JPS635203A - Method and apparatus for detecting pattern - Google Patents

Method and apparatus for detecting pattern

Info

Publication number
JPS635203A
JPS635203A JP61146880A JP14688086A JPS635203A JP S635203 A JPS635203 A JP S635203A JP 61146880 A JP61146880 A JP 61146880A JP 14688086 A JP14688086 A JP 14688086A JP S635203 A JPS635203 A JP S635203A
Authority
JP
Japan
Prior art keywords
light
polarized light
inspected
polarized
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61146880A
Other languages
Japanese (ja)
Inventor
Yoshikazu Tanabe
義和 田辺
Nobuhiro Otsuka
大塚 伸宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP61146880A priority Critical patent/JPS635203A/en
Publication of JPS635203A publication Critical patent/JPS635203A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enhance the detection accuracy of the pattern formed on an article to be inspected, by comparing the quantity of a normal (S) polarized beam component and that of a parallel (P) polarized beam component with a predetermined threshold value. CONSTITUTION:Polarized beams S emitted from beam sources 3, 4 are allowed to irradiate an aligning mark 2a and, further, an XY table 1 is appropriately moved to scan the aligning mark 2a by the polarized beams S. At this time, scattering or reflected beams 11 obtained from the part irradiated with the polarized beams S of the aligning mark 2a are incident on a polarizing beam splitter 13 and indivisually split into a P polarized beam component 11P and an S polarized beam component 11S to be converted to electric signals corresponding to the quantities of both beam components by detectors 14, 15. Next, the ratio R of the quantity of the components 11S and that of the component 11P is calculated in an operation part 16 and compared with a predetermined threshold value Th in a comparing part 17 and, when R>Th is formed, the edge part of the aligning mark 2a is judged to make it possible to accurately detect the position of the mark 2a on an article 2 to be inspected.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、パターン検出技術、特に、半導体装置の製造
における半導体ウェハの露光時の位置合わせマークの検
出に゛適用して有効な技術に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a pattern detection technique, and particularly to a technique that is effective when applied to the detection of alignment marks during exposure of a semiconductor wafer in the manufacture of semiconductor devices.

[従来の技術] 半導体装置の製造における半導体ウェハの露光時の位置
合わせマークの検出技術については、株式会社工業調査
会、昭和58年11月15日発行、「電子材料J 19
83年11月号別冊、P97〜P104に記載されてい
る。
[Prior Art] Regarding the detection technology of alignment marks during exposure of semiconductor wafers in the manufacture of semiconductor devices, please refer to "Electronic Materials J 19" published by Kogyo Kenkyukai Co., Ltd., November 15, 1981.
It is described in the November 1983 special edition, pages 97 to 104.

その概要は、半導体ウェハの露光領域の近傍に形成され
た位置合わせマークにレーザなどを照射して散乱光また
は反射光を検出し、下地部分よりも突出した位置合わせ
マークのエツジ部分からの散乱光または反射光が最も強
くなることを利用して位置合わせマークの位置を把握す
るものである。
The outline of this method is to irradiate a laser or other beam onto an alignment mark formed near the exposure area of a semiconductor wafer and detect scattered or reflected light. Alternatively, the position of the alignment mark is determined by utilizing the fact that the reflected light becomes the strongest.

[発明が解決しようとする問題点] しかしながら、上記のように、単に位置合わせマークに
レーザを照射する際に発生される散乱光または反射光を
検出する方式では、位置合わせマークの表面や半導体ウ
ェハの下地部分に結晶粒などに起因する凹凸が存在する
と、位置合わせマークのエツジ部分からの散乱光が下地
部分からの散乱光の中に埋もれてしまい、位置合わせマ
ークの検出精度が低下される結果、フォトリソグラフィ
を繰り返すことによって、半導体ウェハの表面に多層に
形成される集積回路パターンなどの相互の重ね合わせ精
度が低下される原因となる。
[Problems to be Solved by the Invention] However, as described above, in the method of simply detecting the scattered light or reflected light generated when laser is irradiated on the alignment mark, the surface of the alignment mark or the semiconductor wafer cannot be detected. If there are irregularities caused by crystal grains etc. in the underlying part, the scattered light from the edge part of the alignment mark will be buried in the scattered light from the underlying part, resulting in a decrease in the detection accuracy of the alignment mark. , repeating photolithography causes a reduction in the mutual overlay accuracy of integrated circuit patterns formed in multiple layers on the surface of a semiconductor wafer.

このことは、半導体装置の小型化、高集積化に伴って半
導体ウェハに形成すべきパターンが微細化され、多層に
形成されるパターン相互の重ね合ねせをより高精度で行
うことが要請されつつあることを考慮すれば重要な問題
となることを本発明者は見いだした。
This is because, as semiconductor devices become smaller and more highly integrated, the patterns to be formed on semiconductor wafers become finer, and it is required to superimpose patterns formed in multiple layers with higher precision. The inventors of the present invention have found that this poses an important problem in consideration of the current situation.

本発明の目的は、被検査物に形成されたパターンの検出
精度を向上させることが可能なパターン検出技術を堤供
することにある。
An object of the present invention is to provide a pattern detection technique that can improve the detection accuracy of a pattern formed on an object to be inspected.

本発明の前記ならびにそのほかの目的と新規な特徴は、
本明細書の記述および添付図面から明らかになるであろ
う。
The above and other objects and novel features of the present invention include:
It will become clear from the description herein and the accompanying drawings.

[問題点を解決するための手段] 本願において開示される発明のうち代表的なものの概要
を闇単に説明すれば、次の通りである。
[Means for Solving the Problems] A brief summary of typical inventions disclosed in this application is as follows.

すなわち、所定のパターンが形成された被検査物の表面
にS(ゼンクレヒト= 5enkrech t) 偏光
を照射して得られる散乱光または反射光のP(パラレル
=Parallel)偏光成分およびS偏光成分の光量
を個別に検出し、S偏光成分の光量とP偏光成分の光量
との比を所定のしきい値と比較することによって被検査
物の表面に形成されたパターンを検出するようにしたも
のである。
That is, the light intensity of the P (parallel) polarized light component and the S polarized light component of the scattered light or reflected light obtained by irradiating S (senkrecht = 5 enkrecht = 5 enkrecht) polarized light onto the surface of the inspected object on which a predetermined pattern is formed is calculated. The pattern formed on the surface of the object to be inspected is detected by individually detecting the light quantity and comparing the ratio of the light quantity of the S-polarized light component and the light quantity of the P-polarized light component with a predetermined threshold value.

[作 用] 上記した手段によれば、たとえば、被検査物の表面に形
成された比較的規則的な形状のパターンから発生され、
S偏光成分がP偏光成分よりも大きな散乱光または反射
光と、結晶粒などによる凹凸が存在し比較的乱雑な表面
状態を呈する下地部分から発生され、S偏光成分とP偏
光成分とをほぼ等型金む散乱光または反射光とが大きな
対比をもって検出され、被検査物の表面に形成されたパ
ターンの検出精度を向上させることができる。
[Function] According to the above-mentioned means, for example, a pattern is generated from a relatively regularly shaped pattern formed on the surface of the object to be inspected,
The S-polarized light component is larger than the P-polarized light component, and the scattered or reflected light is generated from the underlying part, which has unevenness due to crystal grains and has a relatively disordered surface state, and the S-polarized light component and the P-polarized light component are almost equal. The scattered light or reflected light from the mold is detected with a large contrast, and the detection accuracy of the pattern formed on the surface of the object to be inspected can be improved.

[実施例1] 第1図は、本発明の一実施例であるパターン検出装置が
縮小投影露光装置に装着された状態を示す説明図である
[Embodiment 1] FIG. 1 is an explanatory diagram showing a state in which a pattern detection apparatus according to an embodiment of the present invention is installed in a reduction projection exposure apparatus.

すなわち、本実施例においては、パターン検出装置が縮
小投影露光装置の位置合わせマーク検出装置として用い
られている。
That is, in this embodiment, the pattern detection device is used as an alignment mark detection device of a reduction projection exposure apparatus.

所定の平面内において移動自在なXY子テーブルの上に
は、たとえば表面にフォトレジストが塗布されるととも
に、所定の部位に所定の位置合わせマーク2a(パター
ン)が形成された半導体ウェハなどの被検査′31IJ
2が着脱自在に位置されていXY子テーブルの上方には
、縮小レンズ3および集光レンズ4、さらには、縮小レ
ンズ3と集光レンズ4との間に介設されるレチクルなど
の原版5が設けられており、図示しない光源から得られ
る露光光6を集光レンズ4および原版5さらには縮小レ
ンズ3を経て被検査物2の所定の部位に照射することに
より、原版5の透明な基板に所定の形状に゛形成された
遮光膜などからなる図形5aが縮小レンズ3によって所
定の倍率に縮小されて被検査物2の所定の部位に転写さ
れ、被検査物2の表面に塗布されているフォトレジスト
などが所定の図形5bに露光されるように構成されてい
る。
On the XY child table, which is movable within a predetermined plane, there is placed, for example, a semiconductor wafer to be inspected whose surface is coated with photoresist and a predetermined positioning mark 2a (pattern) is formed at a predetermined location. '31IJ
2 is removably positioned, and above the XY child table are a reduction lens 3 and a condenser lens 4, as well as an original 5 such as a reticle interposed between the reduction lens 3 and the condenser lens 4. By irradiating exposure light 6 obtained from a light source (not shown) onto a predetermined part of the object to be inspected 2 through a condenser lens 4, an original 5, and a reduction lens 3, the transparent substrate of the original 5 is exposed. A figure 5a made of a light-shielding film or the like formed in a predetermined shape is reduced to a predetermined magnification by a reduction lens 3, transferred to a predetermined part of the object 2 to be inspected, and applied to the surface of the object 2 to be inspected. A photoresist or the like is configured to be exposed to a predetermined pattern 5b.

この場合、XY子テーブルの周辺部には、たとえばレー
ザなどのS偏光(S)のみを放射する複数の光源7およ
び光源8が該XY子テーブルを介して対向して配設され
、該光a7および8から放射されるS偏光(S)がXY
子テーブルの上に載置される被検査物2に形成された位
置合わせマーク2aに向けてほぼ水平に照射される構造
とされている。
In this case, a plurality of light sources 7 and 8, such as lasers, which emit only S-polarized light (S) are disposed around the XY child table, facing each other via the XY child table, and the light a7 and S polarized light (S) emitted from 8 is XY
It is structured so that the light is irradiated almost horizontally toward an alignment mark 2a formed on an object to be inspected 2 placed on a sub-table.

また、原版5の下面において図形5aの近傍には、偏光
光の偏光状態を乱すことなく反射させることが可能なレ
ーザミラーなどのミラーパターン9が設けられ、原版5
の下側近傍には同じくレーザミラーなどからなる反射鏡
10が設けられており、被検査物2の前記S偏光(S)
が照射される位置合わせマーク2aなどから発生され、
縮小レンズ3を透過した散乱光または反射光11が、ミ
ラーパターン9および反射鏡10を経て側方に取り出さ
れるように構成されている。
Further, a mirror pattern 9 such as a laser mirror capable of reflecting polarized light without disturbing the polarization state of the polarized light is provided near the figure 5a on the lower surface of the original 5.
A reflecting mirror 10 also made of a laser mirror or the like is provided near the bottom of the
is generated from the alignment mark 2a etc. that is irradiated,
Scattered light or reflected light 11 transmitted through the reduction lens 3 is configured to be extracted laterally through a mirror pattern 9 and a reflecting mirror 10.

さらに、反射鏡10を経た散乱光または反射光11の光
路には、レンズ12を介して偏光ビームスプリンタ13
(分岐部)が配設されている。
Furthermore, the optical path of the scattered light or reflected light 11 that has passed through the reflecting mirror 10 includes a polarizing beam splinter 13 via a lens 12.
(branch) is provided.

この偏光ビームスプリッタ13は、レンズ12を介して
入射される散乱光または反射光11に含まれるP偏光成
分lIPおよびS偏光成分113のうち、P偏光成分1
1Pを散乱光または反射光11の入射方向と同じ方向に
直進させるとともに、S偏光成分113を散乱光または
反射光11の光路に交差する方向に反射することによっ
て、P偏光成分11Pおよび′S偏光成分113が個別
に分岐されて取り出されるよ′うに構成されている。
This polarizing beam splitter 13 is configured to divide the P-polarized light component 1 out of the P-polarized light component lIP and the S-polarized light component 113 contained in the scattered light or reflected light 11 incident through the lens 12.
1P goes straight in the same direction as the incident direction of the scattered light or reflected light 11, and reflects the S polarized light component 113 in a direction intersecting the optical path of the scattered light or reflected light 11. The components 113 are configured to be separated and taken out individually.

また、偏光ビームスプリッタ13において分岐されたP
偏光成分11PおよびS偏光成分113の光路には、複
数の検出器14および検出器15がそれぞれ設けられて
おり、P偏光成分LIPおよびS偏光成分113の光量
が、たとえば、それぞれの光量に応じた強度の電気信号
に変換されて個別に検出きれる構造とされている。
In addition, P split at the polarization beam splitter 13
A plurality of detectors 14 and a plurality of detectors 15 are provided in the optical paths of the polarized light component 11P and the S polarized light component 113, respectively, and the light amounts of the P polarized light component LIP and the S polarized light component 113 are adjusted according to their respective light amounts, for example. The structure is such that it is converted into a strong electrical signal and can be detected individually.

さらに、複数の検出器14および15は、演算部16に
接続されておりJ該演算部”16においては、たとえば
、検出器15から得られるS偏光成分11Sの光量の値
を、検出器14から得られるP偏光成分11Pの光量の
値で除して得られる、S偏光成分Itsの光量とP偏光
成分11Pの光量との比Rが算出されるように構成され
ている。
Further, the plurality of detectors 14 and 15 are connected to a calculation unit 16, and the calculation unit 16 calculates, for example, the value of the light amount of the S polarization component 11S obtained from the detector 15. It is configured to calculate a ratio R between the light amount of the S-polarized light component Its and the light amount of the P-polarized light component 11P, which is obtained by dividing the value of the light amount of the P-polarized light component 11P obtained.

また、演算部16には比較部17が接続されており、該
演算部16において得られたS偏光成分11Sの光量と
P偏光成分LIPの光量との比Rを、たとえば基準電圧
発生器18などから与えられる所定のしきい値Thと比
較することによって、被検査物2の所定の部位に形成さ
れた位置合わせマークzaのエツジ部などが下地部分か
ら判別されるものである。
Further, a comparator 17 is connected to the arithmetic unit 16, and the ratio R between the amount of light of the S-polarized light component 11S and the amount of light of the P-polarized light component LIP obtained in the arithmetic unit 16 is calculated by a reference voltage generator 18, etc. By comparing with a predetermined threshold value Th given by , the edge portion of the alignment mark za formed at a predetermined portion of the inspection object 2 can be determined from the underlying portion.

以下、本実施例の作用について説明する。The operation of this embodiment will be explained below.

まず、表面の所定の部位に、以前のフォトリソグラフィ
工程などで集積回路パターンなどとともに形成された位
置合わせマーク2aを有するとともにフォトレジストな
どが塗布された半導体ウェハなどの被検査物2がXY子
テーブルの上に固定される。
First, an object 2 to be inspected, such as a semiconductor wafer, which has an alignment mark 2a formed together with an integrated circuit pattern in a previous photolithography process or the like in a predetermined part of its surface, and is coated with photoresist or the like is placed on an XY child table. is fixed on top.

次に、XY子テーブルを適宜移動させることにより、被
検査物2所定の部位に形成された位置合わせマーク2a
に光源3および4から放射されるS偏光(S)を照射し
、さらにXY子テーブルを適宜移動させることにより、
S偏光(S)によって被検査物2に形成された位置合わ
せマーク2aの領域が走査される。
Next, by moving the XY child table appropriately, positioning marks 2a are formed on a predetermined portion of the object 2.
By irradiating S polarized light (S) emitted from light sources 3 and 4 and further moving the XY child table appropriately,
The region of the alignment mark 2a formed on the object to be inspected 2 is scanned by the S-polarized light (S).

この時、位1合わせマーク2aのS偏光(S)   ’
の照射部位から得られる散乱光または反射光11は、縮
小レンズ3.ミラーパターン9および反射鏡10などを
経て偏光ビームスプリッタ13に入射され、該散乱光ま
たは反射光11に含まれるP偏光成分11PおよびS偏
光成分113は個別に分岐された後、それぞれ検出器1
4および15に到達し、それぞれの光量に応じた強度の
電気信号などに変換される。
At this time, the S polarized light (S) of the alignment mark 2a'
Scattered light or reflected light 11 obtained from the irradiation site is transmitted through the reduction lens 3. The P-polarized light component 11P and the S-polarized light component 113 included in the scattered light or reflected light 11 are incident on the polarizing beam splitter 13 through the mirror pattern 9 and the reflecting mirror 10, and are then separately split into the detector 1.
4 and 15, and are converted into electrical signals with intensities corresponding to the respective amounts of light.

さらに、検出器14および15が接続される演算部16
においては、たとえば、検出器15から得られるS偏光
成分Itsの光量の値を、検出器14から得られるP偏
光成分LIPの光蓋Φ値で除して得られる、S偏光成分
115の光量とP偏光成分11Pの光量との比Rが算出
され、比較部17において、前記比Rを所定のしきい値
Thと比較し、R>Thの場合に位置合わせマーク2a
のエツジ部と判定することにより、被検査物2における
位置合わせマーク2aの位置が正確に検出される。
Furthermore, a calculation unit 16 to which the detectors 14 and 15 are connected
For example, the light amount of the S-polarized component 115 is obtained by dividing the value of the light amount of the S-polarized component Its obtained from the detector 15 by the optical cover Φ value of the P-polarized component LIP obtained from the detector 14. A ratio R to the light amount of the P-polarized light component 11P is calculated, and the comparison unit 17 compares the ratio R with a predetermined threshold Th. If R>Th, the alignment mark 2a is
By determining that the edge portion is the edge portion, the position of the alignment mark 2a on the object to be inspected 2 is accurately detected.

すなわち、第2図に示されるように、被検査物2に形成
されたほぼ規則的な形状の位置合わせマーク2aからの
散乱光または反射光11には、反射面の形状がほぼ規則
的であるためS偏光(S)の偏光状態が保存され、はと
んどがS偏光成分IIsで構成され、P偏光成分LIP
の量は僅かとなり、−方、結晶粒などの凹凸によって比
較的乱雑な被検査物2の下地部分からの散乱光または反
射光11においては、含まれるS偏光成分113の光量
とP偏光成分11Pの光量とがほぼ等しくなる。
That is, as shown in FIG. 2, the scattered light or reflected light 11 from the substantially regularly shaped alignment mark 2a formed on the object to be inspected 2 has a reflecting surface that has a substantially regular shape. Therefore, the polarization state of S-polarized light (S) is preserved, and most of it is composed of S-polarized light component IIs, and P-polarized light component LIP
On the other hand, in the scattered light or reflected light 11 from the underlying portion of the object to be inspected 2, which is relatively disordered due to unevenness such as crystal grains, the amount of S-polarized light component 113 included and the P-polarized light component 11P are small. The amount of light becomes almost equal.

このため、位置合わせマーク2aからの散乱光または反
射光11におけるS偏光成分113の光量とP偏光成分
11Pの光量との比Rと、下地部分からの散乱光または
反射光11におけるS偏光成分113の光量とP偏光成
分11Pの光量との比Rの差が極めて太き(なり、両者
の間に所定のしきい値Thを設けることにより、比較的
規則的な形状の位置合わせマーク2aからの散乱光また
は反射光11と、比較的乱雑な状態を呈する下地部分か
らの散乱光または反射光11とが明瞭に区別され、被検
査物2に形成された位置合わせマーク2aの位置が正確
に把握される。
Therefore, the ratio R of the light amount of the S-polarized light component 113 in the scattered light or reflected light 11 from the alignment mark 2a and the light amount of the P-polarized light component 11P, and the S-polarized light component 113 in the scattered light or reflected light 11 from the underlying portion are determined. The difference in the ratio R between the amount of light and the amount of light of the P-polarized component 11P is extremely large. Scattered light or reflected light 11 is clearly distinguished from scattered light or reflected light 11 from the underlying portion, which is relatively disordered, and the position of alignment mark 2a formed on object 2 to be inspected can be accurately grasped. be done.

その後、正確に検出された位置合わせマーク2aの位置
に基づいて、XY子テーブルを微細に移動させることに
より、被検査物2に対する縮小レンズ3および原版5の
軸などの位置合わせが行われ、被検査′!/J2にすで
に形成されている集積回路パターンなどと、原版5に遮
光膜などの図形5aとして形成され縮小レンズ3を介し
て被検査物2に転写される所定の図形5bとの重ね合わ
せなどが正確に行われる。
Thereafter, by finely moving the XY child table based on the accurately detected position of the alignment mark 2a, the axes of the reduction lens 3 and original 5 are aligned with respect to the object 2 to be inspected. inspection'! The integrated circuit pattern already formed on J2 is superimposed on a predetermined figure 5b formed on the original plate 5 as a figure 5a such as a light-shielding film and transferred to the object 2 to be inspected via the reduction lens 3. done accurately.

このように、本実施例によれば以下の効、果を得ること
ができる。
As described above, according to this embodiment, the following effects can be obtained.

(1)、被検査物2の位置合わせマーク2aが形成され
た所定の部位にS偏光(S)を照射する際に発生される
散乱光または反射光11に含まれるP偏光成分11Pと
S偏光成分113とを、偏光ビームスプリンタ13およ
び複数の検出2314.15によって個別に検出し、さ
らに演算部16においてS偏光成分115の光量とP偏
光成分11Pの光量との比Rを算出し、液比Rを比較部
18において所定のしきい値Thと比較することによっ
て、被検査物2に形成された位置合わせマーク2aから
の散乱光または反射光11と下地部分からの散乱光また
は反射光11とを判別することにより、被検査物2に形
成された位置合わせマーク2aが検出される構造である
ため、たとえば単に散乱光または反射光11の光量の変
化を検出する場合などに比較して、被検査物2に形成さ
れた位置合わせマーク2aなどの検出悪魔および精度が
向上される。
(1) P-polarized light component 11P and S-polarized light contained in scattered light or reflected light 11 generated when S-polarized light (S) is irradiated to a predetermined portion of the inspection object 2 where the alignment mark 2a is formed. component 113 is individually detected by the polarization beam splinter 13 and a plurality of detectors 2314.15, and furthermore, the calculation unit 16 calculates the ratio R between the light amount of the S-polarized light component 115 and the light amount of the P-polarized light component 11P, and calculates the liquid ratio. By comparing R with a predetermined threshold Th in the comparing section 18, the scattered light or reflected light 11 from the alignment mark 2a formed on the inspection object 2 and the scattered light or reflected light 11 from the underlying portion are determined. Since the structure is such that the alignment mark 2a formed on the object 2 to be inspected is detected by determining the Detection accuracy of alignment marks 2a and the like formed on the inspection object 2 is improved.

(2)、前記(1)の結果、本実施例のパターン検出装
置を半導体装置の製造における半導体ウェハの露光時の
位置合わせマーク検出に用いることにより、フォトリソ
グラフィを繰り返すことによって多層に形成される集積
回路パターンの相互の重ね合わせ精度が向上され、半導
体装置の製造における歩留りが向上される。
(2) As a result of (1) above, by using the pattern detection device of this embodiment for detecting alignment marks during exposure of semiconductor wafers in the manufacture of semiconductor devices, it is possible to form multiple layers by repeating photolithography. The mutual overlay accuracy of integrated circuit patterns is improved, and the yield in manufacturing semiconductor devices is improved.

以上本発明者によってなされた発明を実施例に基づき具
体的に説明したが、本発明は前記実施例に限定されるも
のではなく、その要旨を逸脱しない範囲で種々変更可能
であることはいうまでもない。
Although the invention made by the present inventor has been specifically explained above based on Examples, it goes without saying that the present invention is not limited to the Examples and can be modified in various ways without departing from the gist thereof. Nor.

たとえば、散乱光または反射光に含まれるS偏光および
P偏光を分岐させて個別に取り出す方法としては、ビー
ムスプリフタを用いることに限らず、ハーフミラ−など
によって散乱光または反射光を分岐させた後、分岐され
た各々の光路に、S偏光またはP偏光のみを透過させる
偏光板をそれぞれ介設してS偏光成分およびP偏光成分
を個別に検出する方法でもよい。
For example, the method of splitting the S-polarized light and the P-polarized light contained in the scattered light or reflected light and extracting them individually is not limited to using a beam splitter. Alternatively, a polarizing plate that transmits only S-polarized light or P-polarized light may be interposed in each branched optical path, and the S-polarized light component and the P-polarized light component may be detected separately.

以上の説明では主として本発明者によってなされた発明
をその背景となった利用分野である半導体ウェハの露光
時の位置合わせマーク検出技術に適用した場合について
説明したが、それに限定されるものではなく、たとえば
、集積回路パターンの寸法検査装置におけるパターンの
検出などに広く適用できる。
In the above explanation, the invention made by the present inventor was mainly applied to the technology for detecting alignment marks during exposure of semiconductor wafers, which is the field of application in which the invention was made, but the invention is not limited thereto. For example, the present invention can be widely applied to pattern detection in integrated circuit pattern size inspection equipment.

[発明の効果] 本願において開示される発明のうち代表的なものによっ
て得られる効果を簡単に説明すれば、下記の通りである
[Effects of the Invention] The effects obtained by typical inventions disclosed in this application are briefly described below.

すなわち、所定のパターンが形成された被検査物の表面
にS偏光を照射する複数の光源と、該被検査物からの散
乱光または反射光中に含まれるP偏光成分およびS偏光
成分を分岐させる分岐部と、該分岐部において分岐され
たP偏光成分およびS偏光成分の各々の光量を個別に検
出する複数の検出部と、該複数の検出部において検出さ
れる前記S偏光成分の光量と前記P偏光成分の光量との
比を算出する演算部と、該演算部において得られる前記
比を所定のしきい値と比較する比較部とを有する構造で
あるため、たとえば、被検査物の表面に形成された比較
的規則的な形状のパターンから発生され、S偏光成分が
P偏光成分よりも大きな散乱光または反射光と、結晶粒
などによる凹凸が存在し比較的乱雑な表面状態を呈する
下地部分から発生され、S偏光成分とP偏光成分とをほ
ぼ等型金む散乱光または反射光とが大きな対比をもって
検出され、単に散乱光または反射光の光量の変化のみに
基づいてパターンを検出する場合などに比較して、被検
査物の表面に形成されたパターンの検出精度を向上させ
ることができる。
That is, a plurality of light sources irradiate S-polarized light onto the surface of an object to be inspected on which a predetermined pattern is formed, and a P-polarized light component and an S-polarized light component contained in scattered light or reflected light from the object to be inspected are separated. a branching section, a plurality of detection sections that individually detect the amount of light of each of the P-polarized light component and the S-polarized light component branched at the branching section, and the amount of light of the S-polarized light component detected in the plurality of detection sections and the The structure has a calculation section that calculates the ratio of the light amount of the P-polarized light component and a comparison section that compares the ratio obtained in the calculation section with a predetermined threshold. Scattered light or reflected light is generated from the formed pattern with a relatively regular shape, and the S-polarized light component is larger than the P-polarized light component, and the underlying part has unevenness due to crystal grains and has a relatively disordered surface state. Scattered light or reflected light that is generated from a light source and has an S-polarized light component and a P-polarized light component that are almost equal in size is detected with a large contrast, and a pattern is detected based solely on changes in the amount of scattered light or reflected light. It is possible to improve the detection accuracy of a pattern formed on the surface of an object to be inspected.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例であるパターン検出装置が縮
小投影露光装置に装着された状態を示す説明図、 第2図はその作用を説明する説明図である。 1・・・XY子テーブル2・・・被検査物、2a・・・
位置合わせマーク(パターン)、3・・・縮小レンズ、
4・・・集光レンズ、5・・・原版、5a・・・原版に
形成された図形、5.b・・・被検査物に転写される図
形、6・・・露光光、7.8・・・光源、9・・・ミラ
ーパターン、lO・・・反射鏡、11・・・散乱光また
は反射光、115・・・S偏光成分、zp・・・P偏光
成分、12・・・レンズ、13・・・偏光ビームスプリ
、り(分岐部)、14.15・・・検出器、16・・・
演算部、17・・・比較部、18・・・基準電圧発生器
、S・・・S偏光、R・・・散乱光または反射光のS偏
光成分の光量とP偏光成分の光量との比、Th・・・し
きい値。 第  2  図 δ暴モ乏童ば1 F、゛ 一−パ  −,′ ′  −1゛ 5 ′   。
FIG. 1 is an explanatory diagram showing a state in which a pattern detection device according to an embodiment of the present invention is installed in a reduction projection exposure apparatus, and FIG. 2 is an explanatory diagram illustrating its operation. 1...XY child table 2...Object to be inspected, 2a...
Positioning mark (pattern), 3... reduction lens,
4... Condenser lens, 5... Original plate, 5a... Figure formed on the original plate, 5. b...Figure to be transferred to the inspected object, 6...Exposure light, 7.8...Light source, 9...Mirror pattern, lO...Reflector, 11...Scattered light or reflection Light, 115... S polarized light component, zp... P polarized light component, 12... Lens, 13... Polarized beam splitter, 14.15... Detector, 16...・
Arithmetic unit, 17... Comparison unit, 18... Reference voltage generator, S... S polarized light, R... Ratio of light amount of S polarized light component and light amount of P polarized light component of scattered light or reflected light. , Th...Threshold value. Fig. 2 δ violent poor child 1 F, ゛1-pa-,''-1゛5'.

Claims (1)

【特許請求の範囲】 1、所定のパターンが形成された被検査物の表面にS偏
光を照射して得られる散乱光または反射光に含まれるP
偏光成分およびS偏光成分の光量を個別に検出し、該S
偏光成分の光量と該P偏光成分の光量との比を所定のし
きい値と比較することによって、前記被検査物の表面に
形成されたパターンの検出を行うことを特徴とするパタ
ーン検出方法。 2、前記S偏光が照射される前記被検査物を相対的に平
行移動させることにより、該被検査物の表面が該S偏光
によって走査されることを特徴とする特許請求の範囲第
1項記載のパターン検出方法。 3、前記被検査物が半導体ウェハであり、前記パターン
が該半導体ウェハに形成された露光時の位置合わせマー
クであることを特徴とする特許請求の範囲第1項記載の
パターン検出方法。 4、所定のパターンが形成された被検査物の表面にS偏
光を照射する複数の光源と、該被検査物からの散乱光ま
たは反射光中に含まれるP偏光成分およびS偏光成分を
分岐させる分岐部と、該分岐部において分岐されたP偏
光成分およびS偏光成分の各々の光量を個別に検出する
複数の検出部と、該複数の検出部において検出される前
記S偏光成分の光量と前記P偏光成分の光量との比を算
出する演算部と、該演算部において得られる前記比を所
定のしきい値と比較する比較部とを有することを特徴と
するパターン検出装置。 5、前記被検査物が前記複数の光源に対して相対的に平
行移動されることにより、該複数の光源から該被検査物
の表面に照射されるS偏光の該被検査物に対する走査が
行われることを特徴とする特許請求の範囲第4項記載の
パターン検出装置。 6、前記複数の光源が、前記被検査物を介して対向して
配設されていることを特徴とする特許請求の範囲第4項
記載のパターン検出装置。 7、前記被検査物が半導体ウェハであり、前記パターン
が該半導体ウェハに形成された露光時の位置合わせマー
クであることを特徴とする特許請求の範囲第4項記載の
パターン検出装置。
[Claims] 1. P contained in scattered light or reflected light obtained by irradiating S-polarized light onto the surface of an object to be inspected on which a predetermined pattern is formed.
The amount of light of the polarized light component and the S polarized light component is detected individually, and the amount of light of the S polarized light component is detected individually.
A pattern detection method comprising: detecting a pattern formed on the surface of the object to be inspected by comparing a ratio of the amount of light of the polarized light component and the amount of light of the P-polarized light component with a predetermined threshold value. 2. The surface of the object to be inspected is scanned by the S-polarized light by relatively moving the object to be inspected irradiated with the S-polarized light in parallel. pattern detection method. 3. The pattern detection method according to claim 1, wherein the object to be inspected is a semiconductor wafer, and the pattern is an alignment mark formed on the semiconductor wafer during exposure. 4. A plurality of light sources that irradiate S-polarized light onto the surface of the object to be inspected on which a predetermined pattern is formed, and branch the P-polarized light component and the S-polarized light component contained in the scattered light or reflected light from the object to be inspected. a branching section, a plurality of detection sections that individually detect the amount of light of each of the P-polarized light component and the S-polarized light component branched at the branching section, and the amount of light of the S-polarized light component detected in the plurality of detection sections and the A pattern detection device comprising: a calculation unit that calculates a ratio between the amount of light of a P-polarized component; and a comparison unit that compares the ratio obtained in the calculation unit with a predetermined threshold value. 5. By moving the object to be inspected in parallel relative to the plurality of light sources, the object to be inspected is scanned with S-polarized light irradiated from the plurality of light sources onto the surface of the object to be inspected. 5. The pattern detection device according to claim 4, characterized in that: 6. The pattern detection device according to claim 4, wherein the plurality of light sources are arranged to face each other with the object to be inspected interposed therebetween. 7. The pattern detection device according to claim 4, wherein the object to be inspected is a semiconductor wafer, and the pattern is an alignment mark formed on the semiconductor wafer during exposure.
JP61146880A 1986-06-25 1986-06-25 Method and apparatus for detecting pattern Pending JPS635203A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61146880A JPS635203A (en) 1986-06-25 1986-06-25 Method and apparatus for detecting pattern

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61146880A JPS635203A (en) 1986-06-25 1986-06-25 Method and apparatus for detecting pattern

Publications (1)

Publication Number Publication Date
JPS635203A true JPS635203A (en) 1988-01-11

Family

ID=15417657

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61146880A Pending JPS635203A (en) 1986-06-25 1986-06-25 Method and apparatus for detecting pattern

Country Status (1)

Country Link
JP (1) JPS635203A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012060131A (en) * 2010-09-13 2012-03-22 Asml Netherlands Bv Alignment determination system, lithography apparatus, and method of determining alignment in lithography apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012060131A (en) * 2010-09-13 2012-03-22 Asml Netherlands Bv Alignment determination system, lithography apparatus, and method of determining alignment in lithography apparatus
JP2014132695A (en) * 2010-09-13 2014-07-17 Asml Netherlands Bv Alignment determination system, lithography apparatus, and method of determining alignment in lithography apparatus
US9046385B2 (en) 2010-09-13 2015-06-02 Asml Netherlands B.V. Alignment measurement system, lithographic apparatus, and a method to determine alignment in a lithographic apparatus
US9280057B2 (en) 2010-09-13 2016-03-08 Asml Netherlands B.V. Alignment measurement system, lithographic apparatus, and a method to determine alignment of in a lithographic apparatus

Similar Documents

Publication Publication Date Title
US7400402B2 (en) Modulated scatterometry
US10585363B2 (en) Alignment system
JPS58120155A (en) Detecting device for extraneous substance on reticle
JPH07239212A (en) Position detector
TW201415009A (en) Pattern test apparatus
US7382469B2 (en) Exposure apparatus for manufacturing semiconductor device, method of exposing a layer of photoresist, and method of detecting vibrations and measuring relative position of substrate during an exposure process
JPH09237812A (en) Workpiece dimension measuring method, semiconductor device manufacturing method and quality control method
JPS6330570B2 (en)
JPS635203A (en) Method and apparatus for detecting pattern
US10801967B2 (en) Mask inspection apparatus, switching method, and mask inspection method
US5760411A (en) Alignment method for positioning a plurality of shot areas on a substrate
JP3983549B2 (en) Surface defect inspection equipment
JP2002340524A (en) Pattern detecting method and pattern detector
JPS62223649A (en) Method and device for inspection
JPH0739993B2 (en) Inspection method and device
JPS61180128A (en) Optical inspecting device
JPS62223651A (en) Method and device for inspection
JP2000206329A (en) Phase measuring method and its device
JPH0340417A (en) Projection aligner
JPH0786131A (en) Aligner
JPS6232612A (en) Alignment mark
JPS6382348A (en) Foreign matter inspector
KR20120110949A (en) Apparatus and method of inspecting a defect on semiconductor substrate using scattered light occurred white light
JPH07333167A (en) Surface state inspection device and exposure device using the inspection device
JP2003257829A (en) Gap measuring method, gap measuring device, and aligner