistance and chemical resistance, its production and polarizing plate | |
JP3219570B2 (en) | Gas barrier film | |
JP2790144B2 (en) | Plastic molded body having conductivity | |
JPH09211204A (en) | Film forming method of antireflection film on plastic film | |
JPS60131711A (en) | Transparent conductive laminate | |
JP2599902B2 (en) | Removal method of cured film | |
JPH0285353A (en) | Method for coating plastic | |
JPH02291501A (en) | Antireflection film | |
JPH09234817A (en) | Layered film | |
JPH01103613A (en) | Organic glass for optics | |
JPH02196651A (en) | Metal coated acrylic resin film excellent in close adhesiveness | |
TWI305178B (en) | Gas barrier structures | |
JPH03255401A (en) | Formation of mgf2 film on plastic substrate | |
JPS58117230A (en) | Production of injection molded optical member | |
JPS63227B2 (en) | ||
JPS6118264B2 (en) | ||
JPH0266157A (en) | Metallic coating of plastic parts and production of reflection increased metallic mirror coating | |
JPH08201785A (en) | Transparent conductive film | |
JPS6332620B2 (en) |